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Connectivity correlations play an important role in the structure of scale-free networks. While several
empirical studies exist, there is no general theoretical analysis that can explain the largely varying
behavior of real networks. Here, we use scaling theory to quantify the degree of correlations in the
particular case of networks with a power-law degree distribution. These networks are classified in terms of
their correlation properties, revealing additional information on their structure. For instance, the studied
social networks and the Internet at the router level are clustered around the line of random networks,
implying a strongly connected core of hubs. On the contrary, some biological networks and the WWW
exhibit strong anticorrelations. The present approach can be used to study robustness or diffusion, where
we find that anticorrelations tend to accelerate the diffusion process.
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The topological structure of complex networks is largely
determined by the way in which the constituent units are
interconnected. Correlations in the connectivity of com-
plex networks have been proved to be important and have
been used to explain the functionality, robustness, stability,
and structure of networks from biology [1] and sociology
[2] to computer science [3]. A study of the correlation
profile in a network of protein-protein interactions revealed
that links from hubs to nonhub nodes are favored [1], a
result with consequences for the stability and the modu-
larity in biological networks. In the case of social net-
works, Newman has shown that most of them are
assortative (i.e., hub-hub correlations dominate the system)
[2], and Colizza et al. demonstrated the ‘‘rich-club’’ phe-
nomenon where all hubs tend to form a connected cluster
[4]. As a result, social networks are more difficult to
immunize, and diseases can spread fast.

Recently, it was also shown that hub anticorrelations,
i.e., the tendency of the hubs not to be directly connected
with each other, give rise to fractal networks [5], such as
the undirected (symmetrized) WWW, the protein homol-
ogy network [6], and other biological networks. On the
contrary, when there is a large probability of direct hub
connections, the resulting networks, such as the Internet,
the cond-mat coauthorship, and other social networks are
nonfractals [7]. In this category falls also the random
configuration model [8,9].

An important topological feature of complex networks is
the degree distribution P�k�, where k is the number of links
for a given node. Although the form of P�k� has a direct
influence on the network properties, it cannot convey all
the information for the network structure. Thus, two net-
works can have the same distribution P�k� but with com-
pletely different topologies, determined by the presence of
degree correlations. This structure can be captured by the
probability P�k1; k2� that two nodes of degree k1 and k2 are
connected to each other, and by quantities derived from
P�k1; k2�, such as the Pearson coefficient r, the average
degree of nearest neighbors knn, etc.

Despite their importance, a theoretical framework to
describe and characterize degree correlations in scale-
free networks is still missing. Here, we find that the degree
correlations in the studied scale-free networks can be
characterized in terms of a correlation exponent �, which
we calculate using a renormalization approach. This allows
us to propose a classification of a set of dissimilar networks
according to the degree of correlations into a small number
of different classes in a ‘‘phase diagram.’’ For example,
biological networks and the WWW are in the strong anti-
correlations part of the diagram, while social networks and
the Internet are clustered near the region of random net-
works. We show how we can use these ideas to explore
more network properties, such as diffusion and robustness,
which depend on the degree of correlations in the network.

We start by recalling the renormalization of a network
under a scale transformation. The renormalization proce-
dure tiles a network according to the box-covering algo-
rithm [10], with the minimum number of boxes where the
maximum distance in any box is less than ‘B. Each box is
subsequently replaced by a node, and links are established
between these new ‘‘supernodes’’ if at least one node
included in a box was connected to any node of the other
box. These boxes are treated as the nodes of the renormal-
ized network. Renormalization is a reliable method for
determining how the network behaves at different length
scales. Self-similarity is then obtained if the network struc-
ture remains invariant under the renormalization.

Alternatively, we can retain multiple links between the
boxes when we renormalize a network [11]. As we show
below, though, this is not a strong effect, mainly due to
preservation of the self-similar structure under renormal-
ization. In contrast, during a random rewiring process,
degree correlations are destroyed, but bias is introduced
if multiple links are forbidden.

We use renormalization and scaling theory to determine
the form of P�k1; k2�. Since the self-similarity of a scale-
free network requires the invariance of the degree distri-
bution P�k�, a power-law distribution of P�k� � k��,
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where � is the degree exponent, is the only form that can
satisfy this condition [5]. Taking this idea one step further,
it is interesting to clarify whether correlations between
degrees, as expressed by the joint degree distribution
P�k1; k2�, also remain invariant. In Fig. 1, we present an
example of this distribution before and after renormaliza-
tion for the WWW and the Internet at the router level
(similar results are derived for other networks, as well).
Allowing multiple links between boxes does not signifi-
cantly modify the result. The statistical similarity of the
corresponding plots suggests the invariance of P�k1; k2�.
Accordingly, this suggests that the k1 and k2 dependence
can be separated, and the behavior of the tail of the joint
degree distribution is

 P�k1; k2� � k
����1�
1 k��2 �k1 > k2�: (1)

The value of the first exponent �� 1 in Eq. (1) is obtained
from the density conservation law:

R
P�k1; k2�dk2 �

k1P�k1� � k
����1�
1 . Equation (1) is also consistent with

the known result for completely random networks

 P�k1; k2� � k1P�k1�k2P�k2� � k
1��
1 k1��

2 ; (2)

i.e., the exponent � for these networks is �rand � �� 1, as
expected from the symmetry in this case. Equation (1) is
also consistent with previous findings in Ref. [1]. The
probability distribution for the neighbor connectivity in
the yeast protein interaction network was there shown to
behave differently for low-degree nodes, where the
k-dependence was k1��, and for large-degree nodes, with
a k�� dependence. Using Eq. (1), we can see that integrat-
ing over k2 for low-degree nodes (k1 > k2), we retrieve the
k1�� dependence. For the case of hubs, where integration is
over k1, the dependence on the degree is k��, and for the
yeast protein interaction network, we have calculated that
� � � (see Fig. 3). These results are in full agreement with
the observed behavior in [1].

Next, we introduce a scale-invariant quantity Eb�k� to
simplify the estimation of �, even for small networks. We

are motivated to introduce this quantity by asking whether
a node is significantly linked to more connected nodes; i.e.,
a node considers another node as a ‘‘hub’’ if its degree is
much larger than its own. We define the ratio,

 Eb�k� �

R
1
bk P�kjk

0�dk0R
1
bk P�k

0�dk0
; (3)

as the measure of a node’s preference to connect to neigh-
bors with degree larger than bk (b is an arbitrary positive
number, and large b corresponds to the identification of the
hubs) [12]. From the scaling of Eb�k� with k, we are able to
obtain the exponent � in a simpler way than usingP�k1; k2�,
which presents more fluctuations than the average quantity
Eb�k�. The conditional probability is P�kjk0� � P�k; k0�=R
P�k; k0�dk � P�k; k0�=k01�� � k����1�k0��1�����. We

find for a scale-free distribution,

 Eb�k� � k
������: (4)

We have verified that the scaling of Eb�k� remains invariant
under renormalization. The same scaling exponents are
recovered for the renormalized networks, even when mul-
tiple links are allowed between two boxes (Fig. 2 inset). In
the latter case, the renormalized nodes have in general
larger degrees, which means that deviations appear in
nodes of smaller degree. Additionally, � was found to be
independent of the value of b. We notice that other quan-
tities derived from P�k1; k2� may not be invariant under
renormalization, such as r or knn, and therefore are not
suitable to distinguish fractal from nonfractal networks.

In Fig. 2, we present the behavior of Eb�k� for the
WWW, protein homology, Internet (router level), and
cond-mat authorship. The existence of a scaling relation
over a k range, combined with the invariance of this curve,
support Eq. (4) and the form used for P�k1; k2� in Eq. (1).
The WWW and the protein homology network have been
shown to have a fractal topology. The slope of Eb�k� with k
is small or negative in these cases with values of � � 2:5
and � � 2:4, respectively. This behavior is in contrast with
the two nonfractal networks in the figure, i.e., the Internet
at the router level and the cond-mat coauthorship network,
where Eb�k� increases almost linearly with increasing k.
For these networks, we find that � � 1:2 and � � 1:6,
respectively.

In order to interpret the values of �, we now turn to the
renormalization scheme [5]. After renormalization, the
number of nodes N in the network and the degree of a
node k scale with ‘B as power laws with fractal exponent
dB and degree exponent dk, respectively (we use a prime to
describe quantities measured in the renormalized net-
work):

 N ! N0 � ‘�dBB N; k! k0 � ‘�dkB k: (5)

If dB and dk are finite, the network is fractal. If dB ! 1
and dk ! 1 (or equivalently the decay is exponential or
faster), the network is not fractal.

FIG. 1 (color online). The joint degree distribution P�k1; k2� of
WWW (top row) and Internet at the router level (bottom row)
before renormalization (left), after renormalization forbidding
multiple links (center), and including multiple links (right).
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After tiling the network with boxes of diameter ‘B, each
of these boxes have one unique local hub (i.e., the largest
degree node in the box). Considering all possible pairs of
boxes, we introduce the probability E�‘B� that there exists a
direct connection between the two hubs of any two boxes.
We have shown (see, e.g., Figs. 2e, 3d of Ref. [7]) that the
probability E scales with the length ‘B as

 E �‘B� � ‘
�de
B : (6)

Below, we relate the exponent � to the hub-hub repulsion
through the hub correlation exponent de, which is crucial
for fractality.

The conservation of links in the renormalized network
leads to the expression

 NP�k1; k2�dk1dk2 � E�‘B�N
0P0�k01; k

0
2�dk

0
1dk

0
2: (7)

Using Eqs. (1) and (5)–(7), we get the relation
‘dBB ‘

de
B ‘
�3�����dk
B � 1 which finally leads to

 � � 2� de=dk � 2� ��� 1�
de
dB
; (8)

where we have substituted the value � � 1� dB=dk. This
relation of � with de shows that correlations between the
hubs of the boxes determine the correlations for all de-
grees, in accordance with the invariance under
renormalization.

The direct determination of � through the slope of Eb�k�
vs k enables us to construct a ‘‘phase diagram’’ in the plane
(�, �), shown in Fig. 3. This plot is classifying the studied

networks in classes according to their degree of correla-
tions, even though they correspond to dissimilar systems in
biology, sociology, or technology.

As shown in Eq. (2), the exponent for a random network
corresponds to the random line �rand � �� 1, which is
verified in the plot for different � values of the configura-
tion model. In random network models, correlations arise
because links are selected for connecting with each other
equiprobably, so that the probability of two hubs being
connected is large [13]. Thus, networks that are close to the
line �rand � �� 1 exhibit hub-hub correlations. The ran-
dom line separates the diagram in two main parts:
(a) above the line where the hub correlations tend to
become weaker, and (b) below the line where networks
have even larger correlations (hubs are connected to each
other with even higher probability than the one correspond-
ing to a randomly created structure).

In the diagram, the social networks and the Internet at
the router level are clustered around the line �rand � �� 1.
This is an indication that there is a strongly connected core
of hubs in these systems, consistent with previous studies.
The biological networks and the WWW, on the other side,
are far away from the random line. This implies that there
is a richer structure in these networks with hubs separated
from each other. The distance in the plot from �rand quan-
tifies how different from randomness the network structure
is, in terms of degree correlations.

As � increases from �rand, we expect that at some point
the networks will become fractal, due to increased hub-hub
correlations. The point of emergent fractality is found
through Eq. (8), where the borderline case of dB ! 1
yields � � 2. Indeed, we have verified via direct measure-
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FIG. 2 (color online). Plot of Eb�k� versus k for the WWW,
protein homology, Internet at the router level, and cond-mat
network. Different topologies correspond to different scaling
behavior with the degree k. Inset: Plot of Eb�k� versus k for
the Internet, the renormalized Internet network without multiple
links between two nodes, and the renormalized Internet network
allowing multiple links between two nodes. The data have been
vertically shifted in order to show the invariance. For renormal-
ization, we use the MEMB method [10] with rB � 3, and b � 3.
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FIG. 3 (color online). Classification of scale-free networks
[15]. We use the correlation exponent � in order to quantify
the degree of correlations and the fractality of a network, as a
function of �. The line �rand � �� 1 corresponds to a com-
pletely random network structure. The line � � 2 separates
fractal (� > 2) from nonfractal networks (� � 2), while the
line � � � describes a fractal tree [7]. The four schematics
illustrate networks where hub correlations are stronger than in
random networks (area I), weaker than random but nonfractal
(area II), nonfractal according to the minimal model of [7] (� �
2), and fractal (area III).
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ments of dB that all the networks above the line � � 2 in
Fig. 3 are fractals.

Thus, starting from �rand, we can separate the phase
space into areas where the hub correlations are stronger
than in random models (area I) or weaker than that (areas II
and III). The weak correlation areas II and III are further
divided by the line � � 2 which determines whether the
anticorrelations are strong enough to result in a fractal
network (III) or not (II).

An immediate result from this diagram is the different
position of the Internet at the router level compared to the
AS level [14]. Although the degree distribution of these
two networks is the same (� � 2:2), the correlation ex-
ponent � reveals that there are more hub-hub connections
at the router level, similar to the case of a random network.
Contrary to that, the AS level exhibits a structure with less
correlations deviating from that of a simple random model.
This difference may hint on different design principles or
requirements at varying levels of the Internet.

The above approach can be directly applied to explore
many interesting properties, such as network robustness,
synchronization, or diffusion processes. Until now, theo-
retical studies have been limited to using the uncorrelated
version of P�k0jk� � k0P�k0�. The introduction of Eq. (1)
enables us to substitute this form and generalize the prob-
lem for networks with known correlation exponents. For
example, we can study the effect of correlations on diffu-
sion by starting with the master equation for the density of
particles ��k; t� on nodes with degree k at time t

 

d��k; t�
dt

� ���k; t� � k
X1

k0�kmin

P�k0jk�
��k0; t�
k0

; (9)

and substitute P�k0jk� with a form derived through Eq. (1).
The Laplace transform of the above equation leads to a
Fredholm integral equation of the second kind with sepa-
rable kernel that can be solved analytically. We define the
quantity K�t� � hkx�t�i1=x, where x � �� 1� �, and K�t�
serves as a measure of the diffusing particles preference to
larger or smaller degrees k. The analytical result for �x�t�,

defined as �x�t� � hkxi�t�, is �x�t� � �1 � ��0 � �1�e
�ct,

where �1 � ��� 2�=��� 1� and �0 � ��� 1�=� are
constants depending on � and �, while c � ���
1�2=	��� 2��2�� ��
. The result for K�t� is displayed in
Fig. 4 for networks with � � 2:75. The exponential con-
vergence to the asymptotic steady-state configuration de-
pends on the value of c, which increases with the exponent
�. Networks that are close to the random case �rand � ��
1 require longer times for reaching the equilibrium state
and the diffusing particles prefer to occupy larger degree
nodes. A larger � value enhances anticorrelations in the
network, and the particles move faster occupying smaller
degree nodes on the average. We can infer, thus, that
stronger correlations tend to speed up the diffusion process.
The mechanism behind this behavior is as follows: when
the hubs are directly connected to each other, the particles
tend to remain localized in the neighborhood around these
hubs, so that it takes longer for them to explore wider areas.
On the contrary, when hub anticorrelations are important,
the particles spend most of their time in the intermediate
areas which are formed by smaller degree nodes and which
connect indirectly the hubs to each other.
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FIG. 4. Influence of correlations on diffusion, for scale-free
networks with � � 2:75. The presented � values correspond to
different areas in Fig. 3. Decreasing hub-hub correlations (top to
bottom) leads to faster converge towards equilibrium; i.e., dif-
fusion is accelerated.
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