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Accurate estimation of the survival probability for trapping in two dimensions
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~Received 29 May 2001; published 22 October 2001!

In this work we study the mean survival probabilityF(n,c) of random walks on a two-dimensional lattice
in the presence of traps of concentrationc, as a function of the number of stepsn. The computation of this
quantity is performed indirectly by using the distribution of the number of sites visitedSn . In order to achieve
an accurate description of this distribution we use a combination of numerical techniques. The method allows
an accurate calculation ofF down to very small values~of the order of 102100, for example!, which is not
possible via direct simulations. The survival probability is analyzed in terms of an asymptotic expansion,
following the results of Donsker and Varadhan@Commun. Pure Appl. Math.28, 525 ~1975!; 32, 721~1979!#,
and by using the outcome of a scaling ansatz, as described in our earlier work.

DOI: 10.1103/PhysRevE.64.051111 PACS number~s!: 05.40.Fb, 72.10.2d
nd

r
s-
p

ti
b

b
ts
te
e
e

b-
m
r
to
ria
fo
e

es
,
w

ra
i

h
nt
e

ob
w
ith
f a

lyti-
lts,
nd

on,
ry
sur-
d

p

of
(1

le

of

n

the

de
I. INTRODUCTION

The trapping problem is one of the most puzzling a
most studied problems in the diffusion literature@1–16#. The
problem itself can be very simply formulated. We conside
homogenous space ind dimensions, either continuous or di
crete. In this space we randomly distribute immobile tra
with a fixed known concentrationc. These traps are typically
spheres or occupy one lattice site each. Particles, origina
at random positions, start moving in this environment
performing Brownian motion~in continuous space! or ran-
dom walk ~in the case of a lattice!. Multiple occupancy is
allowed for the particles and any number of particles can
on the same site simultaneously. When a particle mee
trap its motion stops and the moving particle gets annihila
on this trap. An infinite number of walkers can be absorb
on the same trap. This process corresponds to infinitely d
traps.

The quantity of interest in this work is the survival pro
ability F(n,c), which is the average probability of a rando
walker to have survived, i.e., not encounter a trap, aften
steps in a space containing a trap concentration equalc.
The problem described is only one of many possible va
tions that include moving traps, shallow traps that allow
detrapping, traps that can host one particle only, funnels
circling the traps, excluded volume effects for the particl
inhomogeneous~for example, fractal! space and many more
which are dictated from the physical system examined. Ho
ever, even the simplest model is not easily amenable
mathematical handling and there is a large amount of lite
ture on this topic. Exact solutions have been found only
special cases and there is no complete general solution.

There are many physical motivations for studying suc
process. Almost any system comprised of two distinct e
ties and having random walkers moving in it can be d
scribed by one of the many variations of the trapping pr
lem. Characteristic examples include compounds of t
stoichiometrically different species, almost any material w
defects or impurities, trapping of excitons, the kinetics o
chemical reaction A1B→B, the probability of finding a taxi
in a city, etc.
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The problem has been extensively studied both ana
cally and computationally. There is a plethora of resu
which, however, are usually restricted in a narrow time a
concentration regime. A very important and basic relati
which is known for a long time, can be deduced by ve
simple arguments. Suppose that the moving particle has
vived ann-step random walk. During this time it has visite
Sn different sites~some of them more than once!, which
means that none of theseSn sites can be a trap. If the tra
concentration is equal toc, the probability of one site not to
be a trap is 12c, and consequently the statistical weight
the above described walk on the survival probability is
2c)Sn. Obviously, the average survival probability at timen
is exactly equal to

F~n,c!5^~12c!Sn&5^e2lSn&, ~1!

where l52 ln(12c), and the average is over all partic
realizations of then-step random walk. Equation~1! can also
be expressed in the form

F~n,c!5 (
s52

n11

pn~s!e2ls, ~2!

where pn(s) represents the density distribution function
theSn values for a fixed number of stepsn. This distribution
has been known for some time in one dimension@3,17#, and
has been used for accurate asymptotic evaluation ofF(n,c)
@7,8#; but the only available information for this distributio
whend>2 is the first and second moments@18–20#, as well
as the fact that it tends to a Gaussian distribution as
dimensionality tends to infinity@2#.

The main analytical approaches to this problem inclu
the Rosenstock approximation@5#, where the mean value in
Eq. ~1! is replaced by its typical value, yielding

F~n,c!5e2l^Sn&, ~3!
©2001 The American Physical Society11-1



u
d
io

he
ed

a
ly

au
io

b
Re
e
de
re
ti
e

er

an

er
th

e.

an

ty
he
n
a

e
de

e

or
n

44

or
s

m
a

n
d

cial
te

-

ci-
is

the
y

o

b-
ed
mes

ks

e

eded

a

s

he

r-
-

.

out

e

re-

al
he
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the improvement of this approximation with the use of c
mulant expressions@6#, and mainly the work of Donsker an
Varadhan@4# that resulted in an exact asymptotic express
for F(n,c)

lim
n→`

F~n,c!5exp~2kdl2/(21d)nd/(d12)!. ~4!

In this expression,kd is a positive constant depending on t
dimensionality and the structure of the lattice. A detail
summary of all the above results can be found in Ref.@1#.

The asymptotic expression in Eq.~4!, though, has raised
lot of discussion because it is in contrast with the intuitive
expected mean-field simple exponential decay, and bec
it has been impossible up to now to calculate by simulat
methods the crossover time, which cannot be predicted
the theory, especially in the case of two dimensions.
cently, Bundeet al. @15# have proved that any direct Mont
Carlo trapping simulation results in a simple exponential
cay, because of the finite lattice size. Additionally, we
cently presented a scaling ansatz using an indirect simula
method @16#, which clearly showed the crossover regim
from the Rosenstock approximation to the Donsk
Varadhan result.

The asymptotic behavior of the survival probability c
also be deduced by heuristic arguments@11,12#, which depict
that the main mechanism dominating theF behavior is the
combination of large trap-free regions with random walk
that are restricted in these regions. For shorter times,
important factor is mainly walks that are very compact, i.
result in very smallSn values, even for largen. The relative
probability of occurrence for these walks is very low, but c
become important asn grows larger or for small values ofc.
By inspecting Eq.~2! we can see that the survival probabili
is the result of two fundamental terms; it is the sum of t
points derived after multiplying two functions, one expone
tial and one—loosely speaking—Gaussian shaped. The m
contribution in this sum comes from the left wing of th
pn(s) distribution, because of the exponential factor that
cays rapidly and only weighs the small values ofs. The
number of terms needed in Eq.~2! for acquiring a given
accuracy forF(n,c), say 95%, depends both on the numb
of stepsn and the trap concentrationc. For smallern and
lower c we need a larger portion of the distribution. F
example, if we fixn5500, we need around 40 terms whe
c50.9 and 220 terms whenc50.01, in order to converge to
a 95% accuracy. These terms correspond to the 8% and
portion of thepn(s) distribution in thesaxis. Similarly, if we
fix c50.9 whenn5100 we need 16 terms in Eq.~2!, which
corresponds to 16% of the distribution and is twice the c
responding value forn5500. Moreover, in all these case
more than 50% in the calculation ofF(n,c) is contributed
by the first 10–20 terms. It is thus clear that the regi
around the peak of the distribution has practically a sm
contribution in the sum when the number of stepsn and the
concentrationc are not too small. Upon loweringc the con-
tribution of the peak becomes progressively more importa
but the left-wing contribution still remains significant an
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cannot be ignored. Thus, under these conditions it is cru
to know in detail the distribution for small and intermedia
values ofSn .

The factors described above~trap-free regions and com
pact walks! are both taken explicitly into account in Eq.~2!.
The large trap-free regions contribute through the terme2ls

for large values ofs, and thecompactwalks through the
small-s wing of the distributionpn(s). Since it is practically
impossible to directly simulate thepn(s) distribution at its
left wing, because of the extremely low probabilities asso
ated with it, in this work we use an indirect method for th
calculation.

II. METHOD

In this paper we use an indirect method of calculating
survival probabilityF, i.e., we first calculate the probabilit
distribution pn(s) of Sn and then multiply it bye2ls @Eq.
~2!#. It is fairly straightforward to construct a Monte Carl
simulation in order to computepn(s). A particle starts at the
origin (n50 and S051) and performs a normal random
walk on a lattice with all directions having the same pro
ability. One has to simply record the number of sites visit
aftern steps. Upon repeating the same procedure many ti
~called different realizations of the walk! we construct a his-
togram, which when divided by the total number of wal
simulated is a quite accurate approximation ofpn(s), espe-
cially when the number of realizations is quite large.

This approach works very well, but unfortunately th
number of possible walks increases very rapidly withn and
an enormous amount of computer resources would be ne
even forn5100 ~in which case there are 4100;1060 possible
random walks!. In order to overcome this difficulty we use
method that allows us to computepn(s) with a high accu-
racy, especially in the smallSn region. Our method consist
of three basic steps.

~1! Describe the shape of the distribution around t
maximum via direct computer simulations;~2! calculate ex-
actly the left-wing of the distribution; and~3! interpolate
between these two regimes.

Step 1.The first step is quite straightforward. We pe
formed 1010 independent realizations of the walk and com
puted the probability distribution ofSn , as described above
In this way, the minimum value ofSn can be 10210 and due
to statistics considerations we can claim an accuracy of ab
1029.

Step 2.The second step is an exact calculation ofpn(s),
starting froms52 and increasings as much as possible. W
first count the numbergn(s) of all possiblen-step walks
resulting ins sites visited. The probabilitypn(s) is then sim-
ply found by normalizing by the total number of walks 4n,
i.e., pn(s)5gn(s)/4n.

The procedure for countinggn(s) is as follows: we con-
struct a Markov chain starting from the point~0,0!. At the
first step four branches stem from this point, which cor
spond to the four neighbors. At stepn, every point that was
created during then21 step gives rise to four more
branches. This is the standard Markov chain for a norm
two-dimensional random walk. However, the number of t
1-2
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ACCURATE ESTIMATION OF THE SURVIVAL . . . PHYSICAL REVIEW E 64 051111
walks increases exponentially and after a few steps there
not enough computer resources to follow the evolution of
system. In order to partially overcome this difficulty we fix
value smax. We continuously monitor the number of site
visited along each path. Whenever a path exceeds the v
of smax we cut this branch and thus all the portion of the tre
which would be generated by it. In this way, we have be
able to countgn(s) up to s511.

In practice, this counting was achieved by implement
the following algorithm. Each path of the chain is repr
sented in the computer memory by a linked list, and e
node of the list includes the two coordinates of the cor
sponding point and a pointer to the next node. Initially, th
is only one path including just one node with coordina
~0,0! that of, course represents the origin of the lattice. Af
a step is made each path gives rise to four more paths tha
exactly the same as the original except for the addition
one of the nearest neighbors. In order to improve the e
ciency of the algorithm each list includes only once the
ordinates of the sites visited. This means that we are o
interested to find which sites have been visited until no
which is the definition ofSn , and not for the path itself. We
also need to know the current site of the lattice where
particle resides and this information is held separately
each path. A check is also made so that when two lists
clude exactly the same set of sites and the current site is
same, one of them is destroyed and a variable, denoting
many times this particular set has occurred, is increased.
repeat the same procedure forn steps and count the numbe
of sites included in each path. Whenever the value ofSn
corresponding to a particular path surpasses the valuesmax
we destroy this list and do not deal with it anymore. In th
way, we can have the exact distributionpn(s) for values up
to s5smax. Due to the symmetry of the problem~all four
directions are equiprobable and the same random walks
repeated in all directions, only rotated 90°! we can follow
only one of the four initial branches at the first step and th
multiply our result by 4.

In Fig. 1 we present results for the probability distributio
pn(s) after n510, 20, and 50 steps. We compare the Mo
Carlo data of 1010 realizations to those obtained by th
method just described andsmax511. It is obvious that the
two data sets are in excellent agreement with each ot
verifying thus the validity and proper implementation of t
proposed algorithm.

Step 3.The final step for approximating the distribution
to interpolate between the exact small-s region computed in
step 2 and the intermediate region, which was derived by
Monte Carlo procedure. This was achieved by using
polynomial interpolation routine in Ref.@21#.

III. RESULTS

The method described above gives us the opportunit
study the behavior ofF(n,c) for finite times with great ac-
curacy and without having to face the problem of rare t
configurations. The distributions ofSn evaluated via this
method are given in Fig. 2 forn5100, 200, and 500 steps
The points derived by the interpolation method are c
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nected with the thick line. The right-most part of the dist
bution has not been calculated and no effort was made
wards this direction because this information is not neede
our approach. For example, whenn5500 andc50.1 the
contribution to the final result ofs5150, where the maxi-
mum of the distribution is located, is less than 10210. The
values ofs, which are larger thans5150, contribute even
less to theF value sinceP500(s) in this regime is smaller
than P500(150) and can thus be neglected, as it has alre
been demonstrated at the end of Sec. I. Notice also tha
error introduced by the interpolation step forn5100 is very
small; only two points need to be computed by the interp
lation routine and we can be pretty confident about th
values. Forn5200 steps the interpolated region is still na
row enough but forn5500 it is rather broad. It is norma
that this regime grows asn increases since we cannot in

FIG. 1. Comparison of the exact enumeration technique to
Monte Carlo data. Here we plotpn(s) as a function ofs. The lines
correspond to the simulation data, while the points represent
exact result. We present the left wing of three distributions for~top
to bottom! n510, 20, and 50 steps.

FIG. 2. Distributions ofSn calculated forn5100, 200, and 500
steps ~top to bottom!. The symbols are the results of the exa
enumeration technique described in the text; the thin lines are
result of direct Monte Carlo simulations; and the thick lines rep
sent the interpolated region.
1-3
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LAZAROS K. GALLOS AND PANOS ARGYRAKIS PHYSICAL REVIEW E64 051111
creasesmax further than 11 by using this algorithm. Ther
fore, we have not tried to go further in time thann5500 in
order to retain our confidence in the accuracy of the d
From the figure it is seen that the portion of the curve, wh
is determined exactly, is smoothly connected to the port
that is determined by the Monte Carlo simulations. We
lieve that we have achieved a good representation ofpn(s).
As a simple test, we compared the first and second mom
of the distribution and found them to agree with the theor
ical results. For example, the mean value^Sn& was in com-
plete agreement with the result of Henyey and Seshadri@19#,
which is considered the most accurate theoretical desc
tion.

Now, we can use Eq.~2! and calculate exactly the su
vival probability for any trap concentrationc. We cannot,
however, decreasec down to extremely small values becau
in this case the right wing of the distribution may becom
important. Results for certain values ofc are shown in Fig. 3
and compared to the results of~a! the Rosenstock approxi
mation and~b! direct Monte Carlo simulation of the trappin
process. In the latter case we consider a lattice of 1003100
sites and assign a random trap configuration where the p
ability of a site being a trap isc. We perform a random walk
and record the number of steps required before trapping.
ter a certain number of realizations, 109 in our case, we
construct a histogram of these values and estimate thus
many random walkers have survived aftern steps. We can
clearly see from the figure that for small trap concentratio
all the curves practically coincide although we can see sm
deviations for largern. For large enough trap concentratio
these deviations are much more prominent and start earli
time. We can see that although the number of steps is
that large (n,500) the difference of the Rosenstock a
proximation data from the other two methods~which yield
similar results! is important and the mean-field treatme
fails. The Monte Carlo data follow the results of the meth
presented above, but we expect larger deviations w
F(n,c) has very small values, as it was shown in@15#.

An interesting question after acquiring accurate data
whether we can rescale them according to the Dons
Varadhan expression. In other words, the question is w

FIG. 3. Comparison of the survival probabilityF(n,c) calcu-
lated by this method~symbols!, the Rosenstock approximatio
~solid line!, and the Monte Carlo simulations~dashed line!. Trap
concentrations~top to bottom! c50.01, 0.05, 0.1, 0.5, and 0.9.
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we plot F as a function ofxDV5(ln)1/2 whether the points
will fall on the same curve and, if they do, which expressi
can describe this behavior. We try to representF(n,c) in a
form suggested by the asymptotic representation ind51
@7,8#. For this purpose we will usexDV5(ln)1/2 as the scal-
ing variable, which is suggested by the Donsker-Varadh
expression. This plot is shown in Fig. 4 and we can see
the data fall roughly on the same curve, but a small disp
sion is obvious in the plot and, moreover, this dispersion
systematic, in the sense that smaller concentrations y
slightly lower F values.

We used the following form for the fit of the data fo
F(xDV):

F~xDV!5A expS 2k2xDV1
a1

xDV
D . ~5!

We tried two different fits of the data. In the first one, we s
a1[0 and tookA andk2 as free parameters. The results
this fit areA5530.33 andk253.756. In the second fit, we se
the value ofk2[4.26, which is the precise value of th
Donsker-Varadhan prediction, and we tookA anda2 as free
parameters. The parameters were found to beA51.513109

and a15263.35. The figure shows that the first fit alrea
describes the data well, and the second fit gives an equ
good agreement with the data. The deviation from the dat
small values ofx are of no concern in view of the form of th
ansatz@Eq. ~5!#, which is valid for largex only. The param-
eter values for the second fit are rather large and proba
result by our fixing of the constantk2. This may be an indi-
cation of the importance of a different prefactor that m
also depend onx, or an indication of improper scaling vari
able. We also took further terms in the exponent of the fo
a2 /xDV

2 etc. into account, but the fit did only slightly chang
when they are included.

In Ref. @16#, we have indicated by using a scaling ansa
that the proper scaling variable for two dimensions should

FIG. 4. Plot of the survival probabilityF(n,c) as a function of
xDV5(ln)1/2 for different trap concentrations, fromc50.005 toc
50.99. The solid and the dashed curves represent the two be
lines of Eq.~5!.
1-4
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x5ln0.8, and in this case the mean survival probability c
take a form independent of the number of stepsn and trap
concentrationc. This form is reproduced here for conve
nience:

2 lnF~n,c!

n0.1
5H Ax, x<xc

Axc1kd~x1/22xc
1/2!, x.xc

~6!

where A, kd, and xc are numerical constants with the a
proximate valuesA50.72, kd54.26 andxc58.76. In Fig. 5
we plot the data acquired in this work rescaled according
Eq. ~6!. By comparing this figure to Fig. 3 of@16# we can see
that, although the data were obtained by two completely
ferent methods they obey the same behavior, verifying, t
the validity of the scaling variables used.

The important result of this method is that we can a
proximate the probability distributionpn(s) with a high ac-
curacy and compute the survival probabilityF(n,c), a task
that is impossible by a direct method. The attempt fo
scaling analysis by using the variablexDV5(ln)1/2, which is
present in the Donsker-Varadhan expression, yielded a ra
satisfactory convergence in a curve, which, however, is
good enough for one to be certain about the verification
the assumption that this is the proper scaling variable. On

FIG. 5. Log-log plot of2 lnF(n,c)/n0.1 as a function of the scal
ing variable x5ln0.8. Different symbols correspond to differen
trap concentrations fromc50.005 up toc50.99. The two lines are
the ones predicted by Eq.~6!.
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contrary, much better accuracy can be obtained when
scaling variable is the one derived by our analysis in@16#.

IV. SUMMARY

In this paper we have investigated the trapping problem
d52 by characterizing the survival probability of particle
diffusing in the presence of traps as a function of the num
of steps and the concentration of the traps. The dimens
ality d52 is practically the most difficult to attack in prob
lems of this nature. The theoretical treatment is more
manding than in other dimensions because this is
borderline dimension for recurrent random walks, i.e., ford
51 all the walks return at some time at their origin, whi
for d53 only a certain percentage returns. For instance,
mean number of distinct sites visited by a random walk on
steps^Sn& contains logarithmic terms ind52, where ap-
proximately@18#

^Sn&5
np

ln~8n!
, ~7!

while for d51 andd>3 ^Sn& follows a power law, and it is
proportional ton1/2 andn, respectively.

We deduced the survival probabilityF(n,c) from the
probability densitypn(s) of Sn , which was accurately ob
tained by numerical techniques, and compared it with
asymptotic expansion of the survival probabilityF(n,c).
The comparison with the asymptotic expansion was not
tirely satisfactory in that no unique determination of the re
tive terms was possible. When the same data are resc
according to another combination ofc and n, which was
derived by using a completely different route, we can s
that the same figure can be reproduced exactly for b
methodologies and the data fall on the same curve~Fig. 5!,
where two characteristic regimes can be easily identified

Of course, there is no direct practical application
achieving an accuracy forF(n,c) of the order of 102100.
However, in order to correctly characterize the different
gimes of behavior, to be able to reach the Donsker-Varad
regime and to decide for a proper scaling variable it is
quired to have very accurate data. Direct simulation meth
have failed to identify the different regimes, due to the lim
tations posed by the possibleF(n,c) values that can be at
tained.
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