next up previous
Next: The model Up: A semantics for BAN Previous: Comparison with BAN logic

Rectification of formulas

The rectify operation $\rectify{\placeh}$ maps formulas to formulas. In particular, it maps formulas of the form $P \believes \phi$ to $P \rightlybelieves \phi$.It is defined as follows:


\begin{definition}
\begin{displaymath}
\begin{array}
{lll}
\rectify{P \believes ...
 ... operation is extended to a set-to-set mapping in the
usual way.\end{definition}

Directly from the definition on sets it follows that:


 \begin{lemma}
If ${\cal A}_1 \subseteq {\cal A}_2$, 
then $\rectify{{\cal A}_1} \subseteq \rectify{{\cal A}_2}$\end{lemma}


 \begin{theorem}
If ${\cal A} \derives {\cal C}$ 
then $\rectify{{\cal A}} \derives \rectify{{\cal C}}$.\end{theorem}

Proof

We prove it with structural induction on the derivation.

Case trivial proof: A trivial proof is a derivation step of the form ${\cal A} \derives {\cal C}$, where ${\cal C}\subseteq{\cal A}$.


\begin{calc}
% latex2html id marker 215
\xpr{\rectify{{\cal A}} \mbox{ and } {\c...
 ...ify{{\cal A}}}
\z{\Rightarrow}{trivial proof}
\xpr{\rectify{{\cal C}}}\end{calc}

Case deduction: Deduction is the introduction of implication by derivation:

If $\varphi \derives \psi$, then $\derives \varphi \implies \psi$.

Using deduction, we may instantiate:

If $\rectify{\varphi} \derives \rectify{\psi}$, then $\derives \rectify{\varphi} \implies \rectify{\psi}$.

From here we can derive, under the assumption $\rectify{\varphi} \derives \rectify{\psi}$:


\begin{calc}
\xpr{\true}
\z{\Rightarrow}{deduction, $\rectify{\varphi} \derives ...
 ...}
\z{\equiv}{definition rectify}
\xpr{\rectify{\varphi \implies \psi}}\end{calc}

Cases axioms of predicate logic: As an example, we prove our claim for the introduction of $\land$.Other introductions and eliminations ($\lor$, $\implies$, $\neg$, $\forall$)have analogous proofs.


\begin{calc}
\xpr{\rectify{\varphi} \mbox{ and } \rectify{\psi}}
\z{\Rightarrow}...
 ...si}}
\z{\equiv}{definition rectify}
\xpr{\rectify{\varphi \land \psi}}\end{calc}

Case Rationality: Let $\derives \varphi$. We prove $\derives \rectify{P \believes \varphi}$.


\begin{calc}
\xpr{\true}
\z{\Rightarrow}{Rationality, $\derives \varphi$}
\xpr{P...
 ...hi}
\z{\equiv}{definition rectify}
\xpr{\rectify{P \believes \varphi}}\end{calc}

Case axiom:

For every axiom $\derives \varphi \implies \psi$, we will prove $\derives \rectify{\varphi \implies \psi}$, by deriving $\rectify{\varphi} \derives \rectify{\psi}$.

case Believing Modus Ponens: We prove it for the equivalent form $\derives (P \believes (\varphi \implies \psi) 
 \land P \believes \varphi) \implies P \believes \psi$


\begin{calc}
\xpr{\rectify{P \believes (\varphi \implies \psi) \land
 P \believe...
 ... \psi}
\z{\equiv}{definition rectify}
\xpr{\rectify{P \believes \psi}}\end{calc}

case Saying contents of an encrypted message:


\begin{calc}
\xpr{\rectify{P \oncesaid \encrypt{X}{K}{P} \land
 P \believes \key...
 ...cesaid X}
\z{\equiv}{definition rectify}
\xpr{\rectify{P \oncesaid X}}\end{calc}

case Awareness:


\begin{calc}
\xpr{\rectify{P \sees X}}
\z{\equiv}{definition rectify}
\xpr{P \se...
 ...}
\z{\equiv}{definition rectify}
\xpr{\rectify{P \believes P \sees X}}\end{calc}

case Possessing believed keys:
\begin{calc}
\xpr{\rectify{P \believes \key{Q}{R}{K}}}
\z{\equiv}{definition rec...
 ...sesses K}
\z{\equiv}{definition rectify}
\xpr{\rectify{P\possesses K}}\end{calc}

The remaining axioms do not contain a believe operator, so they do not change under the rectify function.

\fbox {\vphantom{\tiny .}}


next up previous
Next: The model Up: A semantics for BAN Previous: Comparison with BAN logic