Algorithms for Multidimensional Scaling
Abney,
S., Volinsky, C., and Buja, A. 
Mining
large call graphs, AT&T Labs Technical Memorandum, Florham Park, NJ,
1998. 
Akkucuk,
U., Carroll, J. D. 

Brusco,
M.J. 
Morphbased
localsearch heuristics for largescale combinatorial data analysis, Journal
of Classification, 16 (1999), 163180. 
Brusco,
M.J. and Stahl, S. 
Using quadratic assignment
methods to generate initial permutations for leastsquares unidimensional
scaling of symmetric proximity matrices, Working Paper, Florida State
University, 2000. 
Brusco,
M.J. and Stahl, S. 
A
simulated annealing heuristic for unidimensional and multidimensional
(cityblock) scaling of symmetric proximity matrices, Working Paper,
Florida State University, 2000. 
Buja, A.,
Swayne, D.F., Littman, M.L., and Dean, N. 
XGvis:
Interactive data visualization with multidimensional scaling, J. of
Computational and Graphical Statistics, 2002, to appear. 
Busing,
F.M.T.A., Commandeur, J.J.F., and Heiser, W.J. 
PROXSCAL:
A multidimensional scaling program for individual differences scaling with
constraints. In W. Bandilla and F. Faulbaum (Eds.), Softstat'97: Advances
in Statistical Software, Vol 6 . Stuttgart: Lucius and Lucius (1997),
6774. 
Buja,
A. and Swayne, D.F. 
Visualization
methodology for Multidimensional Scaling. Journal of Classification,
March 2002. Special invited article. 
Carroll,
J.D. 
Some
multidimensional scaling and related procedures devised at Bell Laboratories,
with ecological applications, in P. Legendre and L. Legendre (eds.), Developments
in Numerical Ecology, NATO ASI Series, Vol. G14, SpringerVerlag,
BerlinHeidelberg, 1987, 65138. 
Carroll,
J.D. and Arabie, P. 
Multidimensional
scaling, in M.H. Birnbaum (ed.), Handbook of Perception and Cognition,
Volume 3: Measurement, Judgment and Decision Making, Academic Press, San
Diego, CA, 1998, 179250. 
Carroll,
J.D., Arabie, P., Chaturvedi, A. D. and Hubert, L. J. 
Multidimensional
scaling and clustering in marketing: Paul Green’ s role. In Y. J. Wind, P. E. Green, & R.
Gunther (Eds.), Advances in marketing research and modeling. Norwell, MA: Kluwer Academic Publishers.
(in press). 
Carroll,
J.D. and Chang, J.J. 
Analysis
of individual differences in multidimensional scaling via an Nway
generalization of ``EckartYoung'' decomposition, Psychometrika, 35
(1970), 283319. [Reprinted in P. Davies and A. P. M. Coxon (eds.), Key
Texts in Multidimensional Scaling, Heinemann, Portsmouth, NH, 1984,
229252.] 
Carroll,
J.D. and Chaturvedi, A. 
A
general approach to clustering and multidimensional scaling of twoway,
threeway, or higherway data, in R. D. Luce, M. D'Zmura, D. D. Hoffman, G.
Iverson and A. K. Romney (eds.), Geometric Representations of Perceptual
Phenomena, Erlbaum, Mahwah, NJ, 1995, 295318. 
Carroll,
J.D. and Corter, J. 
A
graphtheoretic method for organizing overlapping clusters into trees,
multiple trees, or extended trees, Journal of Classification, 12
(1995), 283313. 
Carroll,
J.D., De Soete, G., and Pruzansky, S. 
A
comparison of three rational initialization methods for INDSCAL, in E. Diday
(ed.), Data Analysis and Informatics V, NorthHolland, Amsterdam,
1988, 131142. 
Carroll,
J.G., De Soete, G., and Pruzansky, S. 
An
evaluation of five algorithms for generating an initial configuration for
SINDSCAL, Journal of Classification, 6 (1989), 105119. 
Carroll,
J.D. and Pruzansky, S. 
The
CANDECOMPCANDELINC family of models and methods for multidimensional data
analysis, in H. G. Law, W. Snyder, J. Hattie, and R. P. McDonald (eds.), Research
Methods for Multimode Data Analysis, Praeger, New York, 1984, 372402. 
Carroll,
J.D. and Pruzansky, S. 
Discrete
and hybrid models for proximity data, in W. Gaul and M. Schader (eds.) Classification
as a Tool of Research, NorthHolland, Amsterdam, 1986, 4759. 
Carroll,
J.D., Pruzansky, S., and Kruskal, J.B. 
CANDELINC:
A general approach to multidimensional analysis of manyway arrays with
linear constraints on parameters, Psychometrika, 45 (1980), 324. 
Chandon,
J.L. and De Soete, G. 
Fitting
a least squares ultrametric to dissimilarity data: Approximation versus
optimization, in E. Diday, M. Jambu, L. Lebart, J. Pages, and R. Tomassone
(eds.), Data Analysis and Informatics III, NorthHolland, Amsterdam,
1984, 213221. 
Chaturvedi,
A. and Carroll, J.D. 

Chen,
G. 
Metric
twoway multidimensional scaling and circular unidimensional scaling: Global optimization
by mixed integer programming approaches, Doctoral Dissertation, Rutgers
University, 2000. 
Corter,
J.E 
ADDTREE/P:
A PASCAL program for fitting additive trees based on Sattath & Tversky's
ADDTREE algorithm. Behavior Research Methods and Instrumentation, 14
(1982) 353354. 
Corter,
J.E and Tversky A. 
Extended
similarity trees. Psychometrika, 51 (1986), 429451. 
Corter,
J.E 
Tree
Models of Similarity and Association. University Papers series: Quantitative Applications
in the Social Sciences, series no. 07112). Thousand Oaks CA: Sage, 1996. 
Corter,
J.E 
An
efficient metric combinatorial algorithm for fitting additive trees. Multivariate
Behavioral Research, 33 (1998), 249272. 
Crippen,
G.M. and Havel, T.F. 
Stable
calculation of coordinates from distance information, Acta
Crystallographica, A34 (1978), 282284. 
Critchley,
F. and Heiser, W.J. 
Hierarchical
trees can be perfectly scaled in one dimension. Journal of Classification,
5 (1988), 520. 
Glunt,
W., Hayden, T.L, and Raydan, M. 
Molecular
conformation from distance matrices, J. Computational Chemistry, 14
(1993), 114120. 
Groenen,
P.J.F. and Heiser, W.J. 
The
tunneling method for global optimization. Psychometrika, 61 (1996),
529550. 
Groenen,
P.J.F., Heiser, W.J. and Meulman, J.J. 
Cityblock
scaling: Smoothing strategies for avoiding local minima. In I. Balderjahn, R.
Mathar and M. Schader (Eds.), Classification, Data Analysis, and Data
Highways. Berlin: Springer Verlag (1998), 4653. 
Groenen,
P.J.F., Heiser, W.J. and Meulman, J.J. 
Global
optimization in least squares multidimensional scaling by distance smoothing.
Journal of Classification, 16 (1999), 225254. 
Groenen,
P.J.F. and Heiser, W.J. 
Iterative
majorization algorithms in statistical computing. Discussion of: K. Lange,
D.R Hunter and I. Yang, Optimization transfer using surrogate objective
functions. Journal of Computational and Graphical Statistics, 9
(2000), 4448. 
Groenen,
P.J.F., Mathar, R. and Heiser, W.J. 
The
majorization approach to multidimensional scaling for Minkowski distances. Journal
of Classification, 12 (1995), 319. 
Gurden,
S.P., Westerhuis, J.A., Bijlsma, S. and Smilde, A., 
Modeling
of spectroscopic batch process data using Grey models to incorporate external
information, Journal of Chemometrics, 15 (2001), 101121. 
Hagerty,
C.G., Muchnik, I., Kulikowski, C., and Kim, SH. 
Two
indices can approximate four hundred and two amino acid properties, Proceedings
of the 1999 IEEE International Symposium on Intelligent Control/Intelligent
Systems and Semiotics, Cambridge, MA, September 1999, 365369. 
Harshman,
R.A. 
Foundations
of the PARAFAC procedure: models and conditions for an
"explanatory" multimode factor analysis, UCLA Working Papers In
Phonetics, 16 (1970), 184. 
Harshman,
R.A. 
Determination
and proof of minimum uniqueness conditions for PARAFAC1, UCLA Working
Papers In Phonetics, 16 (1972), 184. 
Havel,
T.F. 
An
evaluation of computational strategies for use in the determination of
protein structure from distance constraints obtained by nuclear magnetic
resonance, Progress in Biophysics and Molecular Biology, 56 (1991),
4378. 
Heiser,
W.J. 
Order
invariant unfolding analysis under smoothness restrictions, in G. De Soete,
H. Feger, and C. Klauer (eds.), New Developments in Psychological Choice
Modeling, NorthHolland, Amsterdam, 1989, 331. 
Heiser,
W.J. and Lauro, N. 
Multidimensional
scaling and classification techniques: An introduction. In R. Coppi and S.
Bolasco (Eds.), Analysis of Multiway Data Matrices. Amsterdam:
NorthHolland (1989), 393394. 
Heiser,
W.J. and Meulman, J. 
Analyzing
rectangular tables with joint and constrained multidimensional scaling. Journal
of Econometrics, 22 (1983), 139167. 
Heiser,
W.J. and Meulman, J. 
Constrained
multidimensional scaling, including confirmation. Applied Psychological
Measurement, 7 (1983), 381404. 
Heiser,
W.J. and Meulman, J. 
Representation
of binary multivariate data by graph models using the Hamming metric. In E.
Wegman and S. Azen (Eds.), Computing Science and Statistics, Vol.29(2).
Fairfax, VA: Interface Foundation of North America (1997), 517525. 
Heiser,
W.J. and Bennani, M. 
Triadic
distance models for triadic dissimilarity data. Journal of Mathematical
Psychology, 41 (1997), 189206. 
Heiser,
W.J. and Groenen, P.J.F. 
Cluster
differences scaling with a withinclusters loss component and a fuzzy
successive approximation strategy to avoid local minima. Psychometrika,
62 (1997), 6383. 
Heiser,
W.J. 
A
generalized majorization method for least squares multidimensional scaling of
pseudodistances that may be negative. Psychometrika, 55 (1991), 727. 
Heiser,
W.J. 
Book
review of: A.P.M. Coxon, The User's Guide to Multidimensional Scaling. Journal
of Classification, 1 (1984), 271274. 
Heiser,
W.J. 
Book review
of: I. Borg and J. Lingoes, Multidimensional Similarity Structure Analysis. Journal
of Classification, 5 (1988), 302304. 
Heiser,
W.J. 
Book
review of: J.C. Gower and D.J. Hand, Biplots. Journal of Classification,
15 (1998), 143148. 
Heiser,
W.J. 
Book
review of: T.F. Cox and M.A.A. Cox, Multidimensional Scaling. Statistics
and Computing, 6 (1996), 389390. 
Heiser,
W.J. 
Book
review of: W. Hartmann, Geometrische Modelle zur Analyse Empirischen Daten. Psychometrika,
46 (1981), 111112. 
Heiser,
W.J. 
Clustering
in lowdimensional space. In O. Opitz, B. Lausen and R. Klar (Eds.), Studies
in Classification, Data Analysis, and Knowledge Organization. Heidelberg:
Springer Verlag (1993), 162173. 
Heiser,
W.J. 
Convergent
computation by iterative majorization: Theory and applications in
multidimensional data analysis. In W.J. Krzanowski (Ed), Recent Advances
in Descriptive Multivariate Analysis. Oxford: Oxford University Press
(1995), 157189. 
Heiser,
W.J. 
Correspondence
analysis with least absolute residuals. Computational Statistics and Data
Analysis, 5 (1987), 337356. 
Heiser,
W.J. 
Correspondence
Analysis. In N.J. Smelser and P.B. Baltes (Eds.), International
Encyclopedia of the Social and Behavioral Sciences. Oxford: Pergamon
(2001), 4, 28202824. 
Heiser,
W.J. 
Distances
and their approximation. In De Leeuw, J. et al (Eds.) Multidimensional
Data Analysis. Leiden; DSWO Press, 1986, 4752. 
Heiser,
W.J. 
Fitting
graphs and trees with multidimensional scaling methods. In C. Hayashi, N.
Ohsumi, K. Yajima, Y Tanaka, H.H. Bock and Y. Baba (Eds.), Data Science,
Classification, and Related Methods. Tokyo: Springer Verlag (1998),
5262. 
Heiser,
W.J. 
Joint ordination
of species and sites: the unfolding technique. In P. Legendre et al. (Eds.), Developments
in Numerical Ecology. New York: Springer (1987), 189221. 
Heiser,
W.J. 
Multidimensional
scaling with least absolute residuals. In H. H. Bock (Ed.) Classification
and Related Methods of Data Analysis, Proceedings of the First Conference
of the International Federation of Classification Societies (IFCS '87).
Amsterdam: NorthHolland (1988), 455462. 
Heiser,
W.J. 
Nested
solutions in least squares multidimensional scaling. Statistics in Transition,
Journal of the Polish Statistical Association, 2 (1995), 237249. 
Heiser,
W.J. 
PROXSCAL:
multidimensional scaling of proximities. In A. di Ciaccio and G. Bove (Eds.) Proceedings
of MULTIWAY'88, Sofware Guide. Rome: Universitŕ di Roma "La
Sapienza" (1988), p. 7781. 
Heiser,
W.J. 
Selecting
a stimulus set with prescribed structure from empirical confusion
frequencies. British Journal of Mathematical and Statistical Psychology,
41 (1988), 3751. 
Heiser,
W.J. 
The
cityblock model for threeway multidimensional scaling. In R. Coppi and S.
Bolasco (Eds.), Analysis of Multiway Data Matrices. Amsterdam:
NorthHolland (1989), 395404. 
Hubert,
L.J. and Arabie, P. 
Unidimensional
scaling and combinatorial optimization, in J. de Leeuw, W. Heiser, J.
Meulman, and F. Critchley (eds.), Multidimensional Data Analysis, DSWO
Press, Leiden 1986, 181196. 
Hubert,
L.J. and Arabie, P 
Iterative
projection strategies for the leastsquares fitting of tree structures to
proximity data, British J. Math. Statist. Psych., 48 (1995), 281317. 
Hubert,
L.J. and Arabie, P. 
The
approximation of twomode proximity matrices by sums of orderconstrained
matrices, Psychometrika, 60 (1995), 573605. 
Hubert,
L.J., Arabie P., and HessonMcinnis, M. 
Multidimensional
scaling in the cityblock metric: A combinatorial approach, Journal of
Classification, 9 (1992), 211236. 
Hubert,
L.J., Arabie, P., and Meulman, J. 
Linear
and circular unidimensional scaling for symmetric proximity matrices, British
J. Math. Statist. Psych., 50, 253284. 
Hubert,
L.J., Meulman, J.J. and Heiser, W.J. 
Two
Purposes for Matrix Factorization: A Historical Appraisal. SIAM Review,
42 (2000), 6882. 
Kiers,
H.A.L. 
Threeway
SIMPLIMAX for oblique rotation of the threemode factor analysis core to
simple structure, Computational Statistics & Data Analysis, 28
(1998), 307324. 
Kiers,
H.A.L., Ten Berge, J.M.F., and Rocci, R. 
Uniqueness
of threemode factor models with sparse cores: the 3´ 3´ 3 case, Psychometrika,
62 (1997), 349374. 
Kroonenberg,
P.M. and de Leeuw, J. 
Principal
component analysis of threemode data by means of alternating leastsquares, Psychometrika,
45 (1980), 6997. 
Kroonenberg,
P.M. and Heiser, W.J. 
Parallel
factor analysis with constraints on the configurations: An overview. In C.
Hayashi, N. Ohsumi, K. Yajima, Y Tanaka, H.H. Bock and Y. Baba (Eds.), Data
Science, Classification, and Related Methods. Tokyo: Springer Verlag
(1998), 587597. 
Kruskal,
J.B. 
Multidimensional
scaling by optimizing goodness of fit to a nonmetric hypothesis, Psychometrika,
29 (1964), 127. 
Kruskal,
J.B. 
Nonmetric
multidimensional scaling: A numerical method, Psychometrika, 29
(1964), 115129. 
Kruskal,
J.B. and Hart, R.E. 
A
geometric interpretation of diagnostic data from a digital machine: Based on a
study of the Morris, Illinois Electronic Central Office, Bell Sys. Tech. J.,
45 (1966), 12991338. 
Kruskal,
J.B. 
Threeway
arrays: rank and uniqueness of trilinear decompositions with applications to
arithmetic complexity and statistics. Lin. Alg. & Appl., 18
(1977), 95138. 
Kruskal,
J.B. 
Statement
of some current results about threeway arrays, (1983), Unpublished. 
Kruskal,
J.B. 
Rank,
decomposition and uniqueness for 3way and nway arrays, in R. Coppi and S.
Bolasco (Eds.), Multiway Data Analysis, Amsterdam: NorthHolland,
(1989), 718. 
De
Leeuw, J. and Heiser, W. J. 
Convergence
of correctionmatrix algorithms for multidimensional scaling, in J. C.
Lingoes (ed.), Geometric Representations of Relational Data: Readings
in multidimensional scaling, Mathesis Press, Ann Arbor, MI, 1977, 735752. 
De
Leeuw, J. and Heiser, W. J. 
Multidimensional
scaling with restrictions on the configuration. In P.R. Krishnaiah (ed.), Multivariate
Analysis, Vol. V, Amsterdam: NorthHolland, 1980, 501522. 
De
Leeuw, J. and Heiser, W. J. 
Theory
of multidimensional scaling. In L. Kanal and P.R. Krishnaiah (Eds.), Handbook
of Statistics, Volume II. Amsterdam: NorthHolland, 1982, 285317. 
Legendre,
P. and Legendre, L. 
Numerical
Ecology,
Elsevier, Amsterdam, 1998. 
Littman,
M., Swayne, D.F., Dean, N., and Buja, A. 
Visualizing
the embedding of objects in Euclidean space, Computing Science and
Statistics: Proc. of the 24th Symp. on the Interface, Interface
Foundation of North America, Fairfax Station, VA, 1992, 208217. 
Luczkovich,
J.J., Borgatti, S.P., Johnson, J.C., and Everett, M.G. 
Defining
and measuring trophic role similarity in food webs using regular coloration,
in preparation. 
Malone,
S.W. and Trosset, M.W. 
A Study
of the Stationary Configurations of the SStress Criterion for Metric
Multidimensional Scaling, Technical Report 0006, Department of
Computational & Applied Mathematics, Rice University, (available at http://www.math.wm.edu/~trosset/r.mds.html). 
Malone,
S.W. and Trosset, M.W. 
Optimal
Dilations for Metric Multidimensional Scaling, 2000 Proceedings of the
Statistical Computing Section, American Statistical Association,
(available at http://www.math.wm.edu/~trosset/r.mds.html). 
Meulman,
J. and Heiser, W.J. 
Second
order regression and distance analysis. In W. Gaul and M. Schader (Eds.), Data
Analysis, Decision Support and Expert Knowledge Representation. Berlin:
Springer Verlag (1988), 368380. 
Meulman,
J. and Heiser, W.J. 
Constrained
multidimensional scaling: more directions than dimensions. In T. Havránek et
al (Eds.), COMPSTAT 1984. Wien: Physica Verlag, 1984, 137142. 
Meulman,
J. and Heiser, W.J. 
Nonlinear
biplots for nonlinear mappings. In O. Opitz, B. Lausen and R. Klar (Eds.), Studies
in Classification, Data Analysis, and Knowledge Organization. Heidelberg:
Springer Verlag (1993), 201213. 
Meulman,
J.J., L.J. Hubert, and Heiser, W.J. 
The
data theory scaling system. In A. Rizzi, M. Vichi and H.H. Bock (Eds.), Advances
in Data Science and Classification. Berlin: Springer Verlag (1998),
489496. 
Morrison,
A. and Chalmers, M. 
Improving
Hybrid MDS with PivotBased Searching.
Proceedings Infovis 2003, IEEE Computer Society (to appear). 
Rocci,
R. and Ten Berge, J.M.F., 
Transforming
threeway arrays to maximal simplicity, Psychometrika, 67 (1989), in press.

De
Rooij, M. 
Threeway
distance models and threeway association. J. of Classification,
19 (2002), 161178. 
De
Rooij, M. 
Studying
triadic distance models under a likelihood function. In Nishisato, S., Baba,
Y. Bozdogan, H., and Kanefuji, K. (Eds). Measurement and Multivariate
Analysis. pp 6976, Tokyo: SpringerVerlag, 2002. 
De
Rooij, M. 
DistanceAssociation
models for the analysis of repeated transition frequency tables. Statistica
Neerlandica, 55 (2001), 156180. 
De
Rooij, M. and Heiser, W.J. 
Triadic
distance models for the analysis of asymmetric threeway proximity data. British
Journal of Mathematical and Statistical Psychology, 53 (2000), 99119. 
Sidiropoulos,
N.D. and Bro, R. 
On the
uniqueness of multilinear decomposition of nway arrays, J. of
Chemometrics, 14 (2000), 229239. 
Shepard,
R.N. 
The
analysis of proximities: Multidimensional scaling with an unknown distance
function. I, Psychometrika, 27 (1962), 125140. 
Shepard,
R.N. 
The
analysis of proximities: Multidimensional scaling with an unknown distance
function. II, Psychometrika, 27 (1962), 219246. 
Simantiraki,
E. 
Unidimensional
Scaling: A linear programming approach minimizing absolute deviations, Journal
of Classification, 13 (1996), 1925. 
De
Soete, G. and Heiser, W.J. 
A
latent class unfolding model for analyzing single stimulus preference
ratings. Psychometrika, 58 (1993), 545565. 
Takane,
Y., Hwang, H., OshimaTakane, Y. 
A Kernel Method for MultipleSet Canonical Correlation Analysis, to appear in IEEE
Transactions on Neural Networks. 
Ten
Berge, J. M.F. 

Ten
Berge, J.M.F. 
The
typical rank of tall threeway arrays, Psychometrika, 65 (2000),
525532. 
Ten
Berge, J.M.F. and Kiers, H.A.L. 
Simplicity
of core arrays in threeway principal component analysis and the typical rank
of p´ q´ 2 arrays. Lin. Alg. & Appl., 294 (1999), 169179. 
Ten
Berge, J.M.F., Kiers, H.A.L., Murakami, T., and van Der Heijden, R. 
Transforming
threeway arrays to multiple orthonormality, Journal of Chemometrics 14
(2000), 275284. 
Ten
Berge, J.M.F. and Sidiropoulos, N. D. 
On
uniqueness in CANDECOMP/PARAFAC, Psychometrika, 67 (2002), in press. 
Ten
Berge, J.M.F., Sidiropoulos, N. D., and Rocci, R. 
Typical
rank and INDSCAL dimensionality for symmetric arrays of order I´ 2´ 2 or I´
3´ 3, (2001), submitted for publication. 
Ten
Berge, J.M.F. and Smilde, A.K. 
Nontriviality
and identification of a constrained Tucker3 analysis, (2001), submitted for
publication. 
Tijssen,
R.J.W., Van Raan, A.F.J., Heiser, W.J., and Wachmann, L. 
Integrating
multiple sources of information in literaturebased maps of science. Journal
of Information Science, 16 (1990), 217227. 
Trosset,
M.W. and Mathar, R. 
On the
Existence of Nonglobal Minimizers of the STRESS Criterion for Metric
Multidimensional Scaling, Proceedings of the Statistical Computing Section,
American Statistical Association, 1997. (available at http://www.math.wm.edu/~trosset/r.mds.html). 
Trosset,
M.W. and Tarazaga, P. 
An
Approximate Solution to the Metric SSTRESS Problem in Multidimensional
Scaling, Computing Science and Statistics, 30:292295, 1998, (available at http://www.math.wm.edu/~trosset/r.mds.html). 
Trosset,
M.W. 
Better
Initial Configurations for Metric Multidimensional Scaling, (available at http://www.math.wm.edu/~trosset/r.mds.html). 
Trosset,
M.W. 
Applications
of Multidimensional Scaling to Molecular Conformation, Computing Science and
Statistics, 29:148152, 1998, (available at http://www.math.wm.edu/~trosset/r.mds.html). 
Trosset,
M.W. 
Computing
Distances Between Convex Sets and Subsets of the Positive Semidefinite
Matrices, (the latest version is Extensions of Classical Multidimensional
Scaling: Computational Theory), Technical Report 973, Department of
Computational & Applied Mathematics, Rice University, (available at http://www.math.wm.edu/~trosset/r.mds.html). 
Trosset,
M.W. 
Formulations
of Multidimensional Scaling for Cluster Analysis and Classification, 1999 Proceedings
of the Statistical Computing Section, American Statistical Association,
(available at http://www.math.wm.edu/~trosset/r.mds.html). 
Tucker,
L. R. 
Some
mathematical notes on threemode factor analysis, Psychometrika, 31
(1966), 279311. 
Van
Buuren, S. and Heiser, W.J. 
Clustering
n objects into k groups under optimal scaling of variables. Psychometrika,
54 (1989), 699706. 
Van den
Berg, G.M., Heiser, W.J. and Commandeur J.J.F. 
Comparing
repertory grids to integrate knowledge from multiple statisticians. Knowledge
Acquisition, 4 (1992), 259278. 
Van der
Lans, I.A. and Heiser, W.J. 
Constrained
partworth estimation in conjoint analysis using the selfexplicated utility
model. International Journal of Research in Marketing, 9 (1992),
325344. 
Verboon,
P. and Heiser, W.J. 
Resistant
orthogonal Procrustes analysis. Journal of Classification, 9 (1992),
237256. 
Verboon,
P. and Heiser, W.J. 
Robust principal
components analysis. Computational Statistics and Data Analysis, 18
(1994), 457467. 
Vonk,
R. and Heiser, W.J. 
Implicit
personality theory and social judgment: effects of familiarity with a target
person. Multivariate Behavioral Research, 26 (1991), 6981. 
Watts,
D. 
Small
Worlds: The Dynamics of Networks between Order and Randomness, Princeton University Press,
Princeton, NJ, 1999. 
Wong,
R. SK. 
Multidimensional
association models. A multilinear approach, Sociological Methods &
Research, 30 (2001), 197240. 
Zielman,
B. and Heiser, W.J. 
Analysis
of asymmetry by a slide vector. Psychometrika, 58 (1993), 101114. 
Zielman,
B. and Heiser, W.J. 
Models
for asymmetric proximities. British Journal of Mathematical and Statistical
Psychology, 49 (1996), 127146. 


This material is based upon work supported by the National Science Foundation under Grant No. 0100921