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Spatial correlations in geographical 
spreading of COVID‑19 
in the United States
Troy McMahon1, Adrian Chan2, Shlomo Havlin2 & Lazaros K. Gallos1*

The global spread of the COVID‑19 pandemic has followed complex pathways, largely attributed 
to the high virus infectivity, human travel patterns, and the implementation of multiple mitigation 
measures. The resulting geographic patterns describe the evolution of the epidemic and can indicate 
areas that are at risk of an outbreak. Here, we analyze the spatial correlations of new active cases 
in the USA at the county level and characterize the extent of these correlations at different times. 
We show that the epidemic did not progress uniformly and we identify various stages which are 
distinguished by significant differences in the correlation length. Our results indicate that the 
correlation length may be large even during periods when the number of cases declines. We find 
that correlations between urban centers were much more significant than between rural areas and 
this finding indicates that long‑range spreading was mainly facilitated by travel between cities, 
especially at the first months of the epidemic. We also show the existence of a percolation transition 
in November 2020, when the largest part of the country was connected to a spanning cluster, and a 
smaller‑scale transition in January 2021, with both times corresponding to the peak of the epidemic in 
the country.

The high infection rate of COVID-191, combined with modern society behavioral patterns and a high volume of 
 travel2, enabled the rapid spreading of the virus  globally3. The COVID-19 pandemic is among the few examples 
of an infectious disease which spread widely in a relatively short amount of time and whose evolution was closely 
monitored and  documented4,5. In the absence of restriction measures, the entire population would have been 
exposed to the virus resulting in a much higher number of active cases and consequently deaths. Many measures 
have been implemented in different countries and most of them aim to limit contacts between large numbers of 
 people6 and limiting travel over large  distances7. These measures include travel restrictions, quarantines, social 
distancing, lockdowns, curfews, and  others8. Such restrictions have led to varying degrees of success, which 
are difficult to estimate since individuals may not have followed state directives or the measures may have been 
 inadequate9. However, it is clear that these mitigation measures have had a significant impact on the evolution of 
the pandemic and that the geographical spreading would have been very different if the virus was left to spread 
uncontrolled within the  population10.

The special features of this virus and the unprecedented global response present potentially novel paths of 
disease transmission that have not been observed in modern  times11. The combination of these transmission 
paths manifests itself as the number of new active cases over a region of interest, such as a county in the USA, and 
these numbers are reported daily. The geographical arrangement of variables such as the number of new cases 
gives rise to larger scale spatial patterns which span broader areas on the map. The analysis of these patterns and 
their pertinent features can provide important information on the extent of the epidemic at a given time and areas 
which may be at higher risk of an  outbreak12–14. In practice, it is possible to identify geographical clusters whose 
connectivity is based on similar local levels of infections or similar trends in the local progress of  infection15. We 
can then assess how these clusters evolve with time, for example in terms of their size and persistence.

Here, we suggest that the use of spatial correlation statistics and cluster analysis of spreading indicators can 
provide valuable information on the extent of spatial spreading and how spatial correlations arose within and 
between geographical areas. Similar approaches have been shown to be very successful in other contexts of 
 spreading16,17, where they have provided important results and insight in problems related to spatial epidemics.

We find that during the one year of spreading from February 2020 to February 2021, when vaccinations 
started becoming widely available, there were three main phases in terms of spatial spreading, which can be 
roughly described as localized, dormant, and system-wide outbreak. Interestingly, if we consider the whole 
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country to represent one system, then these three phases can be compared to the progression of a disease in an 
individual, moving from an acute infection to false recovery to severe illness. In spring 2020 (the localized, acute 
phase), spreading was contained within small clusters and there were only a few local outbreaks mainly located 
in the Northeast. From May 2020 to October 2020, (the incubation phase) correlations in new active cases were 
weaker across the country but at the same time the underlying clusters started growing in size while still remain-
ing mostly localized in space. November 2020 marks the beginning of the third stage (the system-wide outbreak 
phase), when correlations spanned the largest part of the country as these clusters merged. Even though this 
spanning cluster dissolved in less than a month, correlations remained strong for the rest of this time interval 
indicating that virus transmission could still increase at a fast pace.

It is also noteworthy that correlations among neighboring urban centers remained strong throughout this year. 
Conversely, until November 2020 there were only weak or no correlations between rural areas, even for counties 
which are geographically close to each other. After November 2020, these correlations increased in strength and 
became comparable to those between urban counties. This behavior can also explain the percolation transition 
to a cluster spanning the largest part of the country at that time.

Methods
We analyze COVID-related data for the USA at the county level using the Johns Hopkins  dataset5,18. The main 
quantity we study is the number of new COVID cases. We use a 7-day window in order to alleviate problems 
with inconsistent data reporting, such as weekend vs weekday testing patterns. Starting on February 1 2020, we 
aggregate the total number of newly infected cases in a given county over the previous 7 days (including the 
given day) and calculate the daily average during this time period. We then convert this number to the average 
daily fraction of the population in each county that was infected during this week by dividing with the county 
population. In short, if zt(i) denotes the number of new cases in county i on day t, then for week T we calculate 
the fraction ZT(i) as:

where pi is the county population. We remove 697 counties with a population less than 10,000 because a small 
change in the number of cases in a small population can lead to large fluctuations, which results in a total of 2411 
counties in our calculations. In this way, we create weekly maps for the infection rates of each county Zt(i) for 
the time period from February 1, 2020 to February 1, 2021. Some of the resulting maps are shown in Fig. 1a. As 
expected, these maps indicate that the spatial coverage of the virus is not uniform but incidents are geographi-
cally clustered. These clusters change significantly with time, both in terms of their size and location. Our main 
goal here is to quantify these clusters through a spatial correlation  analysis19, so that we can detect the evolution 
of spreading and the potential impact of restriction measures.

We start by detrending the data for the correlation analysis. We use the differences  method20 where we con-
sider the difference of Z between two consecutive weeks T and T − 1, so that

In practice, XT(i) measures the extent to which the relative number of cases increased or decreased on a given 
week compared to the previous week. Figure 1b shows maps of the values of XT(i) at different times.

We start by constructing a set N(r) which includes all pairs of counties which are at a distance r from each 
other, as measured between the centroids of two counties. Because of the natural inhomogeneity in the geographi-
cal distribution of the counties, N(r) includes pairs of counties within a distance [r,r + dr] from each other. In 
practice, we bin the distances logarithmically, so that dr increases by a factor 1.05 between successive bins after 
fixing the first bin in the range [0 km, 75 km]. The pairs (I, J) in this set represent a vector from county I, at the 
tail of the vector, to county J, at the head of the vector. When we average over the entire country, the set includes 
vectors in both directions, so that both (I, J) and (J, I) appear in the set. When we study correlations at a local 
level, such as in Northeast, then we restrict the set to those vectors whose tail originates in this area. For example, 
if counties I and J are in the Northeast and county K is in the South, then the set would include pairs (I, J), (J, 
I), (I, K), but not (K, I). In the following, for each pair of counties  (s1,  s2) in N(r) we denote the tail county as  s1 
and the head county as  s2. The number of pairs in the set is denoted by |N(r)|. There is no explicit dependence 
on time in our calculations and we use information only of a given snapshot in time, typically corresponding to 
the duration of a week T. We then repeat the correlation calculations at different times. We define the average 
value of XT for all counties  s1 that appear at the head of pairs in N(r) and for those counties  s2 that appear at the 
tail of those pairs as follows:

These two values coincide when we consider the entire country, but they are different when we focus on a 
smaller geographical area, as described above. We can define the corresponding variances as:
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Finally, we consider the equal-time two-point correlation function on week T, CT(r), which is the average 
of the correlation of XT over all counties at distance r. For the calculation of CT(r) we use the following formula

where the average values m and variances σ have been defined in Eqs. (3) and (4).
The function CT(r) in Eq. (5) is an indicator of how correlation decays with distance on week T as we move 

away from a given point in  space21. The correlation length, ξ, is then defined as the minimum distance where 
this function assumes a value of 0, i.e. CT(ξ) = 0 22. Long-range correlations are manifested by a large correlation 
length, while ξ vanishes for a random distribution. In the context of an epidemic process, long-range correlations 
are a hallmark of virus transmission through travel between distant  places23. If travel was severely limited and 
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Figure 1.  Evolution of COVID-19 spreading in the continental US. (a) Average daily rate of new infections 
from April to December 2020 for the first week of the month at the county level. (b) Maps of the quantity XT(i), 
which corresponds to the change in the daily rate of infections between two consecutive weeks in the beginning 
of each month. Red color indicates an increase compared to the previous week and blue color indicates that the 
rate decreased.
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people could only interact locally then the evolution of the disease at different areas would be largely independent 
of each other which would be manifested by weak correlations and small correlation lengths.

Results
Use of correlation functions to describe the spatial extent and intensity of epidemics. The 
evolution of the COVID epidemic has been highly inhomogeneous and did not follow spatial and temporal 
patterns of typical infectious  diseases24. The origin of the outbreak in large cities, which receive a lot of travel 
from other countries, combined with the implementation of quarantine and other travel restriction measures at 
relatively early stages of the outbreak resulted in the general absence of infected clusters persistently spanning 
a significant fraction of the  country25. To study the extent of these areas we calculate the correlation function 
C(r) as a function of the distance r at different times, where we include the 2411 counties with a population 
greater than 10,000 people. As expected, correlation values start at C(0) = 1 and decay to 0, which also defines 
the correlation length ξ as the shortest distance where C(r) = 0. In Fig. 2a we calculate C(r) for the first week 
of each month from March 2020 to February 2021. It is obvious that correlation varies significantly over time, 
both in terms of the local correlation strength at small distances (typically less than 100 km) and in terms of the 
correlation length. In Fig. 2b we focus on some of the strongest correlations and use double-logarithmic axes to 
highlight their different behavior. For example, during July 2020 the local correlations are weak but persist over 
a distance of 800 km, while in April 2020 the local correlations were much stronger and decayed faster with a 
correlation length of 400 km.

We found that the epidemic patterns changed significantly over time, as shown in Fig. 2c where we isolate 
four C(r) curves per plot for clarity. In the first phase of the epidemic, from March to June 2020, correlations 
fluctuated around zero with the striking exception of April when local correlations were strong and decayed 
fast. Local correlations were higher in the next time interval, from July to October 2020, but remained relatively 
weak. However, the correlation length increased significantly during this time. While the relatively low infection 
numbers during summer seemingly suggest that the country is “recovering” from the pandemic, the increasing 
correlation length tells us the opposite—that the virus is silently taking root everywhere, which will lead to the 
eventual outbreak in the next phase. This indicates that the correlation length is not just a different way to look 
at the raw numbers but can reveal underlying phenomena that can serve as warning signs to policymakers not 
to relax restrictions too early. Indeed, during the next phase of the epidemic, from November 2020 to February 
2021, the local correlations increased significantly and the correlation length remained relatively large. In a fast-
spreading epidemic, the expectation is that correlations become strong and extend over long distances, especially 
if they are facilitated by long-range  travel26. Here, we see that after an initial peak in April 2020, it took many 
months for correlations to increase and to remain strong over a long period of time.

Importantly, these curves are averages over all US counties but the evolution of the epidemic may be differ-
ent at different regions of the country. In Fig. 2d we calculate correlations in each of the four Census Bureau-
designated regions, i.e. Northeast, Midwest, South, and  West27. In the examples shown, local correlations and 
correlation lengths vary quite significantly in different regions and while the Northeast dominates in May, the 
West exhibits much stronger correlations in August.

The evolution of the C(r) curves carries a lot of information and we need some way to probe this information 
and compare different instances in time. If the functional form remained the same throughout this process then 
we could compare any parameters that would appear in a model that could describe the evolution (for example, 
if these curves could be described by a power-law we could compare the power-law exponents). As can be seen 
in the various plots of Fig. 2, the dependence of C(r) on r cannot be described by the same form. For example, in 
Fig. 2b some curves can be described by a modified power-law while others are fitted better by an exponential 
form, but there is not a uniform description over the entire time interval. Therefore, we choose to character-
ize this behavior by comparing both the strength of ‘local’ correlations, i.e. the value of C(r) at small distances 
around 50 km, and the spatial extent of correlations through the value of the correlation length. In a sense, these 
two parameters capture the basic trends that we are interested in these plots: all curves decay from a given value 
at C(r < 50 km) down to C(ξ) = 0. Even though we lose the exact form of the decay, these two points define in 
very broad terms the extent and strength of the correlation function and here we are not concerned about the 
curvature of the line in the intermediate regime. The combination of these two parameters can already inform on 
whether counties tend to belong to large clusters and whether the influence within these clusters is strong or weak.

Correlation function encapsulates the temporal evolution of the disease. How do we character-
ize the COVID evolution to determine if spreading expands geographically or if it shrinks? As discussed above, 
the correlation length itself is important but is not fully adequate. Even if ξ is large, it is possible that correlations 
in shorter distances could be weak and, as a result, less influential. In Fig. 3a we plot the correlation function con-
tinuously from Feb 1, 2020 to Feb 1, 2021 in weekly increments. The correlation length is marked as the distance 
where C(r) becomes zero on each week. The correlation length fluctuates significantly but we can distinguish 
two peaks in April and July, followed by a rather constant high value from October to January. Time periods 
with stronger local correlations are identified by red color. Even though many of the correlation values may seem 
small, these are averages over the entire country where spreading may be very inhomogeneous.

The consideration of these two parameters allows us to plot the ‘trajectory’ of the epidemic in a phase space 
of C(r < 50 km) and ξ (Fig. 3b), where we plot these two quantities continuously for different points in time. To 
conceptualize this plot we can split the phase space into four quadrants. When C(r) is small, i.e. at the bottom 
quadrants, correlations are weak. The large correlation lengths found at the quadrants at the right, indicate that 
epidemic can spread easily across large distances. From the diagram in Fig. 3a we can see that in April 2020 
there was a significant increase in local correlation strength but correlation length was still relatively small. The 
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trajectory returned close to the origin (indicating a random distribution of cases) until the end of summer, when 
both the intensity and correlation length increased significantly. The trajectory has remained at the area of the 
upper right quadrant from October 2020 until the end of the year, which indicates extended correlations over 
space. Starting in January 2021, both the correlation length and the correlation strength decreased considerably, 
with an abrupt increase of C(r < 50 km) at the beginning of February 2021.

These trajectories can shed light on the different evolution of spreading in different areas of the country 
(Fig. 3c). For example, the correlation length in the Northeast has remained relatively short (this region is also 
the smallest) but the local correlation strength increased significantly in April 2020 and January 2021. This shows 
that at the early stages of the epidemic there was a strong cluster in this area but it remained localized. In contrast 
to that, the correlation length in the West was consistently large since June 2020, with spikes of the intensity 
between September 2020 and January 2021. The behavior in the Midwest was also different. The trajectory there 

Figure 2.  Decay of the correlation function with distance. (a) The correlation function as a function of the 
distance, averaged over all counties in the United States. Different curves correspond to different instances of 
time, for the first two weeks of the month from March 2020 to February 2020. (b) Same plot as in (a) in double 
logarithmic axes for select months. (c) For clarity, we split the plot in (a) into three different time intervals and 
focus on four months within these intervals. (d) Comparison of the correlation functions, averaged over all 
counties within the four US regions, for May 2020, August 2020, and January 2021.
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remained close to the origin from the beginning until October 2020 when both the intensity and correlation 
length increased. Notice that in all regions the correlation length in November 2021 grew larger, which is an 
indication that local clusters joined into a larger cluster spanning the majority of the country.

Cities are the main drivers of the epidemic. In typical epidemic processes, it is expected that correlations are 
higher in areas geographically close to each other, since the main method of transmission is close contact 
between  individuals28. Travel represents another important mechanism which contributes to long-range corre-
lations, where now the underlying mechanism is the direct transfer of the virus over a large distance through air 
or ground  travel29. To determine the contribution of travel we calculated the correlation as a function of the dis-
tance in the case of urban areas vs rural areas. Here, we set an arbitrary criterion for an urban county as one with 
a population larger than 250,000 people and a rural county with a population less than that. Using this threshold, 
there are 273 urban and 2138 rural counties. We then calculate the correlation function for the new active cases 
between urban counties only, between rural counties, or between rural and urban. In Fig. 4a, we plot C(r) for 
these three cases for the week of May 1, 2020. There are practically no correlations between rural areas even for 
short distances and there is only weak correlation between rural and urban areas, and this is true only for short 
distances. In contrast, correlations between urban places are much higher for distances up to roughly 300 km. 
This is an important observation because at that time air travel was severely limited and passengers were heavily 
screened, while car transportation was not restricted. Therefore, there are two possible explanations. Assuming 
that the first significant center of the epidemic was located in the urban NYC area, either virus transmission was 
facilitated through car transportation from city to city or the city lifestyle made the virus spread easier in an 
urban environment and cities presented similar behavior independently of each other. Interestingly, in Fig. 4a 
correlations between urban places that are farther than 300 km become largely uncorrelated, which favors the 
idea of local transmission through ground transportation.

Similar results were obtained at other times, such as in August 2020 shown in Fig. 4b, when the differ-
ence between cities and city-rural areas was more pronounced. Correlations between urban counties remained 
stronger. However, travel had increased during summer and the restriction measures were relaxed, which in the 
plot is manifested by smaller peaks at 300 km and 600 km. In January 2021 (Fig. 4c), the differences vanished and 

Figure 3.  Time evolution of the correlation function. (a) The value of the correlation function is shown as a 
function of the date (x-axis) and distance (y-axis). Red and green colors correspond to positive values while 
blue colors indicate negative values. The line that separates the two regimes describes the correlation length as a 
function of time. (b) The ‘trajectory’ of the epidemic is plotted by the values of local correlations C(r < 50 km) vs 
the correlation length, ξ, at different times for the entire country. (c) Same trajectory plots as in (b) for the four 
regions of US.
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correlations were practically independent on the urban character of the counties. At that time, the correlation 
length increased to 800 km indicating again a global outbreak covering the largest part of the country.

To explore the time evolution of these observations we calculated the average correlation < C(r) > for the 
three cases (urban-urban, urban–rural, and rural–rural) over three distance intervals, r < 250 km (Fig. 4d), 
250 km < r < 1000 km (Fig. 4e), and r > 1000 km (Fig. 4f). When we consider short distances the correlation 
between urban areas is consistently higher than in the other two cases. In fact, from February to October 2020 
the spreading in rural areas was uncorrelated when rural areas were involved which shows that the epidemic was 
largely contained in urban environments. After October 2020, correlations became stronger in all cases for short 
distances, and the behavior was consistent independently of the rural or urban character of the area.

In the case of intermediate distances (Fig. 4e) the value of < C(r) > mostly fluctuates around 0 with a small 
peak of inter-city correlations from June to August 2020. This plot supports the idea of ground transportation 
transmission since long road trips are much more rare than local road trips and in these distances air travel is 
typically the preferred mode of transportation. For distances longer than 1000 km, the inter-city correlations are 
consistently zero or weakly anti-correlated. This shows that not only spreading in the west coast was different than 
in the east coast but in general they had opposite trends (notice that these are averages over the entire country 
and it is possible that locally correlations may be much stronger or weaker than these averages).

As shown above, in November the average correlation length for the entire country was of the order of 
800–1000 km which is comparable to the size of the system. For reference, a 1000 km-radius circle centered 
in the middle of the continental US would cover roughly half of the country (the distance from New York to 
Los Angeles is around 4000 km). This is a strong indication of a widespread epidemic which approaches the 
percolation threshold.

Percolation and cluster analysis of the epidemic. To determine how close the epidemic came to per-
colating throughout the country and when this happened we performed a clustering  analysis30. For a given point 
in time, we consider all clusters created by connecting counties whose weekly difference ΔZT(i) exceeds a given 
threshold. We create two types of clusters, depending on whether these differences are positive or negative. Posi-
tive clusters are areas where the epidemic has increased significantly over the previous week and negative clus-
ters are areas where it decreased. We determine the size of a cluster by the total geographic area covered by the 
counties that comprise this cluster. Figure 5a shows that the largest clusters were relatively small and localized 
until September 2020, which was followed by a rapid increase in the size of the positive cluster which within two 
months covered an area of around 4.5 ×  106  km2 (the total area of the 48 contiguous states is roughly 8 ×  106  km2). 

Figure 4.  Spatial correlations between areas of different population (a–c) Correlation function C(r) between 
urban–urban, urban–rural, and rural–rural counties, as a function of the distance at three different times. (d) 
Average correlation function between urban–urban, urban–rural, and rural–rural counties which are within 
250 km from each other, as a function of time. (e) Same plot as in (d) for county distances between 250 and 
1000 km. (f) Same plot as in (d) for distances longer than 1000 km.
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This cluster was dissolved within two weeks and its size remained small with an exception of a smaller peak dur-
ing January 2021. The size of the negative cluster remained small until after the large positive cluster was formed 
in November 2020. It is interesting that the two processes of positive or negative change above a given threshold 

Figure 5.  Clustering analysis of the correlations (a) Total area of the largest clusters as a function of time. 
The red line corresponds to clusters of increasing number of cases and the blue line corresponds to clusters of 
decreasing cases. (b) The maps show the two largest clusters with positive rate (red) and the two largest clusters 
of negative rate (blue) at different times. (c) ‘Persistence’ maps. These maps show the counties which remained 
in positive clusters for more than half of the time period indicated on the map.
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are not completely synchronized and cannot fully explain each other, i.e. the extent and location of the negative 
clusters do not necessarily follow the positive cluster. This can be seen in the largest decrease of the positive clus-
ter size compared to the smallest increase of the negative cluster in December 2020, as well as the second peak of 
the negative cluster in January 2021 which was not preceded by a positive cluster of comparable size.

In the maps of Fig. 5b we present the two largest positive and the two largest negative clusters at different 
times. In agreement with previous observations the clusters from April to October 2020 are relatively small. In 
October 2020, the clusters started getting bigger to the west and south of the country and in November 2020 
there was a transition to a country-spanning positive rate cluster. This cluster started dissolving in December 
2020, when the middle part of the country was connected through a negative rate cluster leaving connected areas 
of positive rates at the east and west parts of the country.

Clustering can also be used to identify areas of the country where the epidemic persisted the longest time as 
part of a large cluster. For this, we considered all the counties which belonged to a cluster of at least 10,000  km2 
for a minimum of 1.5 months during a three-month period. The results in Fig. 5c show that from April to August 
2020 there were only few isolated counties involved in the largest clusters. Contrary to that, a large part at the 
north of the country was consistently included in large clusters during the period of September to November 
2020. For the next time period, cases were consistently increasing throughout the southern part of the country 
and mainly in the southwest. In general, we see that the epidemic has been spreading quickly but has not persisted 
over extended areas for more than a few months, perhaps as a result of implementing restriction measures when 
active cases were increasing at a local level.

Discussion
One loose interpretation of a correlation-based spatial cluster is that the virus may be transmitted more easily 
within counties in this cluster, compared to counties whose active cases are  uncorrelated31. This is a phenom-
enological manifestation of the underlying transmission mechanisms, even though these mechanisms are not 
explicitly  known32. This macroscopic evaluation of the epidemic footprint can identify areas of a country where 
spreading is highly correlated and since spatial correlations can exist almost independently of the current level 
of the number of active cases, they can potentially be used as warning signals. For example, a careful evalua-
tion of Fig. 3 shows that the correlation length has grown significantly a few weeks before the number of cases 
has increased. However, this observation has not been verified in all cases and it is very difficult at this stage to 
determine whether correlations can be used as true predictors of the future trajectory of the epidemic, especially 
given the many and different local restriction measures.

Using spatial statistical analysis, our results indicate that the COVID-19 epidemic in the continental USA 
went through different phases. The first localized clusters started dissolving quickly, which indicates that there 
was not any significant long-distance transmission during spring 2020. By the summer of 2020, many local 
clusters started emerging whose size was continuously increasing and by November 2020 they had merged into 
a country-spanning cluster. This formation was short-lived and even though local correlations remained strong, 
the global correlation length started decreasing.

A similar approach can be applied to smaller areas, such as regions or states. We have created an online tool, 
where the user can select individual states for further analysis. This analysis could provide additional informa-
tion on how the epidemic evolved at a smaller geographic scale and a possible extension of this work is to relate 
differences in virus spreading with state-level mitigation measures.

Data availability
The COVID-19 datasets are available under a CC by 4.0 license and were downloaded from the "COVID-19 Data 
Repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University", https:// 
github. com/ CSSEG ISand Data/ COVID- 19.
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