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Abstract. In this work, we estimate the resilience of scale-free networks
on a number of different attack methods. We study a number of different
cases, where we assume that a small amount of knowledge on the network
structure is available, or can be approximately estimated. We also present
a class of real-life networks that prove to be very resilient on intentional
attacks, or equivalently much more difficult to immunize completely than
most model scale-free networks.

1 Introduction

A large number of diverse systems in society, nature and technology can be de-
scribed by the concept of a network [1, 2]. In a network the form of inter-relations
between the system parts determines many structural and dynamic properties
of the system. One such property that has received considerable attention is the
robustness of a network under failures[3, 4] or intentional attack [3, 5, 6]. Equiv-
alently, from a sociological point of view, the robustness of a network can be
related to an immunization process, where immunized nodes no longer transmit
a disease, and thus the destruction of a spanning cluster in the network means
that the population is immune to a disease, which will soon die out because it
will encounter non-susceptible nodes. In such cases we are mainly interested in
using the lowest possible number of vaccinations, either for reasons of increased
cost or unavailability of a large number of vaccines. These strategies strongly
influence the form of the resulting network, which in turn affects important dy-
namic properties, such as delivery time in the Internet, delays in information or
virus spreading, etc [7].

In the course of an intentional attack nodes of the network are removed in
decreasing order of their degree (number of connections to other nodes). This
is considered to be the most harmful type of attack on a network, since the
removal of the hubs results in the largest possible damage. This removal process
has many and important implications, since depending on the application, it
may describe the resilience of a network, such as the Internet, or the required
number of vaccinations for immunization considerations, etc. For a scale-free
network, where the probability that a node has a given number of links decays
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as a power-law P (k) ∼ k−γ , it has been shown that the critical percentage fc

of removed nodes that results in network desintegration is very low (less than
fc = 0.07) [5, 6]. It is, thus, a well-established fact, supported by analytic results
and simulations on model and real-life networks, that a scale-free network is
very vulnerable to intentional attacks (where fc is close to 0), although the same
network is extremely robust under random node failures (where fc � 1) [4].

2 Attacks with Limited Network Knowledge

In many cases, it is possible that the robustness of a node depends on its connec-
tivity, i.e. the probability of damaging a node either by failure or by an external
attack depends on the degree k of the node. We simulate this situation by using
the probability W (k) ∼ kα for a node with degree k to become inactive. The
parameter α can be regarded as a measure of our knowledge on the network
structure. When α < 0 nodes with low degree are more vulnerable, while for
α > 0 high-degree nodes are removed with higher probability than the low de-
gree nodes. The cases α = 0 and α → ∞ represent the known random removal
and targeted intentional attack, respectively.
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Fig. 1. (a) Values of fc vs γ for different α values: (bottom to top) α =
4, 1, 0.5, 0, −0.5, −1. Symbols represent simulation data (N = 106 nodes) from 100−300
different network realizations. Solid lines are the theoretical predictions for finite-size
networks, while dashed lines correspond to infinite-size networks. (b) Values of fc vs α
for infinite-size networks and different γ values.

Results of simulations on model networks for the critical fraction fc of the
nodes that need to be removed before the destruction of the spanning cluster
are presented in Fig. 1. A theoretical result for this problem has been presented
in [8], which can be seen in the figure to be in excellent agreement with the sim-
ulations. For γ < 3, fc becomes smaller than 1 already for very small positive α
values, and decays rapidly with increasing α. Accordingly, by a very small pref-
erence probability to remove highly connected nodes, which arises, for example,
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in an intentional attack with very little knowledge of the network structure, this
network can be destroyed by removing a comparatively small fraction of nodes.
Above α = γ − 1, fc saturates, which means that the knowledge available to the
attacker in this case is sufficient to destroy the network most efficiently.

Our results show that little knowledge on the highly connected nodes in an
intentional attack reduces the threshold drastically compared to the random
case. Thus, a large network can be damaged efficiently even when only a small
fraction of hubs is known to the attacker. For immunization of populations this
means that if we are able to identify (and immunize) even with small probability
the virus spreaders we can significantly reduce the spreading threshold.

3 Acquaintance Immunization with Limited Knowledge

Another method of attacking the system, with application in immunization
strategies, is the acquaintance immunization method [9]. According to this
scheme a random node is selected and then points to a random acquaintance
along one of its links. The node at the other end of the link is the one to be
immunized (removed). This method achieves great efficiency in lowering the per-
colation threshold. Here, we consider the probability of further improving the
efficiency of this process, provided that we use partial knowledge on the network
structure.

We select a percentage p of a network comprising N nodes and ask them to
direct us to a random acquaintance of theirs, which will then be immunized.
The initial selection of the pN nodes is based on partial information on their
connectivity, so that a node i with ki links has a probability W (ki) ∼ kα

i of
being approached (the parameter α has the same meaning as in the previous
section). We increase the value of p up to a value pc where the fraction fc of
actually immunized nodes results to the arrest of the epidemic (or equivalently
to the desctruction of the spanning cluster).

We present a theoretical analysis of the problem, based on the arguments
presented in Ref. [9]. We consider a network where a fraction p of its nodes
have been selected and have pointed to a fraction f of unique nodes that have
been immunized. We assume that in the network there are no degree-degree
correlations, so that the probability of a node with k links to be connected to a
node with k′ links is independent of k, φ(k′) ≡ p(k′|k) = k′P (k′)/〈k〉.

For our derivation we assume that loops can be neglected and the nodes are
located on layers, l, from a chosen origin. We denote the number of nodes with
degree k in the layer l by nl(k). The event of a node with degree k being suscep-
tible (not immunized) is denoted by sk. As a starting point for the calculation
of nl(k) we use Eq. (1) from Ref. [9]

nl+1(k′) =
kmax∑

k=1

nl(k)(k − 1)p(k′|k, sk)p(sk′ |k′, k, sk) . (1)

The upper value kmax is taken equal to the natural cutoff kmax = N1/(γ−1), while
p(k′|k, sk) denotes the probability of reaching a node of degree k′ by following a
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link from a susceptible node with degree k and p(sk′ |k′, k, sk) is the probability
that this k′-degree node is also susceptible.

A random node of degree k is selected with probability kα/(N〈kα〉) where
〈kα〉 =

∑
kαP (k). In order to find the probability for a random acquaintance

to be immunized we divide by 1/k, so that the probability of immunizing this
specific acquaintance is kα−1/(N〈kα〉). The probability that this node is not
selected is 1 − kα−1/(N〈kα〉) and after Np immunization attempts it becomes

νp(k) =
(

1 − kα−1

N〈kα〉

)Np

∼ exp
(

−kα−1

〈kα〉 p

)
. (2)

Since the network is uncorrelated we consider the average value νp = 〈νp(k)〉 =∑
k νp(k)φ(k), so that the probability that a node with degree k is susceptible

is, in general, p(sk|k) = νk
p . If the degree of one neighbor is known to be k′

this probability becomes p(sk|k, k′) = νk−1
p exp

(
−k′ α−1

〈kα〉 p
)
. Since immunization

of a node is independent of the probability that its neighbor is also immunized
we also have p(sk|k, k′) = p(sk|k, k′, sk′). Combining the above results with the
Bayes rule and Eq. (2) we finally get the expression:

nl+1(k′) = nl(k′)
kmax∑

k=1

φ(k)νk−2
p (k − 1) exp

(
−2kα−1

〈kα〉 p

)
. (3)

When the sum in the above expression is greater than 1 then the number of
susceptible nodes increases with increasing layer index l. When the sum is less
than 1 the percolation phase dissapears. At the critical concentration pc this
sum is, thus, equal to 1, i.e.

kmax∑

k=1

φ(k)νk−2
pc

(k − 1) exp
(

−2kα−1

〈kα〉 p

)
= 1 . (4)

Next, we obtain the critical value pc by numerically solving this equation and
we compute the critical fraction of immunized nodes, i.e. the fraction of not
susceptible nodes:

fc = 1 −
kmax∑

k=1

P (k)p(sk|k) = 1 −
kmax∑

k=1

P (k)νk
pc

. (5)

The numerical solution of Eq. (5) for fc as a function of α for networks with
different γ exponents is compared in Fig. 2 with simulation data.

For networks with γ < 3 the critical threshold is minimized at values of α � 1,
which is the optimum value for the presented strategy, while for γ ≥ 3 the thresh-
old presents a different behavior and decreases monotonically with increasing α
values. In practice, the process at α = 1 is equivalent to selecting a random
link and immunizing one of the two nodes attached to the given link (provided
the uncorrelated network hypothesis holds). It is also interesting to notice that
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Fig. 2. Critical immunized fraction fc of the population as a function of α for random
scale-free networks with different γ exponents (shown in the plot). Network size is
N = 105 nodes. Symbols are the results of simulations and lines represent the analytic
solution (Eqs. 4 and 5).

up to the value α = 1 the acquaintance immunization strategy is superior to
direct immunization of the initially selected nodes, but close to this value the
two methods yield a similar value for fc. When α > 1 the direct immunization
method becomes more efficient than the acquaintance immunization strategy.

4 Robust Real-Life Scale-Free Networks

In this section we show that there exists a large class of networks, that are usually
found in nature and society and have already been characterized as scale-free,
but nevertheless remain robust against removal of the most connected nodes.
We first present the results for real-life networks and then introduce a modified
version of scale-free networks, for which our analytic and simulation treatment
support these findings.

To demonstrate this issue we performed intentional attacks and random nodes
removal to many different real-life networks. Although many of these systems
behave in a similar way to the model network (where fc is usually less than 10%)
there is a number of networks, such as actors collaboration and science citations,
where the intentional attack requires removal of a considerable portion of the
network nodes, which is of the order of 65%. In order to outline the common
feature of these networks, in Fig. 3 we present the degree distribution of these
networks. These distributions have a flat or rising part at low-degree nodes and
only after a threshold value the distribution decays as a power-law.

We use a general model for simulating similar networks. We consider networks
whose degree distribution is uniform up to a threshold value kc and for larger
values decays as a power law k−γ . The exact form of the distribution (plotted
also for kc = 50 and γ = 2.5 in Fig. 3) is

P (k) =

{
γ−1

γ k−1
c 1 < k < kc

γ−1
γ kγ−1

c k−γ k > kc
. (6)
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Fig. 3. Degree distributions for IMDB actors (filled symbols) and HEP citations (open
symbols). The solid line represents a typical degree distribution (Eq. 6) that we used
as a model.

We calculate the critical threshold fc for such a network based on ideas intro-
duced by Cohen et al [5] and Dorogovtsev and Mendes [11]. Nodes are removed
according to their initial degree. An intentional attack results in the disruption of
the network. We consider that the degrees of the nodes for the resulting network
are given by the parameter k̃, with corresponding averages

〈k̃〉 =
∫ K̃

1
kP (k)dk , 〈k̃2〉 =

∫ K̃

1
k2P (k)dk . (7)

The effect of an intentional attack is to remove all nodes of a network whose
degree is larger than a cutoff value K̃, i.e. k̃ ∈ [1, K̃]. This also implies that fc

equals

fc = 1 −
∫ ∞

K̃

P (k)dk . (8)

At the same time, removal of a node leads to removing all its links to other nodes.
We consider random networks with no correlations in the nodes connections,
which means that a removal of a node results in removal of random links with
probability

p̃ =

∫ ∞
K̃

kP (k)dk∫ ∞
1 kP (k)dk

= 1 − 〈k̃〉
〈k〉 . (9)

It has been shown [4, 10] that a random network loses its large-scale connec-
tivity after the removal of a critical fraction fc of nodes, which behaves as

fc = 1 − 1
κ − 1

(10)

where κ ≡ 〈k2〉/〈k〉 as usual. We use the above equation for the network resulting
after the attack, i.e. we substitute fc with p̃ from Eq. 9 and κ = 〈k̃2〉/〈k̃〉. After
a few trivial steps Eq. 10 becomes

〈k̃2〉 − 〈k̃〉 = 〈k〉 . (11)

This formula, which is exact, has been already proved in Refs. [5, 11].
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In order to use Eq. 11 we need to know whether the value of K̃ is larger or
smaller than the threshold value of the distribution kc. We have considered each
case separately, but when K̃ > kc there is no solution to the problem (which
is also verified by our simulations where always K̃ < kc). Calculation of the
involved integrals yields

〈k̃〉 � γ − 1
2γ

K̃2

kc
, (12)

and

〈k̃2〉 � γ − 1
3γ

K̃3

kc
. (13)

The average value of the initial degree distribution P (k) (Eq. 6) can be ap-
proximated with the assumption that kmax = ∞. However, for low γ values
this assumption does not work well and we can compute the integral up to
the maximum value kmax = K, which can be computed from the relation∫ ∞

kmax
P (k) = 1/N , and is given in our case by K = kcN

1/(γ−1)γ1/(1−γ). This
results in a correction x = 2N (2−γ)/(γ−1)γ1/(1−γ) to the average value of the
distribution, which finally becomes

〈k〉 =
(γ − 1)kc

2(γ − 2)
(1 − x) . (14)

Combining Eqs. 11-14 we get

2K̃3 − 3K̃2 =
3γk2

c

γ − 2
(1 − x) . (15)

We can now compute the value of K̃ from Eq. 15 and substitute it to Eq. 8,
which can also be written as

fc � 1 − γ − 1
γ

K̃

kc
. (16)

The numerical solution of Eqs. 15 and 16 is shown in Fig. 4 as a function of
γ for different values of the threshold value kc. In the same figure we also plot
results of simulations on model networks.

Comparison of the curves in Fig. 4 to the intentional attack on regular scale-
free networks shows a dramatic increase in the value of fc, over the entire γ
range. Increase of the threshold value kc enhances the stability of the network.
For kc = 10 the critical fraction is already above 40%, while when kc = 100 the
value of fc lies in the range 70-80%. This, of course, is also a consequence of the
increasing mean degree of nodes as we increase kc, that makes all nodes in the
system better connected.

These findings provide a structure that is very robust against both random
failures and targeted attacks. This optimization is desirable in most cases. Such
a structure, which we have seen in many instances emerges naturally, may be
used to efficiently protect a network against most attacks.
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Fig. 4. Critical fraction fc of removed nodes for networks that undergo an intentional
attack, as a function of the exponent γ. From top to bottom: kc = 500, 100, 50, and
10. Solid lines represent the numerical solution of Eqs. 15 and 16, while symbols are
simulation results. The dashed curve corresponds to pure scale-free networks (Ref. [5]).
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