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Abstract
Traditional techniques of perceptual mapping hypothesize that products are differentiated in a common perceptual space of quantitative attributes.  This paper enhances traditional perceptual mapping techniques such as multidimensional scaling and factor analysis by presenting a model and methodology for capturing product differentiation that might exist due to perceptions that are qualitative (i.e., all-or-none attributes or features common only to a subset of the brands being analyzed), in addition to quantitative or continuously varying perceptual attributes or dimensions.  It provides models and least squares parameter estimation procedures for both a two-way and a three-way version of this general model. We recommend the use of the three-way approach over the two-way approach, since the three-way approach both accounts for and takes advantage of consumer heterogeneity in perceptions of products to provide maximal information.  When combined with appropriate preferential choice data on the same brands or products, this should lead to a very methodologically complete and interpretively satisfying approach to market structure analysis (e.g. via external preference mapping based on the quantitative dimensions and qualitative features derived from our suggested approach — called CLUSCALE— described in this paper).

Introduction
Perceptual maps have been a very useful tool for marketers in understanding product differentiation, (Dickson and Ginter 1987), product positioning and product preferences.  The general practice has been to construct perceptual maps assuming a relatively small set of common perceptual dimensions for all the existing as well as potential new products to determine optimal positioning for marketing strategies.  Product differentiation is defined as a function of distances (usually Euclidean) between products in the space of a common set of perceptual dimensions. 

Certain popular approaches that attempt to explain product differentiation in market research, such as two-way and three-way multidimensional scaling (Arabie, Carroll and DeSarbo 1987; Carroll and Arabie 1997; Carroll and Green 1997; DeSarbo and Manrai 1992; Eliashberg and Manrai 1992; Kruskal and Wish 1978; Manrai and Sinha 1989) and factor or components analysis—particularly three-way factor analytic models (Harshman 1978; Harshman et al. 1982)—typically treat products as bundles of common perceptual attributes. These techniques assume that all products are differentiated via only differences in levels of common physical or perceptual attributes that are “quantitative” in nature, thereby ignoring the effects of additional differentiation that could arise due to “qualitative”—i.e. nominally scaled or categorical—perceptual features such as perceptions unique to a product (e.g., country of origin of the manufacturer; or classification of internet access services into a pre-specified sub-category such as digital subscriber link or DSL services from various internet access providers vs. cable-modem service providers in the Internet service provision or ISP category) in addition to certain common, quantitative perceptions of reliability, ease-of-access, cost, etc. Though Chaturvedi and Carroll (1998; also see Carroll and Winsberg 1995) presented a model and methodology to capture product differentiation arising simultaneously from both quantitative dimensions and qualitative features, their model could only deal with one class of qualitative features—those that were unique to each brand in the set of products being analyzed. 

In this paper, we develop a descriptive perceptual mapping methodology based on proximity data (e.g., product similarity or dissimilarity matrices, multiple correlation or covariance matrices, or other measures of association, overlap or closeness) to explain product differentiation due not only to quantitative perceptual dimensions, but also to qualitative perceptual features associated with a group of products within a category. Our model also deals with the inherent heterogeneity with respect to the importance people place on these quantitative perceptual dimensions and qualitative perceptual features in making marketing decisions.

Traditional techniques of two-way and three-way multidimensional scaling (Carroll and Chang 1970; Kruskal 1964a,b; Torgerson 1958,) or three-way factor analysis (Harshman et al, 1982) that are used in constructing perceptual maps in marketing applications, do not readily accommodate product differences based on discrete product attributes or features. For example, traditional perceptual maps based on a set of dimensions common to all political candidates are not likely to represent adequately the feature explaining how the candidates differ based on their political affiliation (Democratic vs. Republican), even though they may take a similar stand on many political issues as the other candidates. In the marketing context, how does one quantify the amount of differentiation of American cars from cars made by foreign manufacturers, though American cars have similar perceived product attribute levels as competing models? In the final analysis, this can only be attributed to features that are qualitative in nature (e.g., American vs. Foreign), in addition to any differentiation that might arise due to common, quantitative perceptual dimensions. 

This paper suggests that each product in a category can be differentiated not only in a common quantitative perceptual space, but also in terms of a set of discrete or qualitative perceptual features. This group of discrete features could be potentially overlapping, inducing an overlapping cluster structure on the products (see Arabie and Carroll 1980; Carroll and Arabie 1983; Chaturvedi and Carroll 1994; DeSarbo 1982). Thus, product differentiation occurs not only because of differences in the common perceptual space, but also because of differences in the qualitative perceptual features or (possibly overlapping) classes or clusters. We also posit that the quantitative dimensions and the qualitative, possibly overlapping, features or clusters need not be equally important to all individuals in differentiating or choosing among products. Well-informed consumers who have knowledge of the product attributes or experience with the products may use a combination and/or a subset of either the quantitative dimensions or the qualitative clusters in differentiating the various products. Thus, some consumers might attach more importance to a particular discrete perceptual feature than do others. 

The CLUSCALE (simultaneous CLUstering and SCAL[E]ing) procedure developed in this paper is a three-way model based on proximity data on brands (or other stimuli; e.g. products or product characteristics) so as to estimate not only the common quantitative product and consumer spaces defining a common quantitative perceptual structure, but also discrete product clusters and a discrete consumer space (defining consumers’ importances for these discrete, qualitative clusters) which together comprise the unique perceptual structure. Thus, heterogeneity in the marketplace is handled by assuming that each consumer attaches differential weights not only to the common, quantitative dimensions, but also to a set of discrete, possibly overlapping, perceptual features.

In the next section, we will describe the CLUSCALE model and estimation procedure. Then, we will present an empirical application of CLUSCALE to a data set on cars. Finally, we provide concluding remarks. 

CLUSCALE Model And Estimation Procedure

CLUSCALE combines the INDSCAL (Carroll and Chang 1970) and INDCLUS (Carroll and Arabie 1983) models for three-way (or individual differences) multidimensional scaling and overlapping clustering respectively, based on multiple proximity matrices (referred to as three-way data). The INDSCAL model and method determines a common perceptual space for brands in a product category, given pairwise proximity (dissimilarity/ similarity) data on brands from multiple data sources (individual consumers, households, or pre-defined segments) within a category. INDSCAL assumes that products are differentiated only in a common continuous quantitative perceptual space, comprising quantitative dimensions common to all products. Heterogeneity is incorporated by assuming that each consumer or segment weights each perceptual dimension differently. See Arabie, Carroll and DeSarbo (1987) for description and comparison of both the INDSCAL and INDCLUS models and methods (the INDSCAL method in the form of a specific implementation called SINDSCAL by Pruzansky 1975).

The INDCLUS model of Carroll and Arabie (1983) also assumes data in the form of multiple proximity matrices, but assumes that brands within a category share a common set of unknown discrete features, which could be potentially overlapping. INDCLUS determines the unknown discrete features (and the resulting overlapping clusters of brands), simultaneously accounting for differential weighting of the discrete features by each data source (individual consumers, households, or segments).

The CLUSCALE Model can be written as:

(1) 
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Dimension 1

           0.836

           0.836

Dimension 2

           0.384

           0.384

“German and Japanese Cars” Cluster

           0.032

           0.222

“American Cars” Cluster

           0.031

           0.217

Universal Cluster (Additive Constant)

          -0.012

         -0.193




where 

· wkm is the non-negative importance weight of the kth consumer on the mth quantitative perceptual dimension, 

· xim is the coordinate of the ith brand on the mth quantitative perceptual dimension, 

· bijk is the derived scalar product
 of brands i and j for consumer k, 

· ukn is a non-negative importance weight of the kth consumer for the nth qualitative or discrete feature, 

· pin is the binary variable representing the presence (value of 1) or absence (value of 0) of the nth qualitative discrete feature for the ith brand. 

· ck is the additive constant for consumer k.

This can be re-stated in matrix form as: 

(2) 
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where 

· I is the number of products

· k denotes the kth consumer, or other data source (e.g., kth market segment)

· T is the number of quantitative perceptual dimensions

· R is the number of qualitative discrete features

· Bk is an I x I scalar product-like similarity matrix for consumer/source k 

· X is an I x T dimensional “brand x quantitative perceptual dimension space”

· Wk is a T x T diagonal matrix of nonnegative importance weights for the T quantitative dimensions for the kth consumer or segment 

· P is an I x R binary matrix of qualitative discrete features (or cluster membership variables) for R (possibly overlapping) clusters 

· Uk is an R x R diagonal matrix of nonnegative weights for R clusters for the kth consumer or segment

· Ck is a matrix whose off-diagonal entries all consist of the additive constant ck.  

One central advantage of the model in (1) and (2) above is that the quantitative perceptual dimensions corresponding to the INDSCAL model are not subject to the orthogonal rotational indeterminacy inherent in most classical perceptual mapping procedures. Hence, the derived perceptual dimensions have a fixed orientation. The quantitative perceptual dimensions corresponding to the INDSCAL model are subject only to scale indeterminacies among the quantitative brand co-ordinates and the importances that the consumers attach to these dimensions. These are resolved—up to possible reflection of coordinate axes—by constraining the sum of squares of the brand coordinates on each quantitative perceptual dimension to equal one.

Estimation Procedure: 

In equation (2) above, matrices X, W, P, U, and C are all unknown. Only the data matrices Bk are known. Hence, determining the ordinary least squares estimates for the parameters is a discrete, non-linear, integer programming problem. We estimate the CLUSCALE model of (2) using an approach similar to the one described in Chaturvedi and Carroll (1994), and Carroll and Chaturvedi (1995). We use an alternating least squares (ALS) procedure, alternating between estimating the T quantitative perceptual dimensions in the T-Step and the R qualitative discrete features (possibly overlapping) in the R-step, until convergence to at least a locally optimal solution. By starting from a number of “rational” and/or random starting configurations, as is routine in MDS and related work, we aim to find the globally optimal solution for a particular combination of values of T and R. Our experience with this algorithm indicates that this is generally quite successful, which makes sense, since each of the two phases of the overall ALS algorithm (the SINDSCAL and the SINDCLUS algorithms, respectively) are each very well validated in terms of reliably obtaining the globally optimal solution (assuming, of course, that a sufficiently large number of starting configurations, random or otherwise, are used).

T-Step: Estimating the Parameters of the T quantitative perceptual dimensions
The parameters associated with the T quantitative dimensions are estimated using the INDSCAL methodology of Carroll and Chang (1970) assuming the data have been transformed to “scalar products form” (which is done in the initial pre-processing step). This methodology iterates between estimating the brand space (matrix X) and consumer space (Wk’s) in an alternating least squares fashion. This methodology is too well documented to be described here again in detail. 

R-Step: Estimating the Parameters of the R qualitative or discrete features
The parameters associated with the R discrete (possibly overlapping) features are estimated using the “one-cluster-at-a-time” SINDCLUS methodology of Chaturvedi and Carroll (1994), which we will describe in greater detail here. Assuming that the parameters for the quantitative, perceptual space (X, Wk) are known, at least conditionally, we reformulate (2) as:

(3) 
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Note that this is a relaxation of (2), since the CLUSCALE model assumes P = Q. We do not impose this constraint in the estimation procedure. We typically find that for symmetric data, the iterative procedure converges to P=Q at the locally optimal solutions.  The estimation problem is to determine the ordinary least squares estimates of binary P and Q, diagonal but continuous UK, and the matrix CK whose off-diagonal elements are ck. This is a 0-1 non-linear integer programming problem. Assuming random starts for Q, UK, and CK , we use the following four-steps in an iterative fashion until the algorithm converges to at least a locally optimal solution.

Step R1. Estimate P, given current UK, current Q, and current CK
Step R2. Estimate Q, given P from step R1, current UK, and current CK
Step R3. Estimate UK, given P from step R1, Q from step R2, and current CK


Step R4. Estimate CK, given P from step R1, UK, from step R2, and Q from step R3

We repeat steps R1 through R4 until convergence to at least a locally optimal solution occurs. Upon convergence, estimated P and Q matrices are usually equal for symmetric data.

Step R1: Estimate P, given current UK, current Q, and current CK
Let 

· G be an N x KN matrix [B1 | B2 | B3| …. | Bk]

· ur be a vector of weights for the rth cluster

· pr be an N x 1 binary vector representing the rth column of Matrix P
· qr be an N x 1 binary vector representing the rth column of Matrix Q
· D be an (R+1) x KN matrix (including the universal cluster), where the rth row of D is dr where dr  = ur ( qr (where ( denotes the Kronecker product)

· P be an N x (R+1) binary matrix of brands x clusters

· P-r  is matrix P with the rth column dropped
· D-r is matrix D with the rth row dropped

Assuming parameters for all clusters except the rth cluster are known, and assuming dr is known the estimation problem becomes estimating pr in 
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or equivalently, estimating pr in
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This is done by using the Elementary discrete Least Squares procedures (EDLSP) described in the Appendix. This procedure is then repeated for r = 1, R. 

Step R2. Estimate Q, given P from step R1, current UK, and current CK
Let 

· H be an N x KN matrix [B1 | B2 | B3| …. | Bk]

· ur be a K x 1 vector of weights for the rth cluster

· pr be an N x 1 binary vector representing the rth column of Matrix P
· qr be an N x 1 binary vector representing the rth column of Matrix Q
· E be an (R+1) x KN matrix (including the universal cluster), where the rth row of E is er where er = ur ( pr .

· Q be an N x (R+1) binary matrix of brands x clusters

· Q-r  is matrix Q with the rth column dropped
· E-r is matrix E with the rth row dropped

Assuming parameters for all clusters except the rth cluster are known, and assuming er is 

known the estimation problem becomes estimating qr in 
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or equivalently, estimating qr in
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This is also done by using the Elementary discrete Least Squares procedures (EDLSP) described in the Appendix. This procedure is then repeated for r = 1, R. 
Step R3. Estimate UK, given P from step R1, Q from step R2, and current CK
Let 

· J be a K x N2 matrix that contains the N2 elements of Matrices Bk in the kth row

· ur be a K x 1vector of weights for the rth cluster

· pr be an N x 1 binary vector representing the rth column of Matrix P
· qr be an N x 1 binary vector representing the rth column of Matrix Q
· F be an (R+1) x N2 matrix (including the universal cluster), where the rth row of F is f'r where fr = pr ( qr .

· U be a K x (R+1) binary matrix of brands x clusters

· fr = pr ( qr 
· U-r  is matrix U with the rth column dropped
· F-r is matrix F with the rth row dropped

Assuming parameters for all clusters except the rth cluster are known, and assuming fr is known the estimation problem becomes estimating ur in
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or equivalently, estimating ur in
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We use a closed form expression to find the OLS estimates of these continuous parameters. It should be noted, too, that non-negativity constraints can easily be imposed on the elements of the vector ur by simply “zeroing out” any values whose estimates have negative values in this “one component at a time” approach. This procedure is then repeated for r = 1, R. 

Step R4. Estimate CK, given P from step R1, UK, from step R2, and Q from step R3:

This step is analogous to step R3, with both pr and qr known. A closed form solution yields the OLS solution in this case also. 

It should be noted that for data based on a single proximity matrix (K=1), the CLUSCALE algorithm described above gets modified slightly. The T-step of the CLUSCALE algorithm uses the singular value decomposition (SVD) for estimating the parameters associated with the quantitative perceptual dimensions rather than the CANDECOMP methodology presented in Carroll and Chang (1970). The R-step of the CLUSCALE algorithm remains the same as when there are multiple data sources (K >1 consumers or segments). This slightly modified algorithm is called the two-way CLUSCALE method throughout the remainder of this paper. It is important to note, however, that while, in the case of three-way data, because of the well established “dimensional uniqueness” property of INDSCAL, the dimensions in the spatial component of CLUSCALE are uniquely identified (i.e., not subject to rotation) in the two-way case (the case of only a single proximity matrix), the spatial component is subject to the same rotational indeterminacy that is characteristic of other two-way MDS methods based on the Euclidean metric.

Application to car data

Chaturvedi (1993) provides pairwise dissimilarity data collected from 24 MBA students at a university on the eastern coast of USA. Sixteen cars were chosen for the study. The sixteen cars used in the study were: Alpha Romeo 164L, BMW 325I, Buick Riviera, Ferrari 348TB, Ford Mustang, Honda Accord, Honda Prelude, Hyundai Sonata, Lincoln Town Car, Mercedes Benz 190E, Plymouth Sundance, Pontiac Firebird, Rolls Royce, Toyota Celica, Toyota Lexus SC 400, and Volkswagen Golf. The order of presentation of the 120 pairs of cars was randomized across the 24 consumers in order to eliminate order effects.

Application of Two-Way CLUSCALE to the “average” proximity matrix from 24 Consumers:

Two-way CLUSCALE was first applied to an average proximity matrix derived from the 24 proximity matrices corresponding to the 24 consumers.  After a large number of CLUSCALE runs (ranging from 2 through 5 quantitative dimensions and 2 through 5 discrete perceptual features), we chose a solution with T=2 quantitative perceptual dimensions and R=2 qualitative perceptual features, accounting for 82% of the variance in the data, based on the criteria of (a) scree-test; and (b) interpretability of the solution. (We will rely heavily on the criterion of interpretability throughout this paper to choose the number of quantitative dimensions and qualitative features in CLUSCALE solutions. While this criterion is clearly somewhat subjective, we feel that in such exploratory descriptive methodologies, interpretability of solutions should be the primary criterion for selecting the number of quantitative dimensions and/or qualitative features). 

As previously noted, the quantitative 2-dimensional solution is subject to an orthogonal rotational indeterminacy common to all classic metric multidimensional scaling and factor analytic solutions. Figure 1 presents the 2 quantitative dimensions derived using CLUSCALE. Table1 presents the two qualitative features (or overlapping clusters) derived, while Table 2 presents the positively constrained importance weights of the single data source (average of 24 consumer’s data) for the two derived perceptual quantitative dimensions and qualitative features, in addition to the unconstrained additive constant associated with the qualitative feature (or cluster corresponding to the universal set) possessed by all brands.

-------------------------------------------------

Insert Figure 1 and Tables 1 & 2 here

-------------------------------------------------

The two quantitative dimensions presented in Figure 1 are not very interpretable. Looking at the horizontal axis, Rolls Royce takes on the largest negative value. This could correspond to Rolls Royce being either a very expensive car, a very luxurious car, or both. This horizontal dimension cannot be interpreted as a luxuriousness dimension because Lincoln Town Car is then interpreted as being more luxurious than Ferrari, which is contrary to the positioning of Ferrari in the car market.  Similarly, this dimension cannot be interpreted as an “Expensive-Non-expensive” dimension either, since Ferrari has similar value on this dimension as BMW, Mercedes Benz, Toyota Lexus, and Lincoln Town Car. Ferrari is a car in the “Super luxury” sub-category and is distinctly more expensive compared to the “Luxury cars” such as BMW, Mercedes Benz, and Toyota Lexus.

The two qualitative features (or overlapping clusters) derived via 2-way CLUSCALE are given in Table 1. Our best interpretation of these two clusters—“German and Japanese Cars” and “American Cars”—was far from perfect, since the cluster structure is not as clean as we would like it to be. For example, Alpha Romeo (made by an Italian manufacturer) is included in the “German and Japanese” cars cluster, while Volkswagen Golf (a German car) is not included in it. Similarly, the “American car” cluster includes Ferrari and Rolls Royce, both non-American cars. 

We tried to test our hypothesis of a possibly locally optimal solution by (a) dropping Rolls Royce and Ferrari from the “American Cars” cluster, and by (b) dropping Alpha Romeo and including Volkswagen Golf in the “German and Japanese car cluster”, then feeding this as a starting solution to the 2-way CLUSCALE program to see if we got a better solution than the one presented in Table 1. We found that the resulting CLUSCALE solutions were worse (in terms of R2) than the solution presented in Table 1. Increasing the number of discrete perceptual features to three or four also did not give us a clear discrete feature structure for the data. 

Application of Three-Way CLUSCALE to the 24 proximity matrices:

Three-way CLUSCALE was then applied to the 24 proximity matrices corresponding to the 24 consumers.  As with the application of two-way CLUSCALE, we obtained a variety of CLUSCALE solutions ranging from 2 through 5 quantitative perceptual dimensions, and 2 through 5 qualitative perceptual features. We found a solution with T=2 quantitative perceptual dimensions and R=3 qualitative perceptual features, accounting for 76% of the variance in the data, to be most interpretable. 

-------------------------------------------------

Insert Figure 2 and Tables 3 & 4 here

-------------------------------------------------

Before we discuss the results of the three-way analysis, we would like to remind the readers that a major benefit of analyzing a three-way data set using CLUSCALE is that the derived quantitative perceptual dimensions are not subject to orthogonal rotational indeterminacy, which classical two-way procedures such as two-way multidimensional scaling and factor analysis are subject to. In other words, the perceptual maps produced from three-way CLUSCALE analysis are unique and identified up to a scale-indeterminacy only (which is a very mild under-identification of the underlying spatial structure), while classical perceptual mapping procedures produced via two-way data reduction techniques such as two-way factor analysis and two-way multidimensional scaling suffer from stronger model under-identification due to the orthogonal rotational indeterminacy, in addition to these milder forms of scale indeterminacies. For these reasons, three-way CLUSCALE can be used much more as a “confirmatory” data analytic tool—in confirming the existence (or absence) of certain pre-specified perceptual quantitative dimensions or qualitative features in differentiating the various brands in a product category.

Figure 2 presents the two quantitative perceptual dimensions extracted using three-way CLUSCALE.  Since the orientation of the brands with respect to the axes is fixed (no rotational indeterminacy in the solution), a good interpretation of the axes would present “face validity” to the quantitative dimensions of the CLUSCALE solution.  In this case, the two dimensions were interpreted as the “Price” dimension, and a bi-polar “Luxuriousness-Sportiness” dimension. The price dimension clearly rank orders the “Super-luxury” cars such as Rolls-Royce and Ferrari from the “Luxury-cars” such as Mercedes Benz, BMW, Alpha Romeo, Lincoln Town Car, and Toyota Lexus, followed by the only full-sized car in the set – Buick Riviera. The mid-sized cars Pontiac Firebird, Honda Accord, Honda Prelude, Toyota Celica, and Ford Mustang follow next.  Hyundai Sonata, Plymouth Sundance, and Volkswagen Golf, the small sized, low cost cars, come at the end.  The bipolar Luxuriousness-Sportiness dimension clearly separates the pure sports or sporty cars such as Ferrari, Ford Mustang, Pontiac Firebird, Alpha Romeo, etc from the big, luxurious sedans such as Lincoln Town Car, Buick Riviera, etc. from the non- sporty, non-luxury cars such as Honda Accord, Hyundai Sonata, Plymouth Sundance, and Volkswagen Golf are placed near the origin of this axis.

Table 3 presents the solution for the three discrete perceptual features extracted from the cars data.  Two of the discrete features are clearly interpreted as the “American cars” feature, and the “Popular European and Japanese cars” features. The “American cars” feature includes all American cars in the set of cars presented to the subjects, and only the American cars (Buick Riviera, Ford Mustang, Lincoln Town Car, Plymouth Sundance, and Pontiac Firebird). The “popularly or affordably priced European and Japanese cars” feature includes all European cars (except Rolls Royce and Ferrari), and all Japanese cars. We use the phrase “popular or affordably priced” in the feature above to mean cars that have wide ownership in the car market. Ferrari and Rolls Royce, by virtue of their high price and niche positioning in the car market, have a narrow ownership (low market penetration), and are relatively “less popular” in that sense. Hence, when we say that Rolls Royce and Ferrari are not popular cars, it simply means that not too many people might have the wherewithal to buy those cars, and hence, might never consider buying these cars, so that these cars may not be “popular” among these consumers. The third feature that we derived, we termed “very expensive and very cheap cars”. This feature was very stable since it showed up across multiple solutions, as we varied the values of T (the number of continuous perceptual dimensions) and R (the number of discrete perceptual features).  This feature includes the two super luxury cars—Ferrari and Rolls Royce, and the three small sized/economy cars—Hyundai Sonata, Plymouth Sundance, and Volkswagen Golf. This feature could also be interpreted as “not in choice consideration set” because the cars are either too extremely high priced to be affordable, or too low priced to offer good “perceived quality.” It could also mean, for a similar reason, that this feature includes cars with which the consumers tested had a low degree of familiarity because these are cars they “will not consider buying at all.” 

It is worth pointing out to the reader at this stage that no current popular technique in market research exists that enables brand or category managers to use perceptual mapping to capture this simultaneous differentiation of products by consumers on both quantitative dimensions and qualitative perceptual features. 

Table 4 presents the importance weights of the 24 consumers for the two quantitative normalized perceptual dimensions, the three qualitative normalized perceptual features, and the additive constant (representing a weight for a normalized qualitative perceptual feature corresponding to the universal set with all the brands in it).
 It is not surprising that the weights associated with the quantitative perceptual features are higher in magnitude compared to the weights for the qualitative perceptual features. This table captures the heterogeneity that exists in the marketplace. Consumer 3, for example, differentiates cars based primarily on price (weight of 0.32), and the quantitative perceptual features: “American cars” (weight of 0.25), and “Popular European and Japanese cars” (weight of 0.14). Consumer 8, on the contrary, has relatively higher weights across all five perceptual dimensions and features, representing a pretty well informed and discriminating consumer. Consumer 15 is more like Consumer 3, using the price dimension and the “American Car” feature primarily for differentiation of cars.

Rotation of the two quantitative dimensions of the 2-Way CLUSCALE solution to the two quantitative dimensions derived via 3-way CLUSCALE 

We used an orthogonal Procrustese rotation of the two quantitative perceptual dimensions derived using the 2-way CLUSCALE procedure, to get the rotated dimensions to match as closely as possible the two quantitative perceptual dimensions derived using the 3-way CLUSCALE procedure.  

-------------------------------------------------

Insert Figures 3 & 4 and Table 5 here

-------------------------------------------------

Figure 3 presents the two quantitative dimensions derived using the two-way CLUSCALE procedure, rotated to optimal congruence with the three-way CLUSCALE solution, using a Procrustese rotation procedure. The rotated solution looks pretty much the same as the two quantitative perceptual dimensions derived using the three-way CLUSCALE procedure. Figure 4 presents plots of the two-quantitative dimensions from the three-way CLUSCALE solution, and the rotated two dimensions of the two-way CLUSCALE solution. The heads of the arrows in this plot correspond to the coordinates of the rotated two-way CLUSCALE solution. It can be clearly seen that the two perceptual maps now are fairly nearly identical (Procrustese R2 between these solutions = 0.96). This, plus the fact that a much “cleaner” and more interpretable feature structure emerged from the three-way than the two-way analysis, clearly demonstrates the superiority of the solution derived using the three-way CLUSCALE procedure. It provides a richer, more interpretable, model for product differentiation, explaining how consumers differentiate cars due to both quantitative perceptual dimensions and qualitative perceptual features, in addition to incorporating different profiles of weights for different consumers or consumer groups, reflecting heterogeneity in the marketplace.

Conclusions

This paper has presented a product differentiation model that enhances traditional perceptual mapping techniques such as two-way multidimensional scaling and factor analysis in two important ways - (a) by explaining product differentiation that might exist due to perceptual features that are qualitative (i.e., possessed, in an all or none fashion by a subset of the brands being analyzed), in addition to quantitative or continuously varying perceptual dimensions, and (b) by incorporating heterogeneity that exists in the marketplace in the form of different profiles of weights for different consumers or consumer segments for these derived quantitative perceptual dimensions and qualitative perceptual features.

The paper also presents a robust methodology for least squares parameter estimation, which can be used quite gainfully in marketing research applications.  For example, advertising agencies, and advertising tracking agencies which periodically monitor a brand’s or a category’s performance, can now track shifts in consumers’ perceptions regarding various brands over time by using multiple longitudinal measurements from the same respondents (e.g., Panel based survey recordings). More generally, this methodology can be used to develop quite powerful perceptual maps of brands or products reflecting both the effects and nature of continuous dimensions on which the brands or products vary continuously and of qualitative features representing all or none attributes which a brand or product either possesses or does not possess, inducing an overlapping cluster structure on the brands or products. Differential weights for both the continuous dimensions and the qualitative features allow the marketing manager to assess the degree and nature of market homogeneity vs. heterogeneity, while the nature of the three-way data analyzed and the CLUSCALE model fit leads to this representation being uniquely determined (so that, from a mathematical/statistical point of view, the fitted representation is completely identifiable, up to, at most, reflection of coordinate axes of the continuous dimensions). 

We would argue that these attributes of the CLUSCALE model, considered as a whole, make this the most comprehensive extant model and method for perceptual mapping, based on three-way or individual differences (direct or derived) proximity data. When combined with appropriate preferential choice data on the same brands or products, using preference mapping (Carroll 1980) combined with conjoint analysis (Green and Srinivasan 1990) to account for the preference data in terms of the recovered qualitative dimensions and qualitative features, respectively, this should lead to a very methodologically complete and interpretively satisfying approach to market structure analysis.
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Figure 1: Two-Way CLUSCALE: 2 Dim. Solution
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Figure 2: Three-Way CLUSCALE: 2 Dim. Solution

[image: image14.wmf]Car Model

“German and

Japanese Cars”

“American Cars”

Alpha Romeo

1

0

BMW

1

0

Buick Riviera

0

1

Ferrari

0

1

Mustang

0

1

Honda Accord

1

0

Honda Prelude

1

0

Hyundai Sonata

0

0

Lincoln Town Car

0

1

Mercedes Benz

1

0

Plymouth 

Sundance

0

1

Pontiac Firebird

0

1

Rolls Royce

0

1

Toyota Celica

1

0

Toyota Lexus

1

0

Volkswagen Golf

0

0


Figure 3: Two-Way CLUSCALE: 2 Dim. Solution rotated to 

optimal congruence with the Three-way solution
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Figure 4: Comparison of continuous dimensions for the Three-way

and the rotated Two-way CLUSCALE solutions (R2 = 0.96)
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Table 1: Two-Way CLUSCALE:

2 Discrete Features Extracted
Table 2: Three-Way CLUSCALE: Consumer importances for the

2 Dimensions and 2 discrete clusters + Universal Cluster
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Table 3: CLUSCALE: 

Three-Way Solution:  3 Overlapping Discrete Features
Table 4:  

Three-Way CLUSCALE: Consumer Importances for the 2 Dimensions 

and 3 discrete clusters + Universal Cluster
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Table 5: Rotated Two-Way CLUSCALE Solution: 
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Importances for the 2 Dimensions and 2 discrete clusters + Universal Cluster

Appendix:  The Elementary Discrete Least Squares Procedure 
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To estimate p in G* = pd' + error, define f1 = [7 - 4.2p1]2 + [5-0p1]2 + [3-4.2p1]2 + [9-0p1]2; f2 = [8 - 4.2p2]2 + [6-0p2]2 + [5-4.2p2]2 + [1-0p2]2;  f3 = [9 - 4.2p3]2 + [4-0p3]2 + [2-4.2p3]2 + [7-0p3]2; f4 = [5 - 4.2p4]2 + [3-0p4]2 + [4-4.2p4]2 + [6-0p4]2. Then, the OLS loss function is given by: F = f1 + f2 + f3 +f4.

It can be seen that F is separable with respect to the parameters p1, p2, p3, and p4. Hence, each row is separable with respect to the parameter for that row. Hence, one needs only 2N evaluations and comparisons, as opposed to 2N for explicit enumeration.  Thus, the estimation time increases only linearly (as opposed to exponentially) with respect to the number of parameters being estimated.
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� For deriving the scalar products from proximity matrices, we use a variant of the classical Torgerson (1958) approach, as described in detail in Carroll and Chang (1970). 


�  All importance weights have been rescaled for unit length quantitative dimensions and qualitative features. All the quantitative dimensions and qualitative features have been normalized to a unit length.  This was accomplished by dividing each quantitative dimension and qualitative feature indicator variables (the 0, 1 values) indicating possession or non-possession of that feature by the square root of the sum of squares of the  brand coordinates (for quantitative dimensions) or the square root of the cardinality of the feature (for qualitative features)
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		1		0.03		0.07		0.07		-0.10

		2		0.03		0.02		0.01		-0.06

		3		0.08		0.25		0.14		-0.19

		4		0.09		0.07		0.08		-0.10

		5		0.06		0.05		0.04		-0.07

		6		0.05		0.13		0.12		-0.13

		7		0.01		0.04		0.05		-0.05

		8		0.18		0.23		0.24		-0.26

		9		0.03		0.03		0.05		-0.05

		10		0.10		0.06		0.10		-0.13

		11		0.05		0.06		0.04		-0.06

		12		0.06		0.04		0.04		-0.06

		13		0.04		0.05		0.05		-0.07

		14		0.04		0.02		0.02		-0.10

		15		0.05		0.15		0.10		-0.14

		16		0.04		0.06		0.02		-0.05

		17		0.00		0.13		0.07		-0.08

		18		0.06		0.08		0.08		-0.10

		19		0.03		0.09		0.13		-0.12

		20		0.12		0.16		0.17		-0.18

		21		0.02		0.03		0.02		-0.05

		22		0.04		0.06		0.07		-0.09

		23		0.13		0.10		0.15		-0.18

		24		0.13		0.08		0.07		-0.11





Sheet2

				Very Expensive and Very cheap cars		American Cars		Popular European and Japanese Cars

		Alpha Romeo		0		0		1

		BMW		0		0		1

		Buick Riviera		0		1		0

		Ferrari		1		0		0

		Ford Mustang		0		1		0

		Honda Accord		0		0		1

		Honda Prelude		0		0		1

		Hyndai Sonata		1		0		0

		Lincoln Town Car		0		1		0

		Mercendez Benz		0		0		1

		Plymouth Sundance		1		1		0

		Pontiac Firebird		0		1		0

		Rolls Royce		1		0		0

		Toyota Celica		0		0		1

		Toyota Lexus		0		0		1

		Volkswagen Golf		1		0		1
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subjectweights

				Dimensions				Discrete Features

		Consumer		Bipolar Luxuriousness/ Sportiness		Price		Very Expensive and Very Cheap Cars		American Cars		Popular Eurpoean and Japanese Cars		Constant

		1		0.16		0.05		0.03		0.07		0.07		-0.10

		2		0.12		0.07		0.03		0.02		0.01		-0.06

		3		0.10		0.32		0.08		0.25		0.14		-0.19

		4		0.06		0.38		0.09		0.07		0.08		-0.10

		5		0.07		0.40		0.06		0.05		0.04		-0.07

		6		0.27		0.28		0.05		0.13		0.12		-0.13

		7		0.28		0.19		0.01		0.04		0.05		-0.05

		8		0.29		0.38		0.18		0.23		0.24		-0.26

		9		0.14		0.23		0.03		0.03		0.05		-0.05

		10		0.22		0.25		0.10		0.06		0.10		-0.13

		11		0.19		0.38		0.05		0.06		0.04		-0.06

		12		0.13		0.41		0.06		0.04		0.04		-0.06

		13		0.10		0.31		0.04		0.05		0.05		-0.07

		14		0.17		0.18		0.04		0.02		0.02		-0.10

		15		0.12		0.32		0.05		0.15		0.10		-0.14

		16		0.10		0.35		0.04		0.06		0.02		-0.05

		17		0.21		0.29		0.00		0.13		0.07		-0.08

		18		0.08		0.40		0.06		0.08		0.08		-0.10

		19		0.15		0.11		0.03		0.09		0.13		-0.12

		20		0.21		0.44		0.12		0.16		0.17		-0.18

		21		0.13		0.35		0.02		0.03		0.02		-0.05

		22		0.22		0.29		0.04		0.06		0.07		-0.09

		23		0.26		0.25		0.13		0.10		0.15		-0.18

		24		0.25		0.30		0.13		0.08		0.07		-0.11
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_1061809302.doc
Cluster/Dimension Description

      Raw Weights for 


    Dimensions/Clusters

 Normalized Weights



Dimension 1

           0.836

           0.836



Dimension 2

           0.384

           0.384



“German and Japanese Cars” Cluster

           0.032

           0.222



“American Cars” Cluster

           0.031

           0.217



Universal Cluster (Additive Constant)

          -0.012

         -0.193
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Cluster/Dimension Description

      Raw Weights for 


    Dimensions/Clusters

 Normalized Weights



Bi-polar Luxuriousness/Sportiness

           0.445

           0.445



Price

           0.775

           0.775



“German and Japanese Cars” Cluster

           0.032

           0.222



“American Cars” Cluster

           0.031

           0.217



Universal Cluster (Additive Constant)

          -0.012

         -0.193
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