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Distribution of infected mass in
disease spreading in scale-free networks
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Abstract

We use scale-free networks to study properties of the infected mass M of the network during a
spreading process as a function of the infection probability q and the structural scaling exponent
�. We use the standard SIR model and investigate in detail the distribution of M . We /nd that for
dense networks this function is bimodal, while for sparse networks it is a smoothly decreasing
function, with the distinction between the two being a function of q. We thus recover the full
crossover transition from one case to the other. This has a result that on the same network, a
disease may die out immediately or persist for a considerable time, depending on the initial point
where it was originated. Thus, we show that the disease evolution is signi/cantly in1uenced by
the structure of the underlying population.
c© 2003 Elsevier B.V. All rights reserved.
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There has been a growing interest recently in the network structure [1–8] and
dynamics [9,10] of real-life organized systems. Many such systems, covering an
extremely wide range of applications, have been recently shown [1–4,8] to exhibit scale-
free character in their connectivity distribution, meaning that they obey a simple
power law. Thus, the distribution of the connectivity of nodes, follows a law of
the form

P(k) ∼ k−�; (1)

where k is the number of connections that a node has and � is a network parameter
which determines the degree of its connectivity. These networks have some unusual
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properties, thus justifying the heavy interest in recent years. For example, spreading
processes in scale-free networks show a dynamic behavior which is diEerent than in
other classes of networks. These processes are plausible models for the spreading of
diseases, epidemics, etc. Several models for spreading exist in the literature built on
diEerent algorithms, such as the SIR model [11], the SIS model [9], the SIRS model
[12], etc.

In a recent paper, Newman [11] studied analytically the SIR model in scale-free
networks. The connectivity distribution had an exponential cutoE of the form

P(k) ∼ k−�e−k=	; (2)

where 	 is an arbitrary cutoE value for k. This work gave a closed-form solution for the
epidemic size and the average outbreak size as a function of the infection probability.
It showed that there is a critical infection threshold (qc) only for small /nite values of
	, but as 	 increases qc decreases, apparently resulting in qc → 0 (no critical threshold
at all) in the limit of 	→ ∞. The same result was also shown for the SIS model by
Pastor-Satorras and Vespignani [9].

The absence of a critical threshold is not a universal network property. Actually,
in the well-studied cases of lattice networks and small-world networks, the opposite
is true [13]. Such a threshold [14,15] is always present, which separates the infected
from the uninfected regions. This has as a result that these models do not oEer a very
realistic picture. Recently, Warren et al. [13] have used a heterogeneous distribution
for the infection probabilities both for lattices and small-world networks. They model
the variability in a population which results in a broadening of the transition regime;
however, a threshold still exists and the behavior of the transition is qualitatively similar
to the case of the simpler SIR model on a lattice. Because of this, scale-free networks
are distinctly diEerent regarding the predictions on the rate and eHciency of spreading.
This is clearly much closer to what is intuitively expected, and can provide useful
estimates for the properties of epidemics of any kind. The same type of model could
also describe a diverse set of networks, such as social networks, virus spreading on
the Web, rumor spreading, signal transmission etc.

In the present study, we calculate the distribution of the epidemic size, i.e., the
distribution of the infected mass, for several diEerent � values. This property helps
us to better understand the importance of the starting point (origin) of the disease. It
turns out that this distribution is not a smooth function for all networks, but depends
strongly on the network density, i.e., the value of �.

We use a simulation algorithm to construct a scale-free network comprised of N=105

nodes. We follow a network generation method which enables us to freely vary the
connectivity distribution of the network. We assign a number of edges k for each node
by using a power-law distribution P(k) ∼ k−�. We /nd the highest connected node and
we start by connecting this node to k other randomly chosen distinct nodes. We then
continue by randomly choosing open links from uncompleted nodes and connect them
to another random node. This process is similar to, e.g. the one used in Ref. [16], with
the diEerence that for � = 2, we /rst fully connect the highest-connected node, since
otherwise it is diHcult to create such a network. Care is taken that no duplicate links
are established between the same two nodes and once a node has reached the number
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Fig. 1. Percentage M of infected sites as a function of q, for the diEerent models studied (•: scale-free
network, � = 2:0, /lled square: two-dimensional lattice, ©: small-world p= 0.0, : small-world p= 0.01,
�: small-world p=1.0, where p is the probability for rewiring a link in a small-world network). The absence
of a threshold is evident for scale-free networks.

of edges initially assigned to it, it no longer accepts any new connections. The cutoE
value for the maximum possible connectivity of a node was /xed to N=2.

The spreading of a disease follows the standard SIR (susceptible, infective, recov-
ered) model. Initially, all nodes are in the susceptible (S) status, and a random node
is infected (I). During the /rst time step it tries to infect with probability q, the nodes
linked to it, and when the attempt is successful, the status of the linked node switches
from S to I. The process is repeated with all infected nodes trying to in1uence their
susceptible (S) neighbors during each time step. After trying to infect its neighbors,
the status of an infected site changes to recovered (R) and can no longer be infected.
The simulation stops when there are no infected nodes in the system or when all nodes
have been infected. Small-world networks were constructed as described in Ref. [17].

We monitor the percentage M of nodes infected and the duration of a disease (i.e.,
the time needed for the disease to either disappear or cover the entire network). In
Fig. 1, we show for comparison purposes the percentage M of infected sites as a
function of q, for three diEerent network types. The form of the curves for the lattice
and the small world networks is similar, i.e., in all cases there is a sharp transition and
a critical point. However, this behavior is unrealistic, as it does not follow the majority
of actual situations, such as disease spreading in real-life networks [13]. If this were
to happen, e.g. the Web would be in a state of either no virus present or the entire
Web (all computers in the world) would be infected, with a very small probability
of having an intermediate situation with only a certain fraction of computers infected,
which is the realistic picture. Scale-free networks with a high degree of connectivity
(� = 2:0) follow a much smoother spreading evolution, as the mass of the infected
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Fig. 2. Infected mass distribution �(M) of scale-free networks for � = 2:0, N = 105 and diEerent infection
probabilities: q= 0.1 (©), 0.5 ( ), 0.8 (♦), 0.95 (�). To each gaussian part corresponds a single point at
a value higher than M = 1=N , except for the case of q = 0:1 which has two points (one at 1=N and one
at 2=N ). Solid line: � = 2:9 and q = 0:5. Inset: Approximate values of � where the distribution turns from
bimodal to unimodal, as a function of q.

population increases almost linearly with the infection probability q and there is no
transition regime. This is in agreement with the recent formalism of Newman [11].
The linear behavior can be understood as follows: On a scale-free network, there exist
nodes with a wide range of connectivity. For /xed infection probability q, the average
probability for an infected node with k links to spread the disease is kq. If this number
is greater than 1, it is statistically certain that a neighbor node will be infected. If it is
signi/cantly less than 1, the disease will die out. On the other hand, for a small-world
network and for a lattice network, there is a characteristic mean number of links 〈k〉
assigned to each node, which /xes the 〈k〉q factor for all nodes.

Here, for a scale-free network, we look at the distribution of the quantity M . This
is shown in Fig. 2, where we see that for diEerent � values we have two opposite
situations. First, for � = 2:0 we see that for /xed q, we can have both cases coex-
isting, depending on the connectivity of the initially infected node. For this case, the
distribution �(M) of the infected population for /xed q is bimodal and comprises of
two distinct parts, a strong peak at M = 1=N (only one node is infected) attributed to
initially infected nodes with k=1, or more accurately kq�1, and a Gaussian-shaped
part at some higher value of M . The almost linear increase of M with q in Fig. 1
is due to the fact that for higher q, the peak of 1=N decreases (kq increases), and
the average value of the Gaussian distribution increases accordingly. We also notice in
Fig. 2 that the gaussian part of the distribution has an average value which is larger
than q. For example, for q = 0:1 the peak of the distribution is close to 0.25, and
when q= 0:8 it is closer to 0.9. This means that if the peak in 1=N did not exist, the
behavior of the curve in Fig. 1 would be superlinear, i.e., M would always be larger
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than q as a result of the complex connectivity of the network, but it would not reach
the value of M = 1 for infection probabilities less than 1. The interplay between the
peak at 1=N and the gaussian part yields the /nal curve which follows roughly a linear
increase.

This result is a superposition of the two possible states present in the case of a simple
lattice, where below the threshold, the distribution is a simple peak at M = 1=N , while
above the threshold, the distribution peaks around M = 1. On a scale-free network,
there exists a /nite probability for the disease to be either eliminated immediately or
cover a considerable portion of the network. Thus, for small � values, the prediction
on the future of a disease largely depends on the place where it originates, because of
the existence of the gap.

This bimodality implies that every disease which survives the initial step(s) spreads
over a non-zero portion of the network population. This is not the case for large �
values, where recently [18], results for the SIR model on a scale-free network (with
�= 3:0) were presented. The distribution of M did not show any bimodality, similarly
to our solid curve on the left of Fig. 2, which corresponds to � = 2:9 and q = 0:5.
We see that the bimodality is now lost, and it is replaced by a smoothly decreasing
function with increasing M . This result is in agreement with the work of Moreno et al.
[18]. Thus, the distribution changes from bimodal to unimodal as we go from a dense
network to a sparse network. The crossover from one to the other takes place as it is
given in the inset in Fig. 2, where we plot � vs. q, i.e., each (�, q) pair is exactly
at the corresponding transition point. The distinction between the two regimes is not
very clear, since the transition is not sharp, as can also be seen by the existence of a
secondary ‘hump’ in the continuous line of Fig. 2. This is not due to 1uctuations, and
for this reason we choose to locate the crossover at the point where the peak at low
M values is separated by the second peak through a region where M is exactly equal
to 0. Note also that the unimodal–bimodal transition does not directly correspond to
the threshold values of each network.

These observations show that in scale-free networks, nodes of high connectivity act
as “boosters” to the disease spreading; even if very few nodes remain infected, by
the time a high connectivity node is infected, it spreads the disease over a signi/cant
number of its neighbors, even for small q. This fact stresses the importance of the
‘hubs’, as it has also been observed in the past in studies of the static properties for
such networks [6,19,16]. Similarly, the low-connectivity nodes may serve to isolate
large clusters of the network. These clusters are eEectively screened by the disease via
the presence of the low-connectivity node, especially in the case of high �, where the
network is loosely connected.

Similar conclusions can be drawn for the duration of a disease. For small-world
networks and regular lattices, the duration of a disease when epidemics takes place
is practically constant for infection probabilities greater than the threshold (Fig. 3).
For scale-free networks, on the contrary, there is a slow increase of the duration as a
function of q. However, the duration is much smaller now, which implies that even
for considerable infection probabilities, a disease cannot last for a long time, and a
considerable portion of the network can be infected in a practically small and constant
time. The duration of the disease at q=1 is also a measure of the network ‘diameter’,
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Fig. 3. Disease duration on diEerent topologies. Symbols are the same as in Fig. 1.

since it represents the average number of links needed to cross, before reaching all the
system nodes.

Upon monitoring the distribution of uninfected sites as a function of time, we ob-
served that it followed a power law at all times. The exponent of this power law was
always the same as the one used for the initial connectivity distribution, with the curve
scaled down by a constant factor. Thus, sites of diEerent connectivity are infected with
the same relative rate.

Summarizing, we have investigated spreading properties on scale-free networks. For
the SIR model we studied, we /nd that the starting point of the disease is very impor-
tant, because it can either stop the disease or facilitate its spreading. This phenomenon
for dense networks yields a bimodal distribution for the infected mass, with a peak
close to zero and a Gaussian part around a /nite value of M . Despite the smooth
increase of the infected mass with q, the disease spreads rapidly on the network in a
practically constant time, almost independently of q. This rapid spreading manifests the
compactness of the network (as compared to lattice and small-world networks) and its
small diameter which is related to the short path length from any site of the network
to another. For sparse networks this is not the case, as it also has been previously
observed.
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