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Abstract

We study the communication complexity of evaluating functions when the input data is randomly allo-
cated (according to some known distribution) amongst two or more players, possibly with information
overlap. This naturally extends previously studied variable partition models such as the best-case and
worst-case partition models [32,[35]. We aim to understand whether the hardness of a communication
problem holds for almost every allocation of the input, as opposed to holding for perhaps just a few
atypical partitions.

A key application is to the heavily studied data stream model. There is a strong connection between
our communication lower bounds and lower bounds in the data stream model that are “robust” to the
ordering of the data. That is, we prove lower bounds for when the order of the items in the stream is
chosen not adversarially but rather uniformly (or near-uniformly) from the set of all permutations. This
random-order data stream model has attracted recent interest, since lower bounds here give stronger
evidence for the inherent hardness of streaming problems.

Our results include the first random-partition communication lower bounds for problems including
multi-party set disjointness and gap-Hamming-distance. Both are tight. We also extend and improve
previous results [7,[22]] for a form of pointer jumping that is relevant to the problem of selection (in
particular, median finding). Collectively, these results yield lower bounds for a variety of problems in the
random-order data stream model, including estimating the number of distinct elements, approximating
frequency moments, and quantile estimation.

1 Introduction

Since its introduction in 1979 by Yao, communication complexity [31,43] has proven to be a powerful
framework for proving lower bounds in a variety of settings, including the cell-probe and data stream models,
circuit and decision tree complexity and VLSI design. The majority of results in this area involve a fixed-
partition model of communication complexity, where the goal is for two or more players to evaluate a
function of an input that has been partitioned between them in a particular way, e.g., computing f(x,y) when
one player holds x and the other has y. Many explicit functions can be shown to require a large amount of
communication to evaluate when the input is partitioned between the players in this manner. These imply
lower bounds for various models of computation, via arguments that such partitions necessarily arise in the
course of the computation.

*A short version of this article is available in the Proceedings of the 40th Annual ACM Symposium on Theory of Computing
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To a lesser extent, variable-partition models, such as best-case and worst-case partition, have also been
studied: see, e.g., [2,{32,35] and [31, Chap. 7] for a survey. For example, understanding the best-case
partition complexity, where the data is partitioned in the most advantageous manner (subject to constraints
such as each player receiving an equal amount of the input), is important for understanding various problems
in VLSI design [2]]. Another kind of worst-case partition arises when the corresponding bits of two equal-
length input strings are written on opposite sides of opaque cards (the “two-sided card model” [13}[36]).
However, a natural question that, to the best of our knowledge, has not been explored to date, is what
happens when the input is partitioned amongst the players at random. In other words, does evaluating
a given function require significant communication for only a few pathological partitions or does such a
requirement apply to an overwhelming fraction of all partitions?

In this paper we initiate a study of communication complexity under random partitions of the input. In
fact, we consider more general allocations of the input to the players, possibly allowing information overlap,
where bits of data may be known to more than one player. A particularly interesting case is when each foken
of data is given to a player chosen uniformly at random; this provides a convenient way to count “bad”
partitions. We consider a communication lower bound to be robust if it applies to all but a small fraction of
possible partitions. One can think of our work as a form of average-case analysis. However, it is important to
note that our work stands in contrast to the usual notion of distributional complexity: rather than considering
a random input, we consider worst-case inputs allocated randomly amongst the players.

Data Stream Computation A strong motivation for our study is the goal of proving robust lower bounds
for problems in the data stream model. The data stream model has enjoyed significant attention in recent
years owing to some influential work in the late 1990s [3,|15,[25]]. Study of this model has thrived both
because of the rich theoretical questions it raises and its applicability to numerous real world applications
such as network monitoring and query planning in databases. Consequently, it is important to understand the
complexity of problems not just in worst-case but also in “average-case” settings. To this end we prove lower
bounds in the setting that the ordering of tokens in the data stream is chosen not adversarially but randomly,
from the set of all permutations. Arguably, such a lower bound provides a stronger indication that a problem
cannot be solved efficiently in the data stream model than a “fragile” lower bound that might depend on a
clever adversarial ordering. (For further, more detailed, justification see the recent papers [7,22]).

Random-order data streams were considered by Munro and Paterson [34]] in one of the first studies of
the data stream model. In recent years there has a been a resurgence of interest in this model for a variety
of reasons [7,|12,21-23,/42]. Uniform or near-uniform orderings can arise in a number of ways, such as
when processing a stream of samples that are drawn independently from a non-time-varying distribution.
For problems such as quantile estimation and finding frequent items it has been shown that there is a consid-
erable difference between processing random-order stream and adversarial streams. In particular, streaming
algorithms to find the median using polylogarithmic space require exponentially fewer passes if the stream
is ordered randomly [/722].

In this paper, we use robust lower bounds on communication complexity in order to deduce robust data
stream lower bounds. Once the communication bounds have been shown, the data stream bounds follow by
simple reductions to appropriate instances of communication. Where such bounds were known before, our
method yields cleaner proofs and tighter bounds. It also yields a number of new bounds for random-order
data streams.

Our Results and Overview We begin in Section [2| with a formal definition of our model and introduce
some techniques and terminology. We prove the following results:

o Multi-Party Set Disjointness: We consider the problem of 7-way set disjointness where each entry of
the relevant # x n matrix is given to one of p players chosen uniformly at random. If p = Q(#?) then



we show that any randomised protocol requires Q(n/t) communication. See Section

e Pointer Jumping and Selection: We consider a natural variant of tree pointer jumping, called weight-
based tree pointer jumping, that is related to the problem of selection. In this problem, instead of
an explicit pointer at each node, we have a binary string at each node whose weight encodes the
pointer. We consider trees of depth p+ 1 and show that if the bits of these strings are distributed
uniformly between two players, then, for every constant € > 0, any p-round randomised protocol
requires Q(n?>+€)"") bits of communication. See Section 4| for details of this two-player result and a
generalization to more than two players.

e Hamming Distance and Index: For x,y € {0,1}",let A(x,y) := |{i € [n] : x; # y;}| denote the Hamming
distance between x and y. We show that, for some constant ¢, any protocol that can distinguish between
the cases A(x,y) <n/2—cy/nand A(x,y) > n/2+ c\/n requires Q(n) communication if the 2n input
bits are split uniformly between two players. We also show that a one-way protocol for the index
problem — INDEX(x, j) := x;, with x € {0,1}", j € [n] — requires Q(n) communication if the n+ 1
tokens (j being a single token) are split uniformly between two players. See Section [3

The above communication lower bounds lead to lower bounds for a number of data stream problems in
the random-order model. In Section[6] we deduce such bounds, many of which are tight, for approximating
frequency moments, the number of distinct values, entropy, information divergences, selection, and graph
connectivity. Two of these bounds deserve particular emphasis. For the kth frequency moment, we obtain a
robust lower bound of Q(n1*3/ k) for k > 3, where n is the universe size, which comes close to the optimal
Q(nl_z/ %) bound under adversarial ordering. For the problem of finding the median of a stream of length
m, our framework greatly simplifies the proof of an Q(loglogm) lower bound [7] on the number of passes
required to achieve polylogarithmic space. Note that in a multi-pass algorithm, the data is seen in the same
order in each pass. Further, our pass-space tradeoff for this problem improves the results of [7]]: for instance,
with two passes, we obtain a space lower bound of Q(m!/10) as compared with their Q(m3/%9).

2 Notation and Preliminaries

We summarise some notation that we use throughout the paper. We use “log” and “In” to denote base-2 and
natural logarithms, respectively. Define the weight |x| of a Boolean vector x € {0,1}" to be |{i: x; = 1}].
Let e; denote the vector that is 1 at location i and 0 elsewhere. For random variables X and Y, let E[X] denote
the expectation and H(X) the entropy of X, H(X | Y) the conditional entropy of X given Y, and I(X : Y) the
mutual information between X and Y. We use some basic results from information theory at certain points in
this paper; the textbook by Cover and Thomas [[11] is a good reference for all such results. We write X ~ u
to indicate that X is drawn from the probability distribution y, and X =Y to indicate that X and Y have the
same distribution. We denote the product of the distributions ¢ and v by u ® v. We use the notation X €g S
to denote that the random variable X is uniform over the set S.

There are a large number of natural notions of “distance” between two probability distributions ( and v.
In this paper, we ilse three of them: the total variation distance Dry (i, V) = ||t — v||1, the Hellinger dis-

tance h(y,v) = 7 |/t — v/V||2, where “\/-” denotes the pointwise positive square root, and the Kullback-

Leibler divergence Dy (ut||v), which is also known as relative entropy. Unlike the first two of these “dis-
tances,” the third is not a metric.

The Binomial distribution with parameters n (number of trials) and p (success probability) is denoted
B(n, p). For an integer k, (f) denotes the set of all k-subsets of S and 25 denotes the power set of S. We say
that a real quantity Q' is an (g, §)-approximation for Q if Pr[|Q' — Q| > £Q] < 8. For a real value x € [0, 1]
we let Hp(x) := —xlogx — (1 —x)log(1 —x) denote the binary entropy function; for continuity we define
H,(0) = H,(1) = 0.




2.1 The Communication Model

Traditionally, a two-party communication problem (between Alice and Bob, say) is formalised as a func-
tion, or partial function, on a domain of the form X x Y, where the finite set X (resp. Y) is the set of Alice’s
(resp. Bob’s) possible inputs. For our purposes, it is helpful to think of the input domain represented differ-
ently. We shall think of an input as an m-tuple of fokens, where the tokens are given to the players according
to a random allocation drawn from a known distribution. Thus, it will help to represent the input domain as
X1 x Xy x -+ x Xy, where X; is the set of possible values for the ith token. Typically, each X; will be either
the set {0, 1} or the set [N] := {1,2,...,N}, for some positive integer N. An allocation amongst p players is
then a function o : [m] — 2[7).

A natural and interesting special case of an allocation is a split, where each token is given to exactly
one player selected at random (not necessarily uniformly) from amongst all players. It will be convenient to
think of splits as functions & : [m] — [p]. A further special case is that of a uniform split, where each token
is equally likely to go to each of the players: we let {/, denote the probability distribution of a uniform split
amongst p players.

Definition 2.1 (Communication Problems and Protocols). A random-allocation communication problem
for p players consists of a function f : X; X --- X X;;, — Z and a probability distribution v on allocations
o :[m] — 2[P] A traditional communication problem is a special case, where Vv is supported on a single
allocation (that is typically a split). Protocols, unless explicitly qualified otherwise, are assumed to be
randomised, with the players having access to private as well as public coins. (For a formal definition of a
“protocol,” we refer the reader to a standard textbook, such as Kushilevitz and Nisan [31].) For a random-
allocation protocol P, let P(x, o) denote the (possibly random) transcript of P, and out(P,x, &) the output of
P, on input x allocated according to o. For a traditional protocol, where ¢ has only one possible value, we
drop o from these notations.

Definition 2.2 (Error, Cost, Complexity). Let P be a protocol for a random-allocation communication prob-
lem (f,Vv). We define the error

err(P, f,v) = rn;ler[out(P,x,G) # f(x)],

where the probability is taken over o ~ v and the (public and private) coins used by the protocol. If u is a
distribution on the inputs to f, we define the distributional error

erry (P, f,v) := Prlout(P,X, ) # f(X)],

where X ~ u and 6 ~ v. Let cost(P) := max|P(x,0)| denote the communication cost of P, where this
maximum is taken over x, o, and the random coins of P. We define the §-error communication complexity
of (f,v) to be

Rs(f,v) := min{cost(P): err(P, f,v) <6}

and the §-error u-distributional complexity to be
R, 5(f,v) := min{cost(P) :erry(P,f,v) < J}.

Let R~ and R¥ denote the restrictions of these notions to one-way and k-round protocols, respectively (the
notion of a “round” will be made precise later, when we use it). For traditional communication problems,
where there is a deterministic and well-known input allocation, we drop v from these notations.

Informally, a communication lower bound is robust if it applies to Rs(f,Vv) or R, 5(f,v) for some
high-entropy distribution v, such as the aforementioned /,,.
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2.2 Technique Preliminaries

In this section we introduce some of the main techniques that we use to establish our results. These are all
based on considering random input in addition to random splits.

The notion of information complexity has been used on many occasions in the study of communication
protocols [5}8,[10,28]]. Loosely speaking, information complexity is used to establish a direct sum result,
which reduces the problem of lower bounding the complexity of a “compound” problem (here, disjointness)
to that of lower bounding the complexity of a simpler “base” problem (here, the AND function). The direct
sum result follows from a simulation argument, where we design a protocol for the base problem that
randomly pads its input to generate an artificial input for the compound problem and then simulates a
protocol for the compound problem. Here, for our robust lower bounds for set disjointness, we need to
consider information complexity in a setting that allows both public and private coins. This is a subtle
matter: we must condition on the public coin to have a meaningful notion of information complexity. At the
same time, we must be careful about how the public coin is used in the simulation argument, ensuring that
we do not introduce undesirable correlations in the random padding.

Definition 2.3 (Information cost and complexity). Let PR be a protocol that uses a public random string
R (in addition to any private random strings that players use) and let ¢ be a distribution on its inputs. We
define

icost, (P®) := I(X : P*(X)|R), whereX ~p.

Let D be a random variable, possibly correlated with X, but independent from R and any private randomness
used in P. We define the D-conditional p-information cost

icost, (PX | D) := 1(X : P*(X) | D,R).

For each information cost measure above, we define a corresponding information complexity measure in the
natural way, e.g., for a communication problem f,

IC, s(f) := inf{icosty(P): err(P,f) < &},
where P ranges over protocols that are allowed both private and public coins.

We also consider random inputs X ~ i in another setting. Some of our lower bounds will use a reduction
from a communication problem in the fixed-partition model to one where the allocation o ~ V. In these
reductions, the players choose o using public random bits, but then distributing the input tokens according to
o would seem to necessitate communicating a large fraction of the data and this would render the reduction
useless. The solution is to use distributional lower bounds on fixed-partition problems. This suggests that
the players may “guess” data that they do not know. Unfortunately, the issue that arises is that this guessing
may be correlated to the distribution of . However, the following lemma connects us back to the “usual”
situation, when inputs and allocations are independent of each other, provided this correlation is sufficiently
weak.

Lemma 2.4. If a protocol P satisfies Pr(, 5).g[out(P,x,0) # f(x)] < 6, for some joint distribution &, then
for all input distributions W and allocation distributions v,

ety (P, f,v) < 6+Drv(p®v,§).
Proof. Simply observe that

ey (Pf.v) = Pt [out(Px,0) £ f(¥)] < Pr [out(P.x,0) # f(x)]+Drv (u@v.). O

x~[,0~V (X,G)Né



2.3 Preliminary Lemmas

We collect together a few basic results that we appeal to at various points in the paper. The first result is a
sharp lower bound on the communication complexity of the INDEX problem. In this problem, Alice holds a
string x € {0,1}" and Bob holds j € [n]. The goal is for Bob to learn x;. See, e.g., Ablayev [1]] for a proof
of the following result.

Lemma 2.5. Let n > 0 be an integer and 8 € (0,3) be a real number. Then we have Ry (INDEX) >
(1 =Hy(6))n. O

The second result is a well-known calculation giving a pair of probability bounds about what is often
called the “birthday problem.”

Lemma 2.6. For t,p € N, let a(t,p) denote the probability that t independent random variables, each
drawn uniformly from [p], do not take t distinct values. Then

—1 :
1t 0/CD) < g(r,p) = 1_H<1_l> <

i=1 p

The third result upper bounds the total variation distance between binomial distributions with similar
parameters. The proof of this lemma is presented in Appendix

Lemma 2.7. There exists a constant ¢ > 0 such that for all g € [1/2,1), r € (0,1), and a,w € N,

w 2
7 <r = Dyv(B(a,q),Bla—w,q)) < cir ln;,
where v = aq(1 — q) is the variance of B(a,q). In order to define the total variation distance above, we treat
the binomial distribution B(n,p) as a distribution on the set of all non-negative integers, rather than just

{0,1,...,n}.

3 Multi-Party Set Disjointness

Let DISY,, : {0,1}" — {0,1} denote the following problem. The input is an (nf)-tuple of bits denoted
{Xij}iep, jejn)» to be thought of as the entries of a # x n Boolean matrix. The input satisfies a unique intersec-
tion promise, namely, each column of the matrix has weight in {0, 1,7} and at most one column has weight
t. The desired output is V?: 1 /\5: 1 Xij. Gronemeier [[19] culminated a line of work [3,|5,8] on this problem,
showing that Rs(D1SJ,, ;) = Q(n/t) under a r-player split where each player receives one row of the matrix.

Let AND; : {0,1} — {0, 1} be shorthand for DISJ;,. That is, the input is a z-tuple of bits x = (xi,...,x;)
that satisfies the promise |x| € {0, 1,¢}. The desired output is A}_, x;. Let D €g [t] and X €g {0,ep}. Denote
the resulting joint distribution of (X,D) by A and the marginal distribution of X by u. The lower bound
of [19] follows by carefully analysing IC,, s(AND; | D) and using the direct sum techniques of Bar-Yossef
et al. [3]] to link this quantity with IC“nvg(DISJnJ | D).

Here, we consider the random-allocation communication problem (DI1SJ,;,,) for some suitably large
number, p, of players. We now prove a robust lower bound on its complexity by extending the earlier
techniques.

Lemma 3.1. Let 8’ = 6 + a(t, p). Then

Rs(D18T,1,Up) > n-1C, 5/(AND; | D).



Proof. Let PR be a minimum-cost §-error protocol for (DI1SJ,,U,) that uses a public random string R,
possibly in addition to private randomness. Then cost(P®) = Rs(D1SJ,,;,U,). Consider n independent pairs
of random variables (X;,D),...,(X,,D,), each drawn from A. Then X := X;X,...X, ~ u" is a suitable
random input for DISJ, ;. Let § ~ U, be a random split. Then, by standard information theoretic arguments,
we have

cost(PR) = IE%X|PR(X,G)\ > H(PR(X,S))

I(x : PR(X,S) | D\D...D,,R,S)

Z I(X; :PR(X,S)|D\D,...D,,R,S) €))
JE[n]

Z Ed[I(Xj : PR(X7S) |Dj?R>S7D*j :d)]a

J€(n]

AVARIY

where (I) holds because the X;s are independent even after conditioning on D1D;...D,,R, and S. Here,
D_; denotes the vector (Dy,...,Dj_1,Dji,...,D,) and the final expectation is over d drawn uniformly
from [r]"\/}. To finish the proof, it suffices to show that

cja = I(X;: P*(X,S)|D;,R,S,D_;=d) > IC, 5(AND, | D),

for each j € [n] and each d € [r]"\/}, To this end, we shall design a certain &-error ¢-party traditional
protocol Qi’j for AND,, parametrised by j and d, that uses (R, S) as a public random string. Further, for each

possible value (p, o) of (R,S), the transcript Q’; 7 (X;) will either be constant or be distributed identically to

(PR(X,0) | R=p,D_; =d), and the players will know which case they are in based on ¢ alone. Then, as
required, we shall have
i S . RS
ICH’SI(ANDt ‘D) < ICOStu( id ’DJ) = I(Xj : Qj7d(Xj) |Dj,R,S) < Cja-
The protocol Q’; ’; works as follows. On input x = (x,...,x) € {0, 1}/, the  players create a random virtual
input {Z }ix € {0,1}"*" for DISI,,, pretend that this input has been split according to 6 amongst p virtual
players, and then, if possible, simulate the behaviour of these virtual players when they execute PP on the

virtual input. The virtual input is obtained by embedding x into the jth column of a random Boolean matrix
drawn from (u"|D_; = d). To wit:

{x}, ifk=,
Zy €r {0}, ifk# jandd(k) #£i,
{0,1}, ifk# jandd(k)=1i.

Therefore, the simulation is possible iff o assigns each of the inputs (Z;;,...,7Z;) to a distinct virtual
player; we shall say that o ramifies if this condition is met. If ¢ does not ramify, the protocol ends im-
mediately (note that all players know ¢ so this happens without any communication), leading to a constant
empty transcript and an error probability of 1.  If ¢ does ramify, then Player i plays the role of that
virtual player who is assigned Z;; by 6. The crucial observation that makes this role-playing possible is
that all the other bits assigned to that virtual player are available to Player i, because they are either set
to 0 or can be drawn uniformly at random from {0, 1} using Player i’s private coin. All virtual players
who are not assigned any of the inputs {Z;; };c|y are simulated by Player 1 (say). Thus, if o ramifies, then

Qﬁ’; (X;) = (P*(X,0) |R=p,D_; =d). Finally, Qﬁ’j is indeed a &’-error protocol, because

err(Qf’j,AND,) < Pr[o does not ramify| +err(P¥, D181, ,,U,) = a(t,p)+5 = §. O



Lemma 3.2. There exists a constant ¢ > 0 such that, for all 6 € (0,1/10) and t > 2, 1C,, 5(AND, | D) > c/t.

Proof. This result can almost be deduced from Gronemeier [19], except for the subtlety introduced by public
coins. Specifically, from the work of Gronemeier we can deduce that for a private coin traditional protocol
P such that err(P, AND,) < 1/10, we have icost, (P | D) = Q(1/t).

To complete the proof, we show that public coins cannot help reduce information complexityonsider
a general §-error protocol Q% for AND;, that uses a public random string S (recall that Definition allows
such a protocol to use both public and private coins). Let P be a private coin protocol in which Player 1
generates S privately and announces it to all players, following which the players simulate Q5. Clearly,
err(P, AND, ) = err(Q%, AND;). The transcript of P on input X is precisely (S,Q5(X)). Thus,

icosty (P | D) =1(X : $,0%(X) | D) =1I(X : S| D) +1(X : Q5(X) | D,S) = icost, (0 | D),

where the second step uses the chain rule and the third step uses the independence of S from (X, D). Com-
bining this with the private-coin lower bound completes the proof. O

Putting together Lemmas[2.6] [3.1) and [3.2] yields the following theorem.

Theorem 3.3. Forall § € (0,1/20), t =t(n) > 2, and p > 10t?, we have the robust lower bound
Rs(DI1SI,,,U,) = Q(n/t).

We note that in order to get this kind of robust lower bound for DISJ,; under U/, that increases lin-
early with n, we must make p, the number of players, as large as (%) for constant §. This is because
when an input x such that DISJ,,(x) = 1 is allocated to p players, with probability a(z,p) there exists a
player that receives at least two tokens from the all-ones column. Therefore, a simple O(p)-communication
protocol, where each player announces whether or not they have received two 1s from the same col-
umn, has error probability at most 1 — o(z, p). By Lemma [2.6] we now have Rs(D1SJ,.,,U),) = O(p) for

p<t(t—1)/(2In(1/8)) = O(¢?).

4 Pointer Jumping and Selection

We now consider the tree pointer jumping problem TPJy ;, defined as follows. (In reading this section, it will
help to think of ¢ as growing and k as fixed.)

Definition 4.1 (The tree pointer jumping function). Consider a complete k-level ¢-ary tree, T, rooted at
vo. We use the convention that the leaves are at level 1 and the root at level k. The input is a function
o :V(T) — [t], with ¢(v) € {0,1} if v is a leaf of T. We shall call such an input a “k-input” and shall
sometimes view it as a labelling of V(7). Define g(v) to be the ¢ (v)-th child of v if v is an internal node,
and ¢ (v) if v is a leaf. The desired output is TPJ; ,(¢) := g®) (vo) = g(g(---g(vo)---)) € {0,1}.

There are at least two natural ways to make a traditional communication problem out of TPJ;;, both of
which are of interest to us. The first way is to have two players, Alice and Bob, with Alice (resp. Bob)
receiving the values of @ (v) for odd-level (resp. even-level) vertices v; recall that leaves are at level 1. The
second way is to have k players, with Player i receiving the values of ¢ (v) for vertices v on level i. When
speaking of communication problems, we shall use TPJ,; to denote the former, and M-TPJ;; to denote the
latter (“M” for “multi-player’). For k = 2, the two definitions coincide and we obtain the well-studied INDEX
problem, for which strong one-way lower bounds are known [1]], with numerous implications for stream

I'This observation is folklore but we have included a proof for the sake of completeness. Note that this situation is in contrast to
standard communication complexity, where the public-coin complexity could be smaller than the private-coin complexity.



computation. In particular, Guha and McGregor [22] use a reduction from INDEX to obtain a tight (up to
logarithmic factors) space lower bound for estimating the median of a randomly ordered stream of numbers
in one pass. This lower bound was subsequently extended to multiple passes by Chakrabarti, Jayram and
Pétragcu [[7] via a rather different (and intricate) proof.

As a consequence of the robust communication lower bounds we prove in this section, we obtain a con-
siderably simpler and improved multi-pass streaming lower bound for median ﬁndin The five theorems
in this section can be organised into two parallel chains of implications, each consisting of three stages and
culminating in a lower bound for the MEDIAN problem, as follows.

Stage 1: We prove a multi-round lower bound on the communication complexity of an appropriate “source
problem,” which is either M-TPJy,, as in Theorem or TPJy;, as in Theorem 4.9

Stage 2: We reduce the source problem to an intermediate problem that we call weight-based tree pointer
Jumping, or W-TPI; ,, defined below. At this stage, we have a robust lower bound for W-TPJ; ,, under
an allocation distribution that depends on the source problem we started with. These reductions appear
as Theorems 4.8l and below.

Stage 3: Finally, we reduce W-TPJ; , to the MEDIAN problem, as in Theorem @ obtaining a robust lower
bound for the latter. This reduction does not depend on the choice of the source problem.

The precise notion of a “round” is crucial here, and is different for the two parallel chains of implications.
When using the two-player problem TPJ;; as the source, a round consists of a single message, from either
Alice or Bob. The player that does not know ¢(v) speaks first. When using the multi-player problem
M-TPIJy, as the source, a round consists of one message from each of the k players, speaking in the fixed
order Player 1, ..., Player k (recall that Player 1 holds the labels of the leaf nodes).

Definition 4.2 (Cost and Complexity, Multi-Round). Fix one of the two notions of a “round,” as described
above. We define the notations RZ‘ s(f,Vv), etc., as in Definition [2.2} with protocols restricted to k rounds.
The cost of a round is the maximum possible fotal number of bits communicated by the players who speak
in that round. The cost of a protocol is the maximum cost of a single round.

The next three subsections are organised thus. We first present the Stage 3 reduction, then the Stage 1
and Stage 2 theorems for the implication chain that starts with M-TPJ;,, and then deal with the chain that
starts from TPJ;,. We choose to present the M-TPJ chain first, and in greater detail, because it ultimately
implies stronger lower bounds for data stream computation. Furthermore, the Stage 1 theorem in this chain
(Theorem [4.4)) is a fundamental and interesting result in communication complexity in its own right that, to
the best of our knowledge, has not been proven before.

4.1 Weight-Based TPJ and a Reduction to Selection

We now define the problem W-TPJ; ,, mentioned above. It is closely related to TPJ;, and M-TPJy; (with n
determined by k and ¢); as before, the input can be thought of as a labelling of a complete k-level ¢-ary tree.
However, the labels are presented differently: instead of specifying ¢ (v) directly, the input specifies a binary
string x, € {0, 1}% for each level-i node of T, where the lengths a; are parameters to be fixed later, and the
Hamming weight of x, implicitly determines ¢ (v). If v is a leaf (i = 1), then @; = 1 and ¢ (v) = x, = |x,|.
Otherwise, |x,| uniquely determines ¢ (v) via the following equation:

i 1
il = 5+ (0005 )i, @

2Qur results, like the earlier ones [[7,22], apply to the more general problem of selection.



where b; is the total length of all strings associated with nodes in the subtree rooted at a level-i node,
i.e., bj = a;+1tbi_; and by = 1. We will only define W-TPJ;, on inputs such that each |x,| determines a
value ¢(v) in the range {1,...,¢}. In particular, each a; will need to be “large enough” so that Eq. (2)
is feasible. Let x € {0,1}" be the concatenation of all the strings x,. We then define the partial function
W-TPJy ,(x) := TPIx,(¢), where ¢ is determined by x as just described.

The next theorem completes Stage 3 in the above proof outline. The reduction from W-TPJ to MEDIAN
used in its proof is along similar lines to one by Guha and McGregor [22]].

Theorem 4.3. Let MEDIAN,, y denote the random allocation communication problem where the input con-
sists of m tokens (xi,...,xy) € [N]" and the desired output is the median of this collection of tokens. For
any 8 > 0, any allocation distribution v, and any number p > 1 of rounds of communication, we have
R (MEDIAN,, g(s), V) > RE(W-TPJ, 41 0, V).

Proof. Let k= p+ 1. We reduce W-TPJ to MEDIAN. Let T be a complete k-level r-ary tree as usual, and
let x = {x, },cy(r) be an input to W-TPJ; ,. Our reduction will associate a pair of integers (o(v),(v)) with
each v € V(T) such that the following properties are satisfied.

1. For each leaf v, we have a(v) =0 (mod 2) and B(v) =1 (mod 2).
2. For each strict descendant v of each internal node u, we have a(u) < a(v) < B(v) < B(u).
3. If v; and v; are the ith and jth children of u, with i < j, then B(v;) < a(v;).

Further, it will associate a multiset A(v) with each v € V(T) as follows. If v is a level-i node, then A(v)
consists of a; — |x,| copies of a(v) and |x,| copies of B(v). The properties above, together with Eq. (2)),
ensure that
W-TPJ(x) = median( U A(v)) mod 2;
veV(T)

this can be justified by a straightforward induction on k. The reduction itself works by having each player
generate one element of UVeV(T)A(V) per bit of x allocated to her. This is done in the natural way: if the bit
in question corresponds to a node v, then she generates the element ¢ (v) if the bit’s value is 0 and B (v) if
the bit’s value is 1.

It remains to demonstrate that suitable values (a(v), (v)) satisfying the above properties exist. Here is
an explicit construction. We use the notation v[ig, ..., ;] to denote the i -th child of v[ig, ...,i;_1], with v[ ] be-
ing the root of T. Set B=2[(t42)/2] and let (hy,h;_1,...,h)p denote the quantity Y*_, B 'h;, i.e., a base-
B representation. We now set a(v) = (i, ...,ij+1,0,0,...,0)g and B(v) = (ik,...,ij+1,t +1,0,...0)p, for
each internal node v = v[i,...,i;+1] at level j. For each leaf node v = v[i,...,i], let at(v) = (i, ...,i2,0)p
and B(v) = (i,...,i2,1)p. One can easily verify that this construction has the properties claimed. O

4.2 A Robust Multi-Player Lower Bound

We now fill in Stages 1 and 2 of our proof outline, using M-TPJ as our source problem, and deriving a robust
lower bound for w-TPJ. Both problems involve (p+ 1) players, for p > 1. Recall that, in this case, a “round”
consists of one message from each player, in the order Player 1, ..., Player (p+ 1). We start by obtaining
the following traditional (i.e., “fragile”’) bounded-round lower bound for M-TPJ.

Theorem 4.4. Let L denote the uniform distribution over k-inputs (as introduced in Definition 4.1). Then,

for p=p(t) > 1, we have RZ,)+I’1/3(M'TPJ]7+1,[) = Q(’/Pz)-
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To prove this, we define an appropriate notion of information cost that is concerned only with the infor-
mation revealed in the first round of a multi-round protocol’s execution. We then use this notion to establish
an appropriate round elimination lemma, a la Miltersen et al. [33]] and Sen [37/[], which in turn implies the
above theorem.

Definition 4.5 (First-round information cost). Let P be a multi-round, multi-player, private-coin protocol
and u an input distribution for P. Let P!(x,R) denote the concatenation of all messages sent by the players
during the first round of P, where R denotes the concatenation of the random strings used by the players.
Then, we define the first round p-information cost of P as follows.

icostL(P) = I(X:P'(X,R)), whereX ~ .

As a precursor to our round elimination lemma, we prove the following multi-round analogue of a lemma
of Sen [37, Lemma 1].

Lemma 4.6 (Uninformative round lemma). Suppose a k-input Boolean function f has an r-round k-player
private-coin protocol P, in which each round costs at most C. Then, for any input distribution U, f has an
(r — 1)-round k-player deterministic protocol Q such that

emu(Q.1) < emu(P.f) 41/ T icosth(P) < ema(P )+ icost) (P),

and where each round costs at most C.

Proof. Without loss of generality, we may assume that each player uses two independent random strings
in P: one to generate his first-round message, and another to generate all subsequent messagesE] We pro-
ceed under this assumption. Let Q,, denote the (r — 1)-round protocol obtained by fixing the first round’s
communication in P to m. Define the function g by

g(x,m) = Prlout(Qu,x) # f(x)], 3)

where the probability is over the collection of second random strings used the players.

Define random variables X and M, where X ~ u, and M is the first-round communication generated
from X according to P; let A denote the resulting joint distribution of (X,M). Let 8 denote the distribution
of M. We then have

In2 In2 In2
Drv(A,u2B) < \/‘;-DKme@m - \/I;-I<X:M> = W;-icosw), )

where the first two steps are basic information theory (the inequality is often credited to Pinsker).
We can express the distributional errors of P and Q,, in terms of g, by averaging Eq. (3) in two ways:

erry (P f) = Ewmalg(X.M)]; erty (Om, f) = Exulg(X,m)].

Thus, we have

Epnplerty (Om, f)] = Exm~pepls(X,M)]
< Exmy~a[g(X,M)]+Drv (A, n®p)

In2 .
< erry (P, f)+ 7-1costL(P),

3To see why, consider a particular player who uses a random string R to generate his messages, the first such message being
M. This player can instead draw two independent random strings R and R, using R to generate M, and then R’ to draw from the
conditional distribution R | M. Finally, he can use R’ in place of R while generating all his remaining messages. It is easy to see that
the distribution of messages so generated is identical to that in the original protocol.

11



where the first inequality holds because |g(x,m)| < 1 for all x amd m, and the second inequality uses Eq. ().
Choose m to minimise erry (Qy, f), and fix the random strings used by the players in Q,, so as to minimise
the u-distributional error of the resulting deterministic protocol, Q. Then err, (Q, f) is upper-bounded as
desired. O

Lemma 4.7 (Round elimination for M-TPJ). Let p > 2 be an integer, let K and € be positive reals. Let
Wy denote the uniform distribution over k-inputs. Let A(p,K,€) denote the statement “M-TPI, 1, has a
deterministic p-round protocol in which each round uses at most t /K? bits of communication in total, and
whose distributional error under Uy is at most €.” Then A(p,K,€) = A(p—1,K,e+1/K).

Proof. Let P be a protocol whose existence is asserted by A(p,K,€). Based on P, we shall construct ¢
private-coin protocols Qj,...,Q, each for M-TPJ,,. Let T be a (p + 1)-level t-ary tree, and let 71,...,T;
denote the p-level subtrees hanging off the root, vg. Recall, from Definition that a (p + 1)-input can
be thought of as a function from V(T') to [t], or equivalently, as a labelling of V(T') using labels from [¢].
Given a p-input ¢ and an integer i € [t], let ¢(i) denote the random (p + 1)-input obtained as follows. Treat
¢ as a function from V (7;) to [¢]. Choose independent random inputs y; : V(T;) — [t], for j € [t] \ {i}, each
distributed according to ,,. Then put

i, ifV:VO’
o) = So(), ifveV(n),
vi(v), ifveV(T;) where j#i.

Let & denote the distribution of ®), where & ~ Up. Notice that &; is identical to i1, conditioned on the
label of the root being i.

Here is how the protocol Q; works. On input ¢, the players use private randomness to construct ¢’
(note that this is possible because of an appropriate product structure of ¢()), and then simulate P on this
input, using a virtual “Player p 4+ 1,” who can be locally simulated by each real player, because his input, i,
is common knowledge. Clearly, Q; only errs when its call to P errs. Therefore, we have

t

t
1
erry, (Q;,M-TPI,;) = ;Zerr(gi(P,M—TPJp+1J) = erry,,, (P,M-TPI,1,;) < €. (3)
—1 i=1

1
t !
1
Let M denote the concatenation of the messages generated in the first round by Players 1,..., p when
the protocol P runs on input X ~ (1,11, defined on the tree T'. For i € [t], let X; denote the portion of X that
corresponds to the labelling of the subtree 7;. Then we have
t t t ) 1
e > M| > I(X:M) > ;I(X,- M) = ;wostup(Qi), (6)

where the rightmost inequality uses the independence of {X;},c|,;. Combining (3] and (6), we have

1¢ 1. 1
" err“p(Q,-,M—TPJp,,)+,/;ZlcostLP(Qi) < 8+E'
i=1 i=1

Using the concavity of the square root function, plus an averaging argument, we now conclude that

1
. . ool
Jietf]: erry,(Qi,M-TPI,,) + 4 /icost, (Qi) < €+ X
Applying Lemma [.6] to this particular Q; gives us the desired protocol, thereby establishing the truth of
Alp—1,K,e+1/K). O



We now have the tools we need to prove Theorem 4.4

Proof of Theorem[d.4] Suppose that RZ /3 (M-TPJ41,) is not lower bounded as stated. Specifically, us-
12 )

p+171/6(M'TPJp+l,t) <1/(6p)*. By the
easy direction of Yao’s minimax lemma, we have A(p,6p,1/6), where the predicate A is as defined in
Lemma Applying that lemma repeatedly, we conclude A(1,6p,1/6 + (p —1)/6p), which implies
A(1,6p,1/3). Notice that M-TPJ, is just the INDEX problem with a 7-bit input. We have just shown that
this problem has a one-round protocol with error at most 1/3 under the uniform distribution and communi-
cation cost at most ¢/(6p)? < t/36. Since H,(1/3) < 12/13, this contradicts Lemma O

ing a standard error-reduction argument, we may assume that RZ

Now that we have the desired Stage 1 lower bound, we move on to Stage 2, proving the following robust
lower bound. In our proof, we use a reduction from TPJ that introduces a slight correlation between input
and split, and then appeal to Lemma[2.4]to correct for this.

Theorem 4.8. Let p = p(n) > 1 and let V)1 be the (non-uniform) split distribution that gives each token
to Player 1 with probability % and to Player i with probability y:=1/(2p) for eachi € {2,...,p+1}. Then

1 -1
Rf/24(W‘TPJp+1,mVp+1) = Q <”(pl)2p+]+2 /q(n,p)> , where q(n,p) = p2 (Cp3 logn) (p-12rte2

for some large constant c. Note that g(n, p) = polylog(n) for constant p.
Thus, for every constant € > 0, when p is large enough, we have

R117/24(W‘TPJP+1,H7VP+1) = Q(n* "),

Proof. Let P be a protocol for (W-TPJ,V,11) such that err(P, W-TPJ,V, ;) < i. We will use P to construct
a protocol Q for M-TPJ such that erry (Q,M-TPJ,1,) < 1/3, where u is an arbitrary distribution with the
property that, for an instance ¢ ~ u, we have ¢ (v) €g {0, 1} for each leaf node v. Note that, in particular,
this will imply erry,,., (Q,M-TPJ,11,) < 1/3. The result will then follow by invoking Theorem 4.4

In Q, the players first use public randomness to transform an input ¢ for M-TPJ into an input x for W-TPJ
together with a random split of its tokens. They then proceed to simulate P on this instance. Recall the
notation a; and b; from the start of Section We set

a; = (Cp3t2(p+2) logn)z"*l71t72(3-2f*17i72) 7)

for some large constant ¢ to be determined. For each node v, the players use the following public coin
randomised procedure to determine a bit string x,, and an allocation of its bits to the players in P.

If v is an internal node at level i: Choose random integers d, ~ B (%,1—7) and do, ~ B(%,1—7), as
well asaset S, eg (, ) ). Let S, =slU...usi " USHU...USY™" be a random partition where,

. dlt'+d0t'
foreachk € S,
- 1— if j#£1
Pr[keSﬂ _ v/( Y), 1]7’é )
1/2(1-y)), ifj=1,

and put S, = [a;]\ S, ' Player j will be allocated the values {x, s : k € SI}. Randomly set d;,, of the bits
{xpp kesS; i } to 1 and the remaining dj, bits to 0. Notice that all of this is done without reference to
the input ¢.

Player i uses ¢ to determine a target weight |x, | for the string x,, based on Eq. (2). Notice that many
of the bits of x, have already been fixed by the construction so far. Player i sets the free bits in such
a way as to achieve this target weight, i.e., she randomly sets |x,| —di, of the bits {x,; : k€ S} to 1
and the remaining bits to 0. Note that this requires d}, < |x,| < a; — dy,; if this condition fails to hold,
the protocol aborts and outputs a uniform random bit.
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If v is a leaf node: In this case x, is a single bit. Allocate this bit to a random player, with Player 1 being
chosen with probability % and every other player being chosen with probability 7. If the bit is allocated
to Player 1, she sets x, = ¢ (v). Otherwise, the players set x, €g {0,1}.

This completes the description of Q. Because V), allocates each token to the first player with probability
1/2, and ¢ assigns a uniformly random bit to each leaf, we have

Pr[W-TPJ(x) = TPJ(¢) | the protocol Q does not abort] = % + % . % = % .

It remains to show that the bit string x and the allocation ¢ generated in the reduction are sufficiently
close to being independent. Note that the marginals are correct: we do have o ~ V,, 1 and, for each leaf v,
the value of x, is indeed chosen according to a uniform setting of ¢ (v). The issue is that the joint distribution
is not a product distribution. However, note that had d;, and d, been chosen according to B(|x,|,1 — ) and
B(a; — |x,|,1 —7), respectively, then ¢ and x would have been independent, and furthermore, the protocol

would not abort. For each internal node v at level i, let
AV = B(%vl_y)7 BV = B(%al_’}/)7
Ay = B(lx|,1—=7), B, = Blai—|x],1—7).
Then it suffices to show that the product of the distributions A, and B,, over all internal nodes v, is sufficiently

close to the corresponding product of A, and B,. Using Lemma 2.7 with the fact that ||x,| — a;/2| < 1b;_1,
we can bound the total variation distance in terms of a; and b; as follows,

Dry <®(Av®év>, ®<AV®BV)> < YD (AA) + Y Drv(B,,B,)

v v
ptl [[’+2*l‘b.
< O(+/logn) Y -t
=2 ai/p

where the first inequality follows from the triangle inequality. Noting that b;_; < 2a;_1 and by substituting
in the value for a;, we get

Valp = Nalp (@0 logn? 1A GT2 T Jepr i /logn

Therefore,

bi—1 < 2a;_1 2\/ﬁ(cp3[2(17+2) 1Ogn)2i’271t72(3-2"’27i71) ’

D <®(A @ B,), QA @B )> < o(iogn) Y VP o)y L o)
TV v v)s v v > ogn _— = _ =
v v i=2 \/67’ =2 \Ep \ﬁ
and the distance can be made less than 21—4 for sufficiently large constant c. By Lemma
1 1 1
erry (Q,M-TPI 11 ,) < 2t +err(P,W-TPJ 1., Vpi1) < 3

As noted above, this implies the same upper bound on erry, (Q,M-TPJ p+17,). Therefore, by Theorem ,
RY oy (W-TPIp 1, V1) = Q(t/p*).
Note that
n=by < 2cp 2P 1ogn)? 14232 =3 — o(cp3 logn)zp_lt(P—l)z”“-ﬂ’

and hence,
1 2P —1
t = Q(n TR/ (cplogn) TR ), O
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4.3 A Robust Two-Player Lower Bound

Finally, we revisit Stages 1 and 2 of our proof outline, this time using the 2-player problem TPJ;; as our
source problem. Now a “round” consists of one message from either Alice or Bob. The traditional (fragile)
lower bound that we need for Stage 1 can be deduced from the work of Klauck et al. [30]], who in fact studied
the problem in the more general quantum communication setting. The underlying intuition is, once again,
round elimination.

Theorem 4.9. For p= p(t) > 1, we have RZ 13 (TPIpi1,) = Q(t/p?), where Ly is the uniform distribution
over k-inputs (as introduced in Definition . O

For Stage 2, we obtain the following robust lower bound for W-TPJ, using a proof that closely parallels
that of Theorem {8} as before, our reduction from TPJ introduces a slight correlation between input and
split, and we use Lemma[2.4]to correct for this.

Theorem 4.10. For each p = p(n) > 1,

2P—1

P S P
RY )0y (W-TPIp 1, l) = Q (n(”‘”z"*'” / Q(rl,p)> , where g(n, p) = p* (cp®logn) ¢-127 152

for some large constant c. Thus, for every constant € > 0, when p is large enough, we have
p _ 2+¢€)7P
RY oy (W-TPI 1, l) = Q(nT9)7).

Proof. Let P be a protocol for (W-TPJ,U>) such that err(P,W-TPJ,U,) < 5. We will use P to construct a
protocol Q for TPJ that works with probability at least 2/3 on any instance ¢ when ¢(v) €g {0, 1} for each
leaf node v. In Q, Alice and Bob first use public randomness to construct an input x for W-TPJ together with
a random split of its tokens. They then proceed to simulate P on this instance. We first define

a; = (cp2t2(p+2) logn)zi”—1t—2(3.2f*'—i—2) 8)
for some large constant c. For each node v, the players use the following public coin randomised procedure
to determine a bit string x,, and an allocation of its bits to the players in P.

If v is an internal node at level i: Choose random integers d, ~ B (%,1/2) and do, ~ B (%,1/2), as well

as a set S, €g ( dlfjj]dov). First assume i is even. Alice determines {x,; : k € S,} and, uniformly at
random, sets dj, of these tokens to 1 and the remaining dy, tokens to 0. Notice that all of this is done
without reference to the input ¢. Bob then uses ¢ to determine a target weight |x, | for the string x,,
based on Eq. (2). Notice that many of the bits of x, have already been fixed by the construction so far.
Bob sets the free bits in such a way as to achieve this target weight, i.e., he randomly sets |x,| — d,
of the bits {x,x : k ¢ S,} to 1 and the remaining bits to 0. Note that this requires d;, < |x,| < a; —do;
if this condition fails to hold, the protocol aborts and outputs a uniform random bit. If i is odd then

Alice and Bob’s roles are reversed.

If v is a leaf node: In this case x, is a single bit. Allocate this bit to a random player, with Alice and Bob
being chosen with equal probability. If the bit is allocated to Alice, she sets x, = ¢(v). Otherwise,
Bob sets x, €g {0, 1}.

This completes the description of Q. Because U, allocates each token to Alice with probability 1/2, and ¢
assigns a uniformly random bit to each leaf, we have

1
Pr[W-TPJ(x) = TPJ(¢) | the protocol Q does not abort] = 3 +

| =
| =
N
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It remains to show that the bit string x and the allocation ¢ generated in the reduction are sufficiently
close to being independent. As in the proof of Theorem .8 we note that the marginals are correct: we do
have ¢ ~ U, and, for each leaf v, the value of x, is indeed chosen according to a uniform setting of ¢ (v). The
issue, as before, is that the joint distribution is non-product. However, note that had d, and dj, been chosen
according to B(|x,|, 1/2) and B(a; —|x,|, 1/2), respectively, then ¢ and x would have been independent, and
furthermore, the protocol would not abort. For each internal node v at level i, let

—B( al,z) —B( a,,z) A, ::B(\xvl,%), B, ::B(ai—\xv\,%).

Hence, we need to show that the product of the distributions A, and B,, over all internal nodes v, is suffi-
ciently close to that of all A, and B,. Using Lemma we can bound the total variation distance in terms
of a; and b; as follows,

Dry (@(Amm ®<AV®BV>> < Y Drv(A.4,)+ Y Drv(B,.5,)

v v

+1 2—i
p tp+ lbifl

< O(y/logn) ; —Jz

where the first inequality follows from the triangle inequality. Noting that b;_; < 2a;_; and substituting in
the value for a;, the distance can be made less than 2—14 for sufficiently large constant c. By Lemma

1 1
erry (Q, TPIpt1,) < 4+24—|—err(P,W—TPJp+17n,L{2) < 3
Therefore, by Theorem
RY 5y (TPIp10,l) = Q(t/p?).

Note that
n — bp+1 < Z(sztz(p+2)logn)zf’—lt—z(3.2p_p_3) _ Z(CPZlogn)ZI’_]t(p—l)Zl"H-‘rZ’

and hence,
2P—1

t = -Q( m/(cpzlogn)m> . .

5 Hamming Distance and Index

In this section, we prove robust lower bounds for the fundamental communication problems INDEX and
GAP-HAMMING-DISTANCE.

5.1 Hamming Distance

The GAP-HAMMING-DISTANCE problem (henceforth, GHD) was first formally stated in the context of data
stream lower bounds [26}29,|41]: the central goal is to determine whether the Hamming distance between
two binary strings is “low” or “high,” with a certain gap (given by a parameter, G) between the demarcations
of “low” and “high.”” To be precise, define the function A : {0, 1}** — Z by

A(x) := [{i€n]: xo #x2-1}], forxe{0,1}*".
For G € R*, we then define GHD,, G : {0,1}*" — {0,1,x} by

0, ifA(x)>n/2+G,
GHD,g(x) := <1, ifA(x)<n/2—

*, otherwise,

16



TR

where “x” can be interpreted as “undefined.” Equivalently, a computation problem corresponding to the
function GHD,, ¢ can be thought of as a promise problem, where we are promised that A(x) does not fall
between n/2 — G and n/2+ G. Traditional (i.e., “fragile”’) communication lower bounds for this problem,
where Alice receives x1,x3,...,x2,—1 and Bob receives x,,x4, . ..,X2,, have been heavily studied recently. In
particular, Chakrabarti and Regev [9] show that R(GHD,, ) = ®(min{n,n?/G*}); see, also, Sherstov [38]]
and Vidick [40].

For a number of reasons (in particular, the data stream applications) the problem is most interesting
when we set G = ©(y/n). We shall prove an optimal robust lower bound for the problem in this setting.

Theorem 5.1. There exists a constant ¢z > 0 such that

Rl/4(GHDn,C3\/ﬁvu2) = .Q.(I’l)

Remark. It is worth pointing out that c¢3 needs to be sufficiently small for the theorem to hold. In fact,
for a sufficiently large constant c4, we have Ry /4(GHD,, ., sz,U2) = 0. This is in contrast to the case of the
standard fixed-partition version of GHD, which remains hard at all gaps in @(/n).

The theorem will be proved by a reduction from the GHD problem in the standard setting where Alice and
Bob hold x1,x3,...,x,—1 and x2, x4, . .., X2, respectively. Before presenting the actual proof, it may be useful
to consider a proof attempt that will not work. Specifically, suppose Alice and Bob use public randomness
to determine a random split 6. If 6(2i — 1) = 1 and 6(2i) = 2, then Alice and Bob already know the relevant
bits of x. If 0(2i — 1) =2 and 6(2i) = 1, then Alice could use xy;—; in place of xp; and Bob could use x»;
in place of xp;_; since this will not change the Hamming distance. However, if 6(2i — 1) = ¢(2i) then the
relevant player will not know both xp;_ and x,; so suppose that he or she picks the unknown bit randomly.
If y is the resulting bit string upon which the protocol is being simulated and GHD,, \/,;(x) € {0,1}, then it
can be shown that GHD,, /;(x) = GHD,, . () with probability 0.99 if ¢ > 0 is a sufficiently small constant.

Hence, it would appear that we can conclude that any protocol for GHD,, . /; in the random-allocation
setting can be used to solve GHD,, /; in the traditional setting and therefore imply a lower bound. Unfortu-
nately this is incorrect. The correctness guarantee of a protocol in the random-allocation setting is that for
any input y, if the bits of y are partitioned uniformly at random, then the protocol should be correct with
the required probability. This guarantee naturally still applies if y is chosen according to some distribu-
tion and the bits are partitioned uniformly at random, but only if the distribution of y is independent of the
partitioning, which is not the case in the above attempt at a proof, since

1/2 ifo(2i—1)=0(2i),
Prys—1©ys=1] = . : :

Alx)/n  ifo(2i—1)# o(2i).
We address this issue in the proof by padding the original instance of GHD with extra coordinates such that
the weak correlation in pairs of bits that are split between the different players is masked by the random
bits in the extra coordinates. There will be a small correlation between the resulting string and the random
allocation but, by setting parameters appropriately, we will be able to make this correlation arbitrarily small.

Proof of Theorem[5.1} Lety € {0,1}?" be an instance of GHD in the standard setting where y; is known to
Alice if i is odd and known to Bob if i is even. Define g by A(y) = n/2 + g. Distinguishing whether g > \/n
or g < —/n requires Q(n) bits of communication [9] in the standard setting. This bound also applies if we
promise /7 < |g| < 104/n since the lower bound applies even when y € {0, 1}%" and under this distribution
the promise is satisfied with constant probability. Henceforth, we assume /n < |g| < 10+/n.

Using y and some public randomness, Alice and Bob generate an instance z € {0,1}?” in the robust
setting, together with a split o, where m = cn for some large constant ¢. The pair Z = (z,0) will have the
properties that z and o are nearly independent, and that GHD,,  /(y) = GHD,, /(2).
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It will be helpful to generate (z,0) by first generating five sets So,S1,Do, D, and Dijpnpy; that partition
[m]. For b € {0, 1}, S includes i if the (2i — 1)th token and the (2i)th token are received by the same player,
ie., 0(2i—1)=0(2i),and z2;—1 Dz2; = b. For b € {0, 1}, Dy, includes i if the (2i — 1)th token and the (2i)th
token are received by different players and zp; | & z2; = b. The set Djppy encodes a further n index pairs that
will be received by different players and where

22i-1 D 22i = Yar(i)—1 DYaz(i) »

where 7 is a random bijection between [n] and Djppy.

To determine Sy, S1, Do, D1, and Djyput, we proceed as follows. Using public randomness, Alice and Bob
choose independent random integers so,s; ~ vV where Vv is the distribution 5 (m/2,1/2) conditioned on the
event that the value is at most (m —n) /2. Let (So,S1,E, Do, D) be a random partition of [m] conditioned on

ISo| =50, |Si|=s1, |E|=n, |Do|=(m—n)/2—s¢, and |Di|=(m—n)/2—s;.
Alice and Bob then choose (z, ) uniformly at random conditioned on the choice of the above sets:

e For i € DyUD; USpU S, Alice and Bob know zp;_1 @ zp; = b and hence the pair (z2;-1,22i) €r
{(0,b),(1,1 —Db)} can be determined using only public randomness.

e For i € Dippus, let r; be a public random bit. If 6(2i — 1) = 1 and 6(2i) = 2 then Alice sets zo;—1 = 1; ®
Yar(i)—1 and Bob sets zo; = r; @ yyz(;). If 6(2i — 1) =2 and 6/(2i) = 1 then Alice sets z2; = 1; © Yoz (i)
and Bob sets 25,1 = r; P Y2z (i)- In each case, z5;,—1 and zp; are chosen uniformly at random conditioned

on 221 D 22i = Yan(i)—1 P Yon(i)-

Observe that A(z) = [S1] + |D1| +A(y) = (m—n)/2+n/2+g = m/2+g. Therefore GHD,, . (y) =
GHD,, /(z) as required.

Suppose P is a robust protocol with failure probability 6. In the above reduction, z and ¢ are not
generated independently but we will show that P still has a failure probability at most 0 4+ 1/5 on the inputs
we generate. To do this, we consider a second distribution over instances Z'; this distribution is purely for the
sake of analysis and Alice and Bob will not have sufficient information to generate instances according to this
distribution. To generate Z’, choose so ~ B (m/2—g,1/2) and s; ~ B(m/2+ g,1/2) and let (So, S1, Do, D1)
be a random partition of [m] conditioned on

‘S()‘ZSO, ‘S]‘ZS], |D0\:m/2—g—s0, and \Dl\:m/2+g—s1,

and we set the values of 6(2i — 1), 0(2i),z2i—1, and zp; uniformly at random conditioned on the choice of
these sets. Note that the distribution of Z and Z’ is identical conditioned on the values of sy and s;. Further-
more, Z' is distributed according to a product distribution and hence P outputs GHD,, ;(z) = GHD,, /5 (y)
with probability at least 1 — & on this distribution. Hence, if &’ is the failure probability of P on the distribu-
tion of Z:

§' <5+ Dry (v, B(m/2—g,1/2)) +Dry (v, B(m/2+¢,1/2))
< 8+2Pr[B(m/2,1/2) > (m—n)/2] + Dry (B(m/2,1/2), B(m/2~,1/2))
+Drv(B(m/2,1/2), B(m/2+,1/2))
<0+1/10+1/204+1/20<6+1/5.
where the last line follows from the Chernoff bound and from Lemma (since g%/m < 100n/m), by

ensuring that m/n = c is sufficiently large. O

18



5.2 Index

For our purposes, we define the INDEX,, problem over inputs x € [n] x {0,1}" as follows: INDEX,(x) := x;
where j := xo. Traditionally, one considers the worst-case partition where Alice (the player who speaks)
holds x; ...x;, and Bob holds j. The resulting problem is one of the most basic in communication complexity,
and strong randomised lower bounds are known for it in this setting [[1]. In this fixed-partition model,
INDEX,, can be thought of as a special case of DISJ, >, where one string is of the form e;. This is no longer
the case under uniform splits, since the zeros in e; get spread between the players, and leak information
about which indices are not of interest.

We prove a robust lower bound for a generalisation of INDEX that allocates multiple copies of the tokens
(x0,...,X,) amongst two players. This generalisation is needed for proving subsequent data stream bounds.
For positive integers a and b, let INDEX®” denote the problem where the input consists of a copies of each
x; (for i € [n]) and b copies of xp, with x = (xo,...,x,) being an input for INDEX,. The (partial) function
INDEX%” takes the value INDEX,(x) on such an input. Let v, denote the distribution of a random split
obtained by independently giving each input token to Player 1 with probability p, and to Player 2 otherwise.

Theorem 5.2. Let a,b, and p constants such that a and b are positive integers and 0 < p < 1. We have
Ry’ (INDEX4?”,v,) = Q(n), where 8 = (1 — p)Pp®/4.

Proof. The proof is by reduction from INDEX, when Alice holds x;...x, € {0,1}" and Bob holds index
xo = j. Let u be the uniform distribution over all possible inputs. By Lemma any one-way protocol
succeeding with probability at least % + (1 — p)bp?/4 (for a, b, p positive constants) for instances of INDEX,,
drawn from u requires Q(n) bits to be communicated.

Suppose there exists a one-way protocol P with the property that err(P, INDEXZ’b, v,) < (1—p)bp/4.
We use P to create the following (traditional) protocol Q for INDEX,. Let x = (xy,...,x,) denote the input
given to Alice and Bob in Q, and let X denote the corresponding input to the players in INDEX®?. Alice and
Bob agree on a split o ~ Vv, of the tokens in £, using public coins. Consider the events

Bp = “acopy of xy is allocated to Player 17, and
B; = “acopy of x; is allocated to Player 2", for i € [n].

Alice and Bob behave as follows in the protocol Q. If By occurs, then Bob outputs a uniform random bit.
Otherwise, for each i € [n] such that B; occurs, they jointly choose a (public) random bit r; € {0, 1} and set
all bits of X that are copies of x; equal to r;. The remaining bits of X (i.e., those that are copies of x; such that
B; does not occur) are left unchanged. Alice and Bob then simulate P on this updated input X, playing the
roles of Player 1 and Player 2 respectively. Clearly, cost(Q) < cost(P).

Let B= By V B (recall that j = xo). If B occurs, then the output of Q is a random bit. Otherwise, Q is
correct whenever P is. Note that Pr[B] = 1 — (1 — p)?p®. Thus, the correctness probability of Q is

Pr(B Pr(B 1 (1—p)bpe
r2[ ] +Pr[-BA (P is correct)] > r2[] +Pr[Pis correct] — Pr[B] > 5+ (f:)p 7
which implies cost(Q) = Q(n), and hence, cost(P) = Q(n). =

6 Robust Lower Bounds for Data Stream Computation
We use our results on communication complexity from the previous sections to derive robust lower bounds

for a number of problems in the data stream model. The connection between random-allocation commu-
nication complexity and robust bounds in the data stream model is a natural extension of the connection

19



between fixed-partition communication complexity and the basic data stream model where the data is or-
dered adversarially. In particular, an r-pass, s-space data stream algorithm for evaluating a function f on a
set S of tokens presented in (uniform) random order yields an r-round, p-player communication protocol for

evaluating f(S) for certain ways of partitioning S into p subsets Si,...,S,, with the ith player receiving S;.
To be precise, each token is placed in one subset chosen independently, but not necessarily uniformly, from
S1,..,8).

The communication protocol then works as follows. The ith player (uniformly) randomly permutes
Si to generate stream s; and the players emulate the algorithm on the concatenated stream (si[s2]...][s,).
This emulation requires O(rps) bits of communication. Given a lower bound on the complexity of the
communication problem, this allows us to deduce a lower bound for the data stream problem.

6.1 Frequency Moments

The (estimations of) various frequency moments are some of the most well-studied problems in the data
stream model [3]. Suppose the stream comprises a sequence of m values a; € [n]. Define f; = [{j : a; = i}|.
The kth frequency moment (k not necessarily integral) is

Fk = thk
]

i€[n

We consider constant k > 3. It is known that any O(1)-pass algorithm that returns a (1/2, 1 /4)-approximation
of F; requires Q(nl_z/ k) spaceﬂ and that this is tight under worst-case orderings [8,/27]]. However, it was
observed that for random orderings and m = Q. (an) (a > 1) there exists a single pass O((n/a)'~*/¥)-space
algorithm that (€, 0)-approximates F; [21]]. The following theorem shows a lower bound on the space usage
in the random-order case. The proof combines Theorem [3.3| with a variation of the reduction used in Alon,
Matias, and Szegedy [3l Theorem 3.2].

Theorem 6.1. An r-pass algorithm giving a (1/10,1/10)-approximation for Fy of a randomly ordered
stream requires Q(n' /% /r) space. For streams where m = Q(an), for some integer a > 1, Q(n'=3/*/(a’r))
space is required.

Proof. Suppose there exists an r-pass, (1/10,1/10)-approximation algorithm for F; that uses s bits of space.
Set t = (5n/4)'/%. Let x = {xij}icp,jeln) be an instance for DISJ,, that satisfies the unique intersection
promise (as discussed at the start of Section [3). Consider a uniform random split of the nt input tokens
between p = 20t players. Let the player who receives the token for x;j, generate the value j if x;; = 1 and
define §; to be the multiset of values generated by the jth player. Note that the sets Sj,...,S, are a random
partition of § = S, U...US,,. Furthermore Fy(S) > t* = 5n/4 if DISJ,,(x) = 1 and Fi(S) < nif DISJ,, (x) = 0.
Using the template at the start of Section@and appealing to Theorem we can deduce that rps = Q(n/t).
Therefore s = Q(n'~3/%) as required.

To prove the second part of the theorem, the reduction from DISJ, ; proceeds as before but we also add a
copies of [n] randomly distributed between the p players. This is achieved using public randomness. Now, if
DISJ,(x) = 1, then F; >, but if DISJ,,, (x) = 0, then F < (a+ 1)*n. If we now choose t = (5n/4)'/¥(a+1),
a (1/10,1/10)-approximation to Fj distinguishes the two cases. The resulting lower bound on the space is
Q(n/(rpt)) = Qn' =3/ (ar)). 0

4The O(-) and Q(-) notations used in this section suppress logarithmic dependencies on the stream length, m, the universe size,
n, and the inverse error probability, 5 1.
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6.2 Distinct Elements and Entropy: Space/Approximation Tradeoffs

The number of distinct elements in a stream is Fy := |{i € [n] : f; # 0}|, and the empirical entropy is H :=
Yicin(fi/m)log(m/ fi); recall that m denotes the length of the stream. Within this subsection let us think
of the “input size” parameters m and n as fixed, and the approximation parameter € as varying. One-pass,
O(e7?)-space, (&, 8)-approximation algorithms are known for both problems [4,6,/16,17,24]. We prove that
the known algorithms are essentially tight even under random order. These results follow from Theorem
and the reductions in [6, Theorem 2] and [41}, Section 3.2].

Theorem 6.2. Let k > 0 be a constant with k # 1. Then, any r-pass (&,1/10)-approximation for Fj of a
randomly ordered stream requires Q(e72/r) space. Also, any r-pass (&,1/10)-approximation for H of a
randomly ordered stream requires Q(e7%/(log? €' - r)) space.

Proof. Suppose there exists an r-pass, (€, 1/10)-approximation algorithm for H that uses s(€) bits of space.
Letx € {0,1}%" be an instance of GHD,, g (Where n and G are determined by € below) and consider a uniform
random split of the 2n tokens between two players. Let the player who receives the token for x; generate the
value ([i/2],x;). Define S4 and Sp to be the multisets of values generated by Alice and Bob respectively.
Note that S4 and S are a random partition of S := S4 U Sg. Furthermore,

A A A
H = —10g(2n)+n logn = — +logn,
n n

n
where A = A(x) = |{i € [n] : x2i # x2i—1}|. Hence, any algorithm which can (g, 1/10)-approximate H can
also distinguish the cases A(x) <n/2— G and A(x) > n/2+ G, provided € < G/(nlogn). For any & that is
less than c3, we set n = ¢3¢ 2 /(4log” € ') and G = c3+/n, where c; is the constant from Theorem This
ensures € < G/(nlogn). Using the template at the start of Section E] and appealing to Theorem (5.1, we can
deduce that rs(¢) = Q(n) = Q(e7%/log>e™").

The frequency moments lower bound is similar: the same reduction ensures that if A(x) =n/2+ g, then

Fe=2 n—A@)+ 15 2A(x) =2*n4+ (2 =25 -A(x) = 2 +1-2F D+ (228 ¢

=26 . > 14+ 27216 Settingn— (e7eal2—24|/ (2 +

. F F;
Then either =5y, < 1= e, OF i, 1261y,
1—251))2 and G = c3+/n ensures that the value of Fj in each case differs by a factor of at least 1+ € and

hence the communication lower bound of Q(n) entails a space lower bound of Q(£72/r) for constant k. [J

6.3 Selection

Selection, including median-finding, is one of the earliest-studied problems in the data stream model [|34]
and has been the focus of several works [[7,/18,[22]]. The following result improves upon the previous best
single and multi-pass lower bounds [7,22]. As an example, our theorem implies a Q(ml/ 10 space lower
bound for 3-pass algorithms whereas the best previous result was Q(m3/ 80Y 171.

Theorem 6.3. Any p-pass algorithm to return the median of a length-m randomly ordered stream which
succeeds with probability at least 3/4 requires Q <m1/((1’_1)2p+1+2)/q(m,p)) space where the function q,
defined in Theorem4.8 is polylog(m) for any constant p > 1.

Proof. Using the template at the start of Section [6] the theorem is immediate from Theorem .8 Note that
this is an example where we consider a robust communication bound in which the player receiving a specific
token is not chosen uniformly. However, as long as the tokens are distributed independently, the order of
the concatenated stream is chosen uniformly at random as required. 0
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We note that a weaker bound follows from Theorem The reason that a reduction from the two-
player result is weaker (despite the apparent similarity between Theorem .10 and Theorem H.8)) stems
from the different definition of communication rounds. In the multi-player setting, p streaming passes
corresponds to p rounds, whereas in the two-player setting, p streaming passes corresponds to 2p — 1 rounds.
Hence, a reduction from the two-party setting would result in occurrences of p in the exponent in the above
theorem being replaced by occurrences of 2p — 1.

6.4 Graph Streaming

We now consider bounds on solving graph problems given a stream of edges in random order. These
problems are known to require a large amount of space when edges are presented in arbitrary order [[14,25].
The problems are no easier when the edge order is randomized. Using Theorem [3.3|and Theorem [5.2] and
reductions similar in spirit to those in [[14}25] we show the following results.

Theorem 6.4. An r-pass algorithm that, given a stream of edges in random order, determines whether the
resulting graph is connected requires Q(n/r) space.

Proof. We consider a reduction from DISJ,; , where tokens corresponding to each bit are uniformly dis-
tributed between p players. We present a lower bound on the communication required between p play-
ers to determine whether a graph is connected when the edges of the graph are randomly partitioned be-
tween the p players. The stream lower bound follows immediately from the template at the start of Sec-
tion @ Let x = {xij}je[2),jen/2) e an instance of DISJ, »,. Based on x we define the following graph
G = (LUR,E\UE,UE3) where L= {ly,...,L,/o}, R={r1,...,r,»} and the edge set includes

E, = {(l,‘,l"l‘)ZiE [n/Z]},
E, = {(lj,lj+1) ZjE [n/2],x11j:0},
E; = {(I’j,l’j+1) 1jE [n/2],x2,j :0},

where [/, /241 = [y and r,, 1 =n. It is easy to see that Gy is disconnected iff there exists j such that x; ; =
xp,; = 1. To perform the reduction, the players replace the token corresponding to each x; ; if appropriate.
Note that the edges of E, U E3 are randomly partitioned between the players because the relevant tokens
were randomly partitioned. Using public randomness, the players can decide on a random partition of E;.
In this way the entire edge set of G, is randomly partitioned between the p players. Setting p = 40 and
appealing to Theorem [3.3] gives the required result. O

Theorem 6.5. Given a stream of edges in random order, a single pass algorithm that distinguishes between
when the distance between two given vertices (known at the start of the stream) is at most 1 or at least t + 1

requires Q(ex(n—2,C3,...,C41)) space, where ex(n—2,Cs,...,Cy11) is the maximum number of edges of
a graph on n — 2 vertices that does not include any cycles of length strictly less than t + 2.

A well-known result in extremal graph theory is that ex(n,Cs,...,Cy1) = Q(n'*1/"), and it has long
been conjectured that ex(n,Cs,...,Ci41) = Q(n1+2/’) fort > 2; see, e.g., Simonovits [39].

Proof. Let G = (V,E) be a graph on n — 2 vertices with m = ex(n —2,C3,...,Ci41) edges such that the
shortest cycle has length at least r +2. Let ey, ..., e, be some arbitrary ordering of the edges in G. Let a,b
be two vertices not in V. Consider an instance x € [m] x {0, 1}" of INDEX where one copy of each x; (i € [m))
and two copies of xq are distributed uniformly between two players. Consider the reduction in which, for
i > 1, each x; is ignored if x; = 0 and replaced by an edge e¢; with unit weight if x; = 1. Suppose that xg = j
and that e; = (u;,v;). With probability 1/2 replace the first copy of xy by (a,u;) and the second copy by
(b,v;); these edges have zero weight. With the remaining probability, replace them in the reverse order. In
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this way we define a graph G’ on vertices V U{a,b} where the distance between a and b is 1 if x; = 1 and
at least 7 + 1 if x; = 0. Hence, any protocol that distinguishes between the distance being 1 and at least 7 + 1
also determines the value of x;. Appealing to Theorem@ gives the required result. O

6.5 Information Divergences

It is common to interpret streams as defining a distribution over a finite set of tokens: the frequencies can
be rescaled to define an empirical probability distribution. Over such empirical distributions, we desire
to compute various statistical measures. The next theorem extends a result by Guha et al. [20] on the
approximation of information divergences. The results follows from Theorem using a variant of their
reduction.

Theorem 6.6. Let a be an even positive integer. Given a randomly ordered stream defining two empirical
distributions p and q on [n], Q(n) space is required to produce an estimate h such that

h*(p,q)

~ 2
WiCEmT <h<+/(a+1)/2-h*(p,q)

holds with probability at least 1 — 2773, Here, h* denotes squared Hellinger distance.

Proof. We consider a reduction from INDEX. Let k € [n], x;...x, € {0,1}" be an instance of INDEX. Con-
sider the random allocation where a copies of each x; are uniformly distributed between the two players and
k is revealed to a player chosen uniformly at random. The players transform this input into a set of tokens
(p,i) and (g, i) as follows:

1. Using public randomness, the players generate n random binary strings y',...,y" € {p,q}* where
each string has the same number of each symbol. Suppose Alice receives d; copies of the token for
x;. Then, Alice generates a copy of (yi., i) for each j < d; if x; = 1. Similarly, Bob generates a copy of
(ys», i) foreach d; < j < aif x; = 1. Note that if d; = 0 or d; = a, then one of the players will not know
x;. But in this case, that player will be generating the empty set.

2. The player receiving the token for k generates a copy of (g, k).

3. Additionally, the players generate a/2+ 1 copies of (p,n+ 1) and a/2 copies of (g,n+ 1). These are
uniformly distributed between the players.

In this way, for each i € [n] such that x; = 1, a/2 copies of (p,i) and a/2 copies of (g,i) have been
generated. Additionally, one copy of (q,k), a/2+ 1 copies of (p,n+ 1) and a/2 copies of (g,n+ 1) have
been generated. Therefore,

(Va2 VaizEiy +1)., ity =o,
2 (Vafi~ a2 1)", i =1,

where m = a/2+ 1+ (a/2)|{i € [n] : x; = 1}|. Furthermore, the ratio of these quantities is

(Va/2—+/a2+1)° +1 1, I _atl
2(aj2—/aj2+1)> 2 2(a2—\Jaj2+1)> 2
Hence, an algorithm producing an estimate satisfying the stated bounds would be sufficient to solve the

instance of INDEX. Therefore, by Theorem[5.2] any stream algorithm that returns such an estimate requires
Q(n) space. O

h*(p.q) =
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Distance between Binomial Distributions

We prove the following technical lemma, giving an upper bound on the total variation distance between two
binomial distributions that have roughly the same number of trials. The lemma essentially shows that the
total variation distance between two binomial distributions B(a,q) and B(a — w,q) is small as long as w is
small compared to the standard deviation of B(a,q).

Lemma A.1 (Restatement of Lemma [2.7). There exists a constant ¢| > 0 such that for all q € [1/2,1),
re (0,1), anda € N,

2
\K[gr = Drv(B(a,q).Bla~wq)) < ciry/ln”,

1%

where v = aq(1 — q) is the variance of B(a,q). In order to define the total variation distance above, we treat
B(n,p) as a distribution on the set of all non-negative integers, rather than just {0,1,...,n}.

Proof. Lety=1—gqg and

o = (?) g(1—q)*" and Bi= <a_l.w>q"(1 —q)

By an application of the Chernoff bounds,

Pr [|B(a,q)—aq| > \/4ln(2/r)-v} < r, and
Pr[\B(a—w,q)—aq| > wq+ \/4ln(2/r)~v} < r.
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Lett =4+/In(2/r) - v and note that
= /4In(2/r)-v++/4In(2/r)-v > wq+/4In(2/r)-v.
because wqg < /v and /41n(2/r) > 1. Therefore we may bound the total variation distance as follows.

Drv (B(a,q), Bla—w,q)) = ¥ |oi—

<2+ ) (w-B)+ ) (Bi—a)
et icaq+r:fi>a;
=2r+ Y a(l-Ble)+ Y, Bi(l-a/B)
icaqtt:o;>p; icaqtr:Bi>a;
Bl o
< 2r+ Zal- max 1—— Zﬁ, max | 1 — —
icaqtt liaggt icaqtt t;z;qit ﬁl
o 2p; = Bi=e; '
< 2r+2— min <Bl> — min <l> ,
icaqtt \ O icaq+t ﬁi

where the last line follows because Y, o; = ¥; B; = 1 and o, B; are positive.
Fori € ag+t, we have a—i € ya=t, and thus
alla—w—i)!
/B = ————(1—¢q)"
B ala—1)...(a—w+1)
(a—i)a—i—1)...(a—w—i+1)

w w w
: () 2 (75) - (-55) 2 -
a—1i Ya+t Ya+t Ya—+t

and
(a—w)!l(a—1i)! o
o = Ty
il = T 1)
_ (a—l)(a—t—1)...(a—w—l+1)(1_q)fw
ala—1)...(a—w+1)
—w—i\" —w—t\ " w 2
> (a w 1) > (ya w t> _ <1_W+l> SV W
Ya Ya Ya Ya
Therefore, )
Drv (B(a,q), Bla—w,q)) < 2r+yfit+w ;;thou)-r\/m,

where the last line follows since w? < tw = 4w+/In(2/r) -v < 4rvy/In(2/r) < 4rya+/In(2/r).
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