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Transport is an important function in many network systems and
understanding its behavior on biological, social, and technological
networks is crucial for a wide range of applications. However, it is
a property that is not well understood in these systems, probably
because of the lack of a general theoretical framework. Here, based
on the finding that renormalization can be applied to bionetworks,
we develop a scaling theory of transport in self-similar networks.
We demonstrate the networks invariance under length scale renor-
malization, and we show that the problem of transport can be
characterized in terms of a set of critical exponents. The scaling
theory allows us to determine the influence of the modular
structure on transport in metabolic and protein-interaction net-
works. We also generalize our theory by presenting and verifying
scaling arguments for the dependence of transport on microscopic
features, such as the degree of the nodes and the distance between
them. Using transport concepts such as diffusion and resistance,
we exploit this invariance, and we are able to explain, based on the
topology of the network, recent experimental results on the broad
flow distribution in metabolic networks.

metabolic networks � modularity � protein-interaction networks

Transport in complex networks is a problem of much interest
in many aspects of biology, sociology, and other disciplines.

For example, the study of metabolic f luxes in organisms is crucial
for a deeper understanding of how the cell carries its metabolic
cycle (1). The use of metabolic f lux analysis can provide impor-
tant cellular physiological characteristics by using the network
stoichiometry and predict optimal flux distributions that satisfy
a defined metabolic objective. Similarly, information flow be-
tween the molecules of a biological network provides insight for
both the network structure and the functions performed by the
network. Such an example is the concept of the ‘‘diffusion
distance’’ in a protein–protein interaction network which is used
to predict possible interactions between proteins, simply by
studying diffusion in the existing network (2). In food webs,
energy transfer between different levels of the web is crucial for
the organism survival, whereas spreading of a disease between
different organisms may affect the regular operation of the
equilibrated system. Moreover, applications of transport in
complex networks extend to a plethora of other systems, such as,
for instance, transport of information in the Internet, spreading
of diseases and/or rumors in social networks, etc. Despite its
significance, the laws of transport in such a complex substrate are
yet unclear compared with transport in random media (3). This
is due to the complexity added by the heterogeneous degree
distribution in such networks.

We study transport in real-world biological networks and via
a model, which possess both self-similar properties and the
scale-free character in their degree distribution. We explain our
results with theoretical arguments and simulation analysis. We
use approaches from renormalization theory in statistical physics
that enable us to exploit the self-similar characteristics of the
fractal networks and develop a scaling theory of transport, which
we use to address the effects of the modularity and the degree
inhomogeneity of the substrate.

Because of the existence of a broad degree distribution, transport
on a network is different when it is between two hubs with a large
number of connections k or between low-degree nodes (4). We
therefore characterize the transport coefficients by their explicit
dependence on k1, k2, and �, where k1 and k2 denote the degree of
two nodes (k1 � k2), separated by a distance � (distance is measured
by the minimum number of links, i.e., it is the chemical distance).
We study the diffusion time T(�;k1,k2) and the resistance R(�;k1,k2)
between any two nodes in the system. The dependence on k1 and
k2 is not significant in homogeneous systems, but is important in
networks where the node degree spans a wide range of values, such
as in biological complex networks. In fact, this dependence is critical
for many other properties as has been already shown for e.g.,
fractality, where traditional methods of measuring the fractal
dimension may fail because they do not take into account this
inhomogeneity (5).

Modularity is one of the most important aspect of these
networks with direct implications to transport properties. Here,
we quantify the modular character of complex networks accord-
ing to our box-covering algorithm and reveal a connection
between modularity and flow. Our results are consistent with
recent experiments and metabolic f lux studies, and provide a
theoretical framework to analyze transport in a wide variety of
network systems.

Metabolism Modeling. In metabolism modeling, there exist three
main approaches (6). (i) The most detailed analysis includes
dynamic mechanism-based models (7), but in general it is very
difficult to incorporate experimental values for the needed
kinetic parameters. (ii) In the second approach one simplifies the
above models, and calculates the fluxes in a metabolic network
via flux balance analysis, which includes a family of static
constraint-based models (8). The limiting factor in this analysis
is that the problem is underconstrained (the number of unknown
parameters, i.e., the fluxes, is larger than the number of metab-
olite conservation equations) and cannot be solved uniquely. (iii)
Finally, a third approach that is widely used in metabolism
modeling is to ignore stoichiometry, and focus only on the
metabolites’ interactions without any thermodynamic aspects,
which leads to interaction-based models (9), i.e., undirected
networks where a link connects two nodes that participate in a
metabolic reaction. In this article, we follow this third approach,
and we use this interaction-based network to study transport on
this network by drawing an analogy between the metabolic
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network and a resistance network. If we represent the metabo-
lites as nodes that are linked through electrical resistances and
the current flow represents the flux, we can solve this problem
without additional constraints, and this solution may shed ad-
ditional light on the involved processes. The advantage of our
approach is that it can isolate the topological effect, and we can
address a broader aspect of transport in biological networks,
such as whether the observed flux inhomogeneity is because of
the network topology itself or because of the adopted flux
constraints. Moreover, this approach enables us to carry similar
studies for diffusion on such networks.

Modularity, Diffusion, and Resistance. In our work, we focus on two
different examples of biological networks, namely the Esche-
richia coli metabolic network (9) and the yeast protein-
interaction network (PIN) (10). We analyze the filtered yeast
interactome developed by Han et al. (10), which removes a large
number of false positives in high-throughput yeast two hybrid
methods [see supporting information (SI)]. Both networks have
been shown to have fractal properties and can be covered with
NB(�B) nonoverlapping boxes, where in each box the maximum
distance between any two nodes is less than �B, the maximum
distance in a box (5). For a fractal network of N nodes, NB follows
a power-law dependence on �B,

NB��B��N � �B
�dB [1]

and defines dB as the fractal (or box) dimension of a network.
These networks are also self-similar, i.e., their main properties,
such as the degree distribution, remain invariant under a renor-
malization scheme where each box is replaced by a (super) node
and links between boxes are transferred to the nodes of the
renormalized network (see e.g., the example in Fig. 1a for a
network G, tiled with �B � 3 boxes, that yields the network G�).
Many biological networks in the intermediate renormalized
stages were shown to have similar properties as the original
network.

This renormalization procedure also implies the presence of
self-similar modularity in all length-scales, which is a central
feature of these networks. The term modularity refers to the
existence of sets of nodes whose links are connected preferably
within this set rather than to the rest of the network. Thus, after
tiling a network for a given value of �B, we introduce a measure
of modularity for a network as

M��B� �
1

NB
�
i�1

NB Li
in

Li
out , [2]

where Li
in and Li

out represent the number of links that start in
a given box i and end either within or outside i, respectively.
Large values of M correspond, thus, to a higher degree of
modularity. Because the numerical value of M(�B) varies,
though, with �B, a more reliable measure is the modularity
fractal exponent dM, which we define through:

M��B� � �B
dM. [3]

The value of dM � 1 represents the borderline case that separates
modular (dM � 1) from random nonmodular (dM � 1) networks.
For a lattice structure, the value of dM is exactly equal to dM � 1.

In ref. 5, we had introduced a fractal network model where a
network grows by adding m new offspring nodes to each existing
network node, resulting in well defined modules. In that version
of the model, modules are connected to each other through x �
1 links, which leads to a tree structure. A generalization of this
model (presented in detail in SI) allows us to tune the degree of
modularity in the network by assigning a larger number of links
x � 1 between modules. Although for x � 1 all of the modules

are well defined, increasing x leads to the presence of loops and
to a progressive merging of modules, so that for large x values a
node cannot be assigned unambiguously in a given module and
modularity is destroyed. A straightforward analytical calculation
in this case leads to (see SI)

dM �

ln (2
m
x

� 1)

ln 3
. [4]

In this article, we use this value of dM for the model and calculate
dM for real networks to study the influence of modularity on
network transport.

In general, the problem of transport is expressed in terms of
T(�;k1,k2) and R(�;k1,k2), where T is the average first passage
time needed by a random walker to cover the distance � between
two nodes with degrees k1 and k2, respectively, and R represents
the resistance between these two nodes. For homogeneous
systems [with very narrow degree distribution P(k)] such as
lattices and regular fractals, there is no dependence on k1 and k2,
and the average is only over the distance �. One of the goals of
this work is to find the scaling of T and R in heterogeneous
networks with a broad degree distribution and self-similar
properties.

In the general case of a renormalizable network, T and R scale
in the renormalized network G� (the primes always denote a
quantity for the renormalized network) as

T��T � �B
�d�, R��R � �B

��. [5]

The exponents dw and � are the random walk exponent and the
resistance exponent, respectively. This equation is valid as an
average of T and R over the entire system, applying for example
in different generations when growing or renormalizing a fractal
object. Thus, this relation holds true for both homogeneous and
inhomogeneous systems.

For homogeneous systems, the above exponents dw and � are
related through the Einstein relation (3)

d� � � � dB, [6]

where dB is the fractal dimension of the substrate on which
diffusion takes place. This relation is a result of the fluctuation–
dissipation theorem relating spontaneous fluctuations (diffu-
sion) with transport (resistivity) and the underlying structure
(dimensionality) (3). Although the validity of this relation for
scale-free networks is not yet clear, our following analysis shows
that it also applies for these systems as well.

Renormalization and Scaling Theory. The renormalization proce-
dure on self-similar biological networks provides an as yet
unexplored method for estimation of the dynamical exponents in
these systems. Because such a network is left invariant after
substituting all nodes in a box with a single node, we can calculate
the transport properties on the networks during successive
renormalization stages. With this method, we can also study
transport in biological networks before (R and T) and after
renormalization (R� and T�). The results are presented in Fig. 1
for the yeast PIN, the E. coli metabolic network, and the fractal
network model with dM � 1.46 (tree, highly modular) and dM �
1.26 (network with loops and lower modularity). Fig. 1 b and c
suggest a linear relation between R� and R (T� and T) for a given
value of �B, so that the ratio R�/R (and T�/T) is almost constant
for all boxes in the system for this �B value. For a different value
of the box diameter �B, this ratio is again constant for all boxes
in the network but assumes a different value. We can plot the
values of this ratio as a function of the network size ratio N�/N
for different values of �B (Fig. 1 d and e). The data indicate the
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existence of a power-law dependence, and a comparison with the
model networks shows that the results are consistent with PIN
exhibiting a more modular structure compared with the meta-
bolic network.

Although, in principle, we can use our numerical results to
directly calculate the exponents dw and � through Eq. 5, this
method is not practical because the variation of �B is very small.
We can overcome this difficulty by using the system size N
instead, where we combine Eqs. 1 and 5 to get

T�

T
� �N�

N �d��dB

,
R�

R
� �N�

N � ��dB

[7]

Thus, the slopes in Fig. 1 d and e correspond to the exponent
ratios dw/dB and �/dB, respectively.

Notice also that the verification of the above equation through
Fig. 1 validates the relation in Eq. 5 for inhomogeneous systems.
The numerical values for the calculated exponents are shown in
Table 1. These ratios are consistent in all cases, within statistical
error, with the Einstein relation, Eq. 6.

Using these scaling arguments and the renormalization prop-
erty of these networks we next predict the dependence of both
R and T on the distance � between two nodes and their
corresponding degrees k1 and k2. After renormalization, the
network becomes smaller, so that both the degrees and the
distances in the network decrease. A distance � in G is scaled by
a factor �B in G�, so that �� � �/�B, whereas in earlier work (5),
it had been shown that the degree k of the largest hub in a box
transforms to a degree k� for the renormalized box, where k� �

�B

�d
k k, and dk is an exponent describing the scaling of the degree.

According to the result of Fig. 1 and Eq. 5, it follows,

R����; k�1, k�2� � �B
��R�� ; k1, k2� [8]

T����; k�1, k�2� � �B
�d�T�� ; k1, k2� . [9]

Using dimensional analysis (see SI), we can show that

R��; k1, k2� � k2
��dkfR � �

k2
1�dk,

k1

k2
� [10]

T��; k1, k2� � k2
d��dkfT � �

k2
1�dk,

k1

k2
� , [11]

where fR() and fT() are undetermined functions. In the case of
homogeneous networks where there is almost no k-dependence,
these functions reduce to the forms fR(x,1) � x�, fT(x,1) � xdw,
leading to the classical relations R � �� and T � �dw.

The scaling in Eqs. 10 and 11 is supported by the numerical
data collapse shown in Fig. 2. For the data collapse, we used the
values of the exponents � and dw as obtained from the renor-
malization method above (Table 1) confirming the scaling in
Eqs. 10 and 11.

The functions fR and fT introduced in Eqs. 10 and 11 have two
arguments, so we first need to fix the ratio k1/k2 and in the plot
(Fig. 2), we present different ratios using different symbols. We

B'

A A'

G

B

x=1
x=3x=1

x=2

G'a

b

c

d

e

‘
‘

‘
‘

‘

Fig. 1. Scaling of resistance and transport time in complex networks. (a)
Example of a network G that undergoes renormalization to a network G�. For this
example, themaximumpossibledistancebetweenanytwonodes inthesamebox
has to be less than �B � 3. We compare the resistance R(A,B) and diffusion time
T(A,B) between the two local-hub nodes A and B in G to the resistance R�(A�,B�)
and T�(A�,B�) of the renormalized network G�. The values of R� and T� are found
to always be proportional to R and T, respectively, for all pairs of nodes. (b and c)
Typical behavior of the probability distributions for the resistance R vs. R� and the

diffusion time T vs T�, respectively, for a given �B value. Similar plots for other
�B values verify that the ratios of these quantities during a renormalization
stage are roughly constant for all pairs of nodes in a given biological network.
(d and e) We present the average value of this ratio for the resistance R/R� and
the diffusion time T/T�, respectively, as measured for different �B values (each
point corresponds to a different value of �B). Results are presented for both
biological networks, and two fractal network models with different dM values.
The slopes of the curves correspond to the exponents �/dB in d and dw/dB in e
(see Table 1).
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observe that the differences among varying ratios are small, so
that the k1/k2 dependence in Eqs. 10 and 11 can be neglected,

R��; k1, k2� � k2
��dkfR � �

k2
1�dk�, [12]

with an analogous form for T(�; k1,k2). We are, thus, led to a
simpler approximate form, where the values of diffusion and
resistance between two nodes depend only on the lowest degree
node k2 and the nodes’ distance �. The same scaling form can be
obtained as a function of k1. However, it was proven in ref. 11.
for random networks that R depends on the smaller degree k2;
thus, we arrive at Eq. 12. This equation is then a generalization
to real networks of the result in ref. 11 for random model
networks where, without taking into account the distance, the
resistance was found to depend solely on k2.

Influence of Modularity on Transport. Modularity is a central
feature of biological networks, which contributes to a more
efficient use of resources in the network, with as yet unclear
consequences for transport in these systems. In this section, we
use the fractal network model, which reproduces the main
features of real networks, to better understand the influence of
modularity on transport.

A direct calculation of � for the fractal network model is as
follows. We consider the growth model, where the distance �
between two nodes increases by a factor of 3, i.e., �� � 3�, and
the resistance R between two neighbor nodes in G increases by
a factor 3/x in G�, because the linear distance between the two
nodes has increased by a factor of 3, and there are x parallel paths
connecting these nodes, i.e., R� � 3R/x. Combining these equa-
tions with Eq. 5, we find that the exponent � for this model is
given by:

� �
ln �3�x�

ln 3
� 1 �

ln x
ln 3

. [13]

Notice that for a tree structure (x � 1) we get � � 1, as expected.
This result is also an important step in linking statics with
dynamics [a long-standing problem in percolation theory (3)].
Using only the value of x that describes how self-similar modules
are connected to each other, we can directly obtain the dynamic
exponent �, i.e., how the structural property of modularity affects
dynamics.

For the fractal dimension of model networks we already know
that (5)

dB �
ln �2m � x�

ln 3
. [14]

If we assume that the Einstein relation in Eq. 6 is valid, then we
can also calculate the value for the random walk exponent dw:

dw �

ln � 6m
x

� 3�
ln 3

. [15]

A comparison between Eqs. 15 and 4 yields:

dw � 1 � dM. [16]

This is a very simple yet powerful result. It manifests that for the
fractal network model the degree of modularity directly affects
the efficiency of transport and is the main feature that controls
the type of diffusion.

The above relation, Eq. 16, is verified in Fig. 3 for the fractal
network model. We generate a number of model networks where
we vary both the number of loop-forming links x and the number

a

b

Fig. 2. Rescaling of the resistance (a) and diffusion time (b) according to Eqs.
10 and 11 for the PIN of yeast (open symbols) and the fractal network
generation model (filled symbols). The data for PIN have been vertically
shifted upwards by one decade for clarity. Different symbols correspond to
different ratios k1/k2, and different colors denote a different value for k1.
(Inset) Resistance R as a function of distance �, before rescaling, for constant
ratio k1/k2 � 1 and different k1 values.

1 2 3 4 5
m

1.0

2.0

3.0

d
w

0 1 2
d

M

1.0

1.5

2.0

2.5

3.0

d
w

x=1
x=2
x=3

Sub-diffusion

Super-diffusion

High modularity

Low modularity

PINMetabolic

Fig. 3. Comparison of the random walk exponent dw extracted numerically
(symbols) with the theoretical prediction (Eq. 16, line) vs. the modularity
exponent dM, for different values of m and x. Open circles correspond to the
result for the PIN and metabolic networks. (Inset) Direct (unscaled) numerical
calculation of dw as a function of m, for varying x values (shown in the plot).

Table 1. Values of the exponents calculated from Fig. 1

Network dB �/dB dw/dB

Metabolic network (E. coli) 3.3 0.08 	 0.1 0.98 	 0.1
PIN (yeast) 2.2 0.3 	 0.04 1.3 	 0.04
Model (dM � 1.46, m/x � 2/1) 1.46 ln 3/ln 5 1 
 (ln3/ln5)
Model (dM � 1.26, m/x � 3/2) 1.89 1/3((ln 3/ln 2) � 1) 1/3((ln 3/ln 2) 
 2)
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of offspring m. For each pair of m and x, we calculate numerically
the exponent dw from the slope of figures similar to Fig. 1 d and
e and use Eq. 4 for the value of dM. The results are fully consistent
with Eq. 16, and all of the points lie on the predicted line.
Subdiffusion (dw � 2) is observed for dM � 1, in accordance with
our observation that modularity slows down diffusion. On the
contrary, for nonmodular networks diffusion is accelerated
remarkably (dw � 2), which is also in agreement with previous
work on random networks. When dM � 1, we recover classical
diffusion (dw � 2), even though the structure is still that of a
scale-free network. For the biological networks, we find that the
PIN network follows very closely the proposed scaling relation,
whereas the metabolic does not. This indicates that the model
captures very well the modular structure of the PIN, whereas
more structure is found in the metabolic compared with the
above model.

Flow Distribution Across the Network. In our scaling theory above,
we derived results for the average values of the current flowing in
a complex network. The inherent inhomogeneity and modularity of
biological networks is expected, however, to strongly influence the
distribution of flow throughout the network. Using flux balance
analysis, it was recently shown that the distribution of fluxes in the
metabolic network is highly uneven, and a small number of reac-
tions have the largest contribution to the overall metabolic flux

activity (1). To study the influence of the complex substrate on the
flow distribution we calculate the probability P(I) of current Iij
flowing between the two neighboring nodes i and j.

The probability distribution P(I) for the magnitude of the
current I across a link of the metabolic network decays according
to a power law (see Fig. 4). The form of the curve and the
exponent in the range 1.0–1.5 of the decay is very similar to those
found in previous studies of the metabolic f lux, both experi-
mental (12) and theoretical (1). The decay suggests that only a
small fraction of link carries high current. For the yeast PIN, the
distribution is even broader, and its form is different from the
metabolic network. The variation of P(I) is smaller in PIN
compared with the metabolic network, meaning that in PIN
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Fig. 4. Probability distribution P(I) of current magnitudes I flowing through
the links in PIN (filled triangles) and metabolic networks (filled circles). Open
symbols are the corresponding results for the randomly rewired networks.
(Inset) Invariance of P(I) for the metabolic network under renormalization
with different �B values.
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Fig. 5. Probability distribution P(I) for the fractal model before and after
randomly adding 1% of links or rewiring 10% of the network. (Inset) P(I) for the
fractal model with varying dM values, where m � 2, and x varies from 2 to 4.
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Fig. 6. Schematic illustration of flow in the PIN. (a) Current flow through the
links of the yeast PIN network for one random selection of the two nodes
acting as current input/output. (b) Minimum spanning tree for the PIN. The
thickness of a link corresponds to the current flowing through this link.
Different node colors correspond to different protein functions.
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there is a larger number of important links that carry large
currents. The self-similar character of the biological networks is
also verified for the distribution P(I) as well, which remains
invariant after renormalizing the network, as seen in Fig. 4 Inset.

Next we explore the connection between P(I) and topology.
The information contained in P(I) can be better understood if we
compare these results with a surrogate random case. The random
case is obtained by rewiring the original networks, preserving the
degree distribution P(k), but destroying any correlations be-
tween neighboring nodes. Thus, we remove all traces of the
initial network organization. The distribution P(I) for the met-
abolic network remains almost the same under this rewiring,
indicating that, despite the modular character of the network, the
original structure behaves similar to uncorrelated networks,
because the degree correlations do not affect P(I) in the
metabolic network. In contrast, the distribution P(I) for the
rewired PIN is very different from the original distribution and
is similar to that of the metabolic network. We can, thus,
conclude that the original PIN has a much richer structure that
deviates from the random case, corroborating thus the results on
modularity from the previous section on diffusion.

The above results for the biological networks can be under-
stood in terms of the fractal network model, where we can
control the number of links that form loop structures in a
network. In Fig. 5, we calculate P(I) for the model network with
m � 4 and x � 2, which is a highly modular structure (dM � 1.46).
The form of the P(I) distribution is similar to that of the PIN, but
if we add a small number of random links (or equivalently rewire
a small part of the network), this distribution is significantly
influenced in a similar way as observed in random PIN rewiring.
This suggests again that in the case of PIN, modularity is high.
In Fig. 5 Inset we can also see that as x increases, i.e., more loops
appear in the structure, the distribution has a longer tail, which
shows that there is a smaller number of high-current links.

Because the number of added links in Fig. 5 is small, the
modularity is preserved. We verified that the main factor that
influences P(I) is the number of loops in the network, rather than
modularity itself, by fixing dM and only varying x. In this case
(described in SI), the P(I) distribution is different for networks
with the same dM exponent. This can also be seen through Eq.
13, where the resistance exponent depends only on x.

Using the information of Iij, we can also construct the ‘‘back-
bone’’ of the network in the form of the minimum spanning tree
(MST) (13). The importance of such a tree is that it identifies the
substructure of the network that is dominant for transport. Starting
from a completely empty network, we insert links in decreasing
order of current magnitude, provided that they do not form a loop.
The resulting MST tree for the PIN is presented in Fig. 6, where the
thickness of the links in the drawing increases logarithmically with
increasing current through a link. The color of a node corresponds
to the function performed by a protein in the network. This tree
(created solely on the base of current flowing through a network)
exhibits a large degree of modularity where nodes that perform
similar functions are close to each other. It is also possible through
this construction to identify the most critical links in the network in
terms of the largest current flowing through them.

Thus, the emerging picture from the above analysis for the PIN
is one of a network with a strong backbone that carries most part
of the flow combined with loops organized mainly within

modules, so that flow through this backbone is not really
influenced. This result highlights the strong modularity in the
PIN structure. If a structure has a smaller degree of internal
organization, as is the case in the metabolic network, then flow
is more uniformly distributed.

Summary. Summarizing, we have presented scaling arguments
and simulations on a class of self-similar complex networks,
concerning transport on these networks. Diffusion and resis-
tance in these biological networks is important, because they are
both estimates of how many paths connect two nodes and how
long these paths are. By using the self-similarity property and a
network renormalization scheme, we have developed a scaling
theory of the resistance and diffusion dependence on both the
distance between two nodes and their corresponding degree. We
were able to recover a relation between network modularity and
transport, whereas the flow distribution in these networks was
found to be consistent with earlier studies using different
approaches.

Methods
Resistance Measurements. To measure the conductivity between
two nodes A and B, we consider that all links in the underlying
network between any two neighbor nodes i and j have unit
resistances Rij � 1. By fixing the input current to IA � �1 and the
output to IB � 1, we can solve the Kirchhoff equations and compute
the voltages in the system. The measured resistance is then RA3B
� VA � VB. However, because of the required inversion of the
relevant matrices, we are limited by the computer resources to
networks of relatively small size, i.e., N � 104 nodes.

In principle, the magnitude of Iij depends on the selection of the
current input/output nodes. Upon closer inspection, however, we
found that the distribution of the current magnitudes in the network
links is not very sensitive to the selection of the current source and
the current sink. Comparison of the result of averaging over one
input and many outputs and �20 different input and output pairs
of nodes for the metabolic network showed that, within statistical
error, these two results are almost identical.

Diffusion Measurements. In many cases (and especially those
including real-life networks), direct measurements of diffusion
on complex networks exhibiting the small-world property may
present significant difficulties, because of the limited time-range
where diffusion takes place before settling quickly to a distance
equal to the typical (very short) network diameter. The rising
part of the mean-squared displacement as a function of the time
is very small, and reliable measurement of the diffusion expo-
nent is very hard to do. Moreover, we need additional informa-
tion to quantify the k and � dependence of the diffusion time
between two nodes. For this purpose, we used the peak of the
first passage time distribution as a typical diffusion time T(A,B)
between two points A and B in the network. Because this
quantity may be asymmetric depending on which node we
consider as origin, our diffusion time T represents the average of
(TA3B 
 TB3A)/2.
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