next up previous
Next: Protocols Up: A semantics for BAN Previous: Semantics of formulas

Soundness


 \begin{theorem}[Soundness]
The logic as described in this article is sound with respect to the 
newly defined semantics.\end{theorem}


\begin{corollary}
BAN logic is sound.\end{corollary}

Proof of Theorem 11

For each axiom $\derives \phiimplpsi$,as summed up in section 2.2, we prove \( s \models \phi \Rightarrow s \models \psi \).

Rationality
does not have the form $\derives \phiimplpsi$; instead, we have to show that for each theorem $\phi$ (and any P in the environment) the formula $P \believes \phi$ is a tautology.
\begin{outcase}
% latex2html id marker 436
\begin{calc}
\xpr{\derives \phi}
\z{\...
 ...emantics of $\believes$}
\xpr{s \models P \believes \psi}\end{calc}\end{outcase}

Saying parts of a joint message


\begin{calc}
% latex2html id marker 459
\xpr{s \models P \oncesaid (X,Y)}
\z{\eq...
 ..._P}
\z{\equiv}{semantics of $\oncesaid$}
\xpr{s \models P \oncesaid X}\end{calc}

Saying contents of an encrypted message

\begin{calc}
% latex2html id marker 471
\xpr{s \models P \oncesaid \encrypt{X}{K...
 ..._P}
\z{\equiv}{semantics of $\oncesaid$}
\xpr{s \models P \oncesaid X}\end{calc}
Seeing parts of a joint message


\begin{calc}
% latex2html id marker 494
\xpr{s \models P \sees (X,Y)}
\z{\equiv}...
 ...in \Sees_P}
\z{\equiv}{semantics of $\sees$}
\xpr{s \models P \sees X}\end{calc}

Awareness


\begin{calc}
% latex2html id marker 506
\xpr{s \models P \sees X}
\z{\equiv}{sem...
 ...\z{\equiv}{semantics of $\sees$}
\xpr{s \models P \believes P \sees X}\end{calc}

Possessing keys of a seen key statement


\begin{calc}
% latex2html id marker 518
\xpr{s \models P \sees \key{Q}{R}{K}}
\z...
 ...}
\z{\equiv}{semantics of $\possesses$}
\xpr{s \models P \possesses K}\end{calc}

Possessing believed keys


\begin{calc}
% latex2html id marker 534
\xpr{s \models P \believes \key{Q}{R}{K}...
 ...}
\z{\equiv}{semantics of $\possesses$}
\xpr{s \models P \possesses K}\end{calc}

Decryption


\begin{calc}
% latex2html id marker 550
\xpr{s \models P \possesses K \land P \s...
 ...in \Sees_P}
\z{\equiv}{semantics of $\sees$}
\xpr{s \models P \sees X}\end{calc}

Good key ensures the utterer
We prove the soundness of this equivalent variant of the axiom: \( \derives \key{P}{Q}{K} \implies (R \sees Y \implies Q
\oncesaid X)\),where we may use the assumption that $\encrypt{X}{K}{Q} \in \Contents{Y}$:


\begin{calc}
\xpr{s \models \key{P}{Q}{K}}
\z{\Rightarrow}{semantics of $\bareke...
 ...antics of $\implies$}
\xpr{s \models R \sees Y \implies Q \oncesaid X}\end{calc}

\fbox {\vphantom{\tiny .}}