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Abstract— Procedures to anonymize data sets are vital for
companies, government agencies and other bodies to meet their
obligations to share data without compromising the privacy of
the individuals contributing to it. Despite much work on this
topic, the area has not yet reached stability. Early models (k-
anonymity and `-diversity) are now thought to offer insufficient
privacy. Noise-based methods like differential privacy are seen
as providing stronger privacy, but less utility. However, across
all methods sensitive information of some individuals can often
be inferred with relatively high accuracy.

In this paper, we reverse the idea of a ‘privacy attack,’ by
incorporating it into a measure of privacy. Hence, we advocate
the notion of empirical privacy, based on the posterior beliefs of
an adversary, and their ability to draw inferences about sensitive
values in the data. This is not a new model, but rather a unifying
view: it allows us to study several well-known privacy models
which are not directly comparable otherwise. We also consider
an empirical approach to measuring utility, based on a workload
of queries. Consequently, we are able to place different privacy
models including differential privacy and early syntactic models
on the same scale, and compare their privacy/utility tradeoff. We
learn that, in practice, the difference between differential privacy
and various syntactic models is less dramatic than previously
thought, but there are still clear domination relations between
them.

I. INTRODUCTION

Increasingly, organizations must make available versions of
the data they are collecting, whether for legal or business
reasons. At the same time, data owners are under strong
obligations not to compromise the privacy of the individu-
als represented in their data. As a result, there is a need
to provide “anonymized” versions of data which balance
these two requirements. Initial efforts for developing privacy
models [1], [2], [3] focused on weakening (or breaking) the
connection between “quasi-identifiers” and “sensitive values”.
These offer appealing and seemingly intuitive properties of
the likelihood of certain facts holding in the original data.
However, some connections can be reconstructed from the
published data, using statistical inference and/or knowledge
of the anonymization procedure [4], [5].

The differential privacy model [6], which has gained con-
siderable support in the database community, imposes a con-
ceptually different condition: its output is nearly identical (in
a probabilistic sense), whether or not an individual contributes
her data to the set. But this model is not immune to the same
limitations of the prior models: an attacker can often draw

accurate inferences about a person’s sensitive information.
This arises particularly when there are known correlations in
the data [7], or when the published dataset exposes at least
one previously unknown correlation between a sensitive value
and the values of some other attributes [8].

Despite such challenges, the pressures to provide data are
sufficiently strong that releases will occur, and hence we need
to enhance our understanding of the tools that we currently
have, imperfect as they may be. Despite the weaknesses dis-
cussed above, the resulting privacy breaches are not absolute:
it is not the case that an adversary learns every private piece of
information with absolute certainty. Instead, in these examples
an adversary ends up with a set of (probabilistic) beliefs
about individuals. In some cases, these may be damaging (the
adversary may gain a strong belief about some individual),
while in other cases it may be less so. Hence, our aim in
this paper is to focus on quantifying the privacy impact of a
data release. That is, we introduce the idea of incorporating a
measure over “privacy breaches” into a definition of empirical
privacy, and evaluating the corresponding empirical utility of
the released data. We next elaborate on each of these notions.

Empirical privacy. In the race to propose ever stronger
models, privacy guarantees have become increasingly obscure
for both the data owner, and the average individual whose
data they are trying to protect. This is a significant drawback
in many cases: people are unlikely to contribute their data
to surveys, or entrust organizations with their information, if
the data aggregators cannot explain their privacy guarantees
clearly. Data owners are hesitant to release data via complex
algorithms if they cannot parse the guarantees that the algo-
rithms provide, or compare the results from different methods.
Given the above discussion, and the need for a simpler privacy
explanation, we advocate the notion of empirical privacy
as a measurement tool. Roughly speaking, it represents the
precision with which the sensitive values of individuals can
be inferred from released data. This is inspired by the fact
that current models of privacy attack focus on a sophisticated
adversary who can use the tools of statistical inference on
released data [5], [8]. This is therefore not a new specific
privacy model, but rather a measure of privacy and a unifying
view: it allows us to study several well-known privacy models
which are not directly comparable otherwise.



Empirical utility. In most cases, the utility of the released data
is not part of the privacy model. Early work used “information
loss metrics”, which measure how much the original data
was coarsened, but it is unclear how they correlate with any
use of data [9]. The difficulty is that the notion of utility
is ill-defined, depending on some unknown future use of the
data. In this paper, we define the empirical utility to be the
(relative) error of COUNT(*) queries with range conditions
on the attributes, since such queries can essentially be used
to describe the distribution of data and serve as the building
blocks of more complex data analysis. They have been used
in several experimental evaluations of prior work in isolation.

In this work, we bring together several well-known privacy
models: k-anonymity, `-diversity, t-closeness and ε-differential
privacy. Although the models are quite different, and their the-
oretical guarantees cannot be directly compared, our notions
of empirical privacy and empirical utility apply to all of them.
Our notions of privacy and utility are distinct, dealing with
single individuals and groups, respectively. That is, ‘privacy’
relates to the ability to learn about individuals, while ‘utility’
relates to the ability to learn aggregate statistics about large
groups of individuals (this distinction is also made in [10]).
Our contributions. We propose a unifying framework for
comparing privacy models, by formalizing the notions of
empirical privacy and empirical utility. We provide an experi-
mental study to compare several privacy models. Surprisingly,
this shows that the difference between the various models is
less dramatic than previously thought.
Background on privacy models. Privacy is a fast evolving
research area, and a full survey of the field is beyond the scope
of this paper (instead, see [11]). The class of deterministic
models ensure that certain properties hold (deterministically)
over the output. These privacy models make a distinction be-
tween the type of values present in a tuple, grouping them into
quasi-identifiers and sensitive values. The assumption is that
an individual’s quasi-identifier values are either widely known,
or can be easily determined; whereas the sensitive values are
private and must be protected by the model. The general
approach is to split tuples into groups and to redact their quasi-
identifier values (e.g., via generalization or suppression), so
that tuples in a group become indistinguishable when projected
over the quasi-identifiers. We assume familiarity with well-
known models, such as k-anonymity [1] (each group must
have at least k tuples); `-diversity [3] (each group must contain
at least ` distinct and “well-represented” sensitive values);
and t-closeness [12] (the distribution of sensitive values in
each group is not too different from their global distribution).
Meanwhile, randomized methods draw noise from appropriate
distributions to perturb the output. In differential privacy,
the probability of any property holding on the output must
be approximately the same, whether or not an individual is
present in the source data [6].

II. EMPIRICAL PRIVACY AND UTILITY

We introduce a measure of privacy independent of any
specific privacy model, and more generally interpretable by

users. This measure is inspired by a widely adopted notion of a
privacy breach: the correct posterior inferences of an adversary
about sensitive values in the data. Let A be an anonymization
mechanism, and A(D) be its output on a dataset D. Let S
denote the sensitive attribute of D. To evaluate the empirical
privacy we will use A(D) to build a model of the data so that,
for each tuple τ ∈ D, we can compute a set of predictions for
the sensitive values τ.S, with an associated belief; i.e., we
compute the pairs (v1, p1), (v2, p2), . . . , where 0 < pi < 1
is the belief that τ.S = vi; and

∑
pi ≤ 1. From these, we

choose the value vi with highest belief pi as the prediction
for τ.S; the prediction confidence is pi.

Definition 1: Let D be a dataset with sensitive attribute
S, and A be an anonymization mechanism. The average
empirical privacy, π(A(D)) is the fraction of tuples τ ∈ D
for which we do not predict the correct value τ.S.

We note that variations of this definition are possible, e.g.
restricting to the top-k tuples based on the confidence in their
prediction. In our experiments, we report the empirical privacy
breach increase β(A(D)), measured as

β(A(D)) = (1− π(A(D)))/ρ− 1,

where π(A(D)) is the empirical privacy value given by Defini-
tion 1, and ρ is the accuracy of the baseline approach in which
the most frequent sensitive value is always predicted. This is
consistent with prior work that has used similar measures [16].

For utility, we measure the query accuracy for a given query
workload.

Definition 2: Let A(D) be the output of an anonymization
procedure on a dataset D. Let Q be a query workload of
COUNT(*) queries with range conditions on all attributes
of D. The relative error of a query q ∈ Q is the ratio
rel(q) = |q(A(D))−q(D)|

q(D) , where the notation q(X) denotes
the answer to q computed over set X . In the experiment
section, we report the median relative error α(A(D)) =
median({rel(q)|q ∈ Q}), given a query workload Q. The
empirical utility of A(D) (with respect to Q) can be defined
as the reciprocal of median relative error, i.e., 1/α(A(D)), so
that larger values indicate higher utility of A(D).
Anonymization techniques. In this paper, we focus on
anonymization schemes that provide their output in the form
of spatial decompositions. That is, they partition the space of
attributes into different regions, and provide a description of
the density of values within each region. This captures many
prior works, e.g., the Mondrian approach [9] for k-anonymity,
and the ε-differentially private kd-trees and quad-trees studied
in [13], [14], [15]. We omit detailed description of how these
are built. Often the regions in the spatial decomposition form
a hierarchical division of the space. For each leaf in the
spatial decomposition tree, a histogram describes the sensitive
values associated with the points in the leaf region. For
the deterministic models, this contains the exact counts; for
probabilistic models, noise is added to the histogram counts.

Attack model. We now describe how we instantiate our mea-
sure of empirical privacy, based on the beliefs of an adversary
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Fig. 1. Impact of k on k-anonymity
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Fig. 2. Impact of ` on `-diversity

who sees the output of an anonymization mechanism. How-
ever, there are many possible adversaries, depending on their
prior beliefs and model of inference. We focus on an adversary
who uses the output A(D) to build a classifier to attack
anonymized data. This notion is at the heart of some prior
works [16], [5], [8]. It is appealing: it does not rely on making
explicit the prior beliefs of the adversary (requiring some
external knowledge or domain-specific reasoning). Rather, it
allows us to provide a general mechanism to quantify empirical
privacy. There are still many possible choices of classifier to
instantiate. However, our empirical experience suggests that
different classifiers achieve similar levels of empirical privacy,
varying only by low single digit percentages.

Given anonymized data in the spatial decomposition format,
we now determine how to instantiate a classifier to compute
the empirical privacy of the data. This is somewhat non-trivial,
since this is not the usual classification problem: typically,
one expects to see training data in the form of specific
examples and labels. In our setting, we have regions instead of
examples, and a multiset of labels associated with each region.
We describe how to build a naive Bayes classifier, which
is chosen by prior work to apply to anonymized data [16],
[5], [8]. It has been observed to achieve good accuracy over
many data instances. The classifier aims to find correlations
between each quasi-identifier and the sensitive attribute. The
parameters of the classifier are the conditional probabilities,
Pr[t.j = u|t.S = v]: the probability that the jth attribute has
value u, given that the sensitive value is v. We also need the
global distribution of sensitive attributes, Pr[t.S = v]. Then,

given an individual τ , the classifier provides the beliefs pi as:

pi =
Pr[t.S = vi]

∏d
j=1 Pr[t.j = τ.j|t.S = vi]∑

v Pr[t.S = v]
∏d

j=1 Pr[t.j = τ.j|t.S = v]
.

To derive the necessary conditional distributions when the
anonymized data is in the output format of a spatial de-
composition we apply a simple kernel approach: given a
leaf containing a histogram of sensitive values, we use a
uniformity assumption and treat each data point as spread
uniformly along the extent of the leaf in each quasi-identifier
dimension. Specifically, suppose that in some leaf we have
n occurrences of sensitive value v, and that the leaf covers
the range [x, y] along attribute j. Then we treat this as a
collection of (weighted) tuples t having t.S = v, where the
tuple with value t.j ∈ [x, y] has weight n/|[x, y]|. Summing
all these kernels over all leaves gives us (after rescaling) the
joint probability distribution Pr[t.S = v, t.j = u]. From this,
we derive the conditional distribution Pr[t.j = τ.j|t.S = v]
from the identity

Pr[t.j = τ.j|t.S = v] =
Pr[t.S = v, t.j = τ.j]

Pr[t.S = v]

For data produced via differential privacy, we note that it
is possible to achieve negative histogram counts associated
with some values of t.S, due to the random noise distribution.
This is remedied by rounding such counts up to zero (the
most likely true value). We remark that our approach can be
extended by, e.g., adopting different kernels for the smoothing;
combining multiple attributes to build more sophisticated
Bayes classifiers; or other standard variations on building a
classifier. However, this baseline method is generally applica-
ble, and already gives a sufficiently accurate classifier.
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Fig. 3. Impact of t on t-closeness
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Fig. 4. Impact of privacy budget ε on differential privacy

III. EXPERIMENTAL STUDY

We begin by exploring design parameters and their impact
on empirical privacy and utility for each model: the maximum
number of individuals in a group, k, for k-anonymity, and
the parameters ` for `-diversity, t for t-closeness and ε for
differential privacy. We then compare all these models together
by showing how utility changes with respect to various privacy
levels. We also investigate the impact of other design choices,
such as the maximum tree height and the size of the dataset.

Experiment Setup. Experiments were performed on two real
data sets containing demographic data: the Adult dataset from
the UCI Machine Learning repository1 with 30,162 tuples; and
the 2009 Census microdata we extracted from IPUMS USA
[17] with 100,000 tuples. For Adult, occupation is the SA,
and workclass, education, sex, work hours and income level
are used as QIs. For Census, age, insurance state, education
and occupation are the QIs, and salary-class is the SA.

We draw a workload of 2,000 queries with non-zero true
answers, each of which covers half of the domain of each
attribute. The median selectivity is about 13% for Adult data
and 8% for Census data. For a workload of queries, the median
relative error α(A(D)) was reported as defined in Section II.

The relative increase in prediction accuracy β(A(D)) was
reported, as described in Section II. For both datasets, the
baseline accuracy is 11%. Occasionally, the accuracy of the
classifier is worse than this baseline, leading to negative values
of privacy breach increase in some plots. All experiments were
conducted on a 3.00GHz CPU with 4GB RAM, so the data fits
easily in memory. We implemented our anonymization trees

1http://archive.ics.uci.edu/ml/datasets/Adult

in Python 2.6 with scientific package Numpy.

Privacy parameters. We first investigate the impact of the
privacy parameter of each anonymization model indepen-
dently. Figure 1 and Figure 2 show the impact of k on k-
anonymity and ` on `-diversity respectively. Since no noise
is introduced for the deterministic models, the error in query
answering comes solely from the uncertainty introduced by
the rectangles of the leaves of the spatial decomposition tree.
To answer queries, we make a standard uniformity assumption,
and estimate the fraction of points covered in each leaf via the
fraction of the rectangle covered by the query. As expected, the
query accuracy suffers significantly with the increase of k and
`. In particular, when ` ≥ 6 for Adult dataset (` ≥ 8 for Census
dataset), it is not possible to achieve `-diversity on the data,
hence the tree does not split beyond the root level. Comparing
these two models, `-diversity is harder to achieve than k-
anonymity, and its query and prediction accuracy decrease
sharply with each increment of `.

For empirical privacy, the effectiveness of the Naive Bayes
classifier can be seen by the more than 180% (respectively,
50%) increase in prediction accuracy for k-anonymity on the
Adult (respectively, Census) data when k ≤ 8. Even for a
large k, e.g. k = 1024, the classifier performs 50% better than
the baseline case for both datasets. It is noticeable in Figure
2(c) and 2(d) that the lower bound of increase in prediction
accuracy is about 20% for Adult data and about zero for
Census data. This is the case when the classifier is applied
directly on the root node.

Besides k-anonymity and `-diversity, we also tested a
variant of t-closeness built on top of k-anonymity (k = 8).
It ensures that the histogram for any node remains close
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Fig. 5. Empirical privacy breach vs empirical utility

to the histogram of the sensitive attribute in the original
data set. Here we use the Earth Mover’s Distance (EMD) to
measure the distance between two histograms. When building
the tree, nodes having EMD (compared to root) larger than
the threshold t will not be split further. Figure 3 shows the
impact of this threshold. Clearly, a smaller EMD threshold
will incur larger leaf nodes and affect the accuracy of both
query answering and prediction. The impact of this closeness
requirement levels off when the EMD threshold is larger than
0.35.

For differentially private algorithms, the value of the privacy
budget ε plays a key role by setting the upper bound of the
ratio of one’s inference when an individual tuple is present in
the data set or not. A smaller ε results in higher noise and
thus more privacy. Prior work typically sets ε ≤ 1, but in
some cases has tolerated larger values of ε (e.g., [18]). Here
we vary ε from 0.01 to 10 in order to explore a wide spectrum
of values. The experiments on differential privacy exhibit
high variance due to the randomness involved (especially for
small ε). Therefore we provide results averaged over 8 runs
with distinct seeds of randomness. As shown in Figure 4, ε
is inversely related to the privacy guarantees of differential
privacy. Using a very small ε (e.g., 0.01), the noise added may
even outweigh the underlying signal, providing the strongest
privacy seen as approximately 100% of relative errors in
query answering and worse-than-baseline predictions for both
data sets. At the other end of the privacy-utility tradeoff, an
extremely large privacy budget (e.g., ε = 10) adds almost zero
noise (in variance) to the original data, providing little query
error at the cost of much compromise in privacy.

Comparison across anonymization models. The unifying
framework introduced in Section II enables us to do a head-
to-head comparison of deterministic and differentially private
anonymizations. Inspired by the ROC curve frequently used in
machine learning, we combine privacy and utility into a single
plot as shown in Figure 5: the x-axis and y-axis represent
empirical utility and empirical privacy breach respectively.
This enables us to visualize the privacy-utility tradeoff of
various models in one plot. We generate different (utility,
privacy) pairs by varying privacy parameters for all the models,

i.e., the k, l, t, ε values. For example, the data points on
the ‘DP’ curve correspond to the relative query errors and
prediction accuracy increases when varying the parameter ε
from 0.01 to 10.

Notice that the bottom-left corner of the utility-privacy
graph is where an ideal anonymization curve would be—high
utility coupled with high privacy. Due to the privacy-utility
tradeoff, however, most anonymization models will follow a
more diagonal path from top-left (high utility, low privacy)
to bottom-right (low utility, high privacy). As seen in both
Figure 5(a) and 5(b), all anonymization models converge at
the top-left corner (except `-diversity, for which ` is at least
2), where privacy is sacrificed for high utility. This indicates
that if low relative query error is needed, a large privacy
compromise seems inevitable regardless of the anonymization
model one may choose. In this range, all methods produce
a quite similar local density model with little or no noise
on counts. Interestingly, they start to diverge when moving
towards the other end of the main diagonal. Since the bottom-
left corner is the ideal region to fall into, the performance of
an anonymization model can be judged by the relative distance
to the origin of coordinates.

In Figure 5(a), t-closeness may be the preferred model when
high utility (relative error < 10%) is required, providing the
smaller increase in prediction accuracy. If privacy guarantee
is of more concern, e.g., requiring less than 100% accuracy
increase, the advantage of differential privacy definitely shows
up and dominates. A similar trend can be observed on the
Census dataset in Figure 5(b). In particular, k-anonymity
performs poorly on this dataset: relative error increases fairly
consistently from 5% to 40%, but this only affects the classifier
accuracy by about 10%. Only when the relative error grows
very high does the classifier accuracy drop off. The `-diversity
and t-closeness models, which both restrict the distribution
in each region, are reasonably similar. Again, the curve of
differential privacy has a higher slope, which helps to reduce
the accuracy of classifier prediction. If one can tolerate 25%
relative error, differential privacy can provide nearly zero
classifier accuracy increase over the baseline, while other
deterministic models give poor utility (about 60% in relative



-10

 0

 10

 20

 30

 40

 50

 60

 0  10  20  30  40  50  60

P
ri
v
a
c
y
 b

re
a
c
h
 i
n
c
re

a
s
e
 (

%
)

Relative query error (%)

k-anon
l-diverse

t-close
DP

(a) privacy-utility as height varies

-10

 0

 10

 20

 30

 40

 50

 5  10  15  20  25  30

P
ri
v
a
c
y
 b

re
a
c
h
 i
n
c
re

a
s
e
 (

%
)

Relative query error (%)

k-anon
l-diverse

t-close
DP

(b) privacy-utility as size varies

Fig. 6. Varying model height and data size

error) to achieve the same level of privacy protection.
We make several observations. First, no anonymization

model is able to win hands down across the whole range.
Specifically, despite being widely regarded as a ‘superior’
model, differential privacy provides the same or even worse
empirical privacy protection when single-digit relative error
(high utility) is required. In this region either `-diversity or
t-closeness can outperform differential privacy under these
metrics as shown in both plots. However, if a strong privacy
guarantee is required, differential privacy does not lose too
much query accuracy. Meanwhile, using ε = 1 (shown as the
fourth triangular marker from the left) may not be advisable:
the empirical privacy here is not very high, and there are
syntactic approaches providing better privacy-utility tradeoff
in this region. At least for these two datasets, ε ≤ 0.5 seems
to be a suitable setting for differential privacy.

Impact of other parameters on the trade-off. Figure 6(a)
shows the utility-privacy tradeoff curves, over different settings
of the maximum height of the spatial decomposition tree, on
the Census dataset. It shows that for these particular parameter
settings, k-anonymity (with k = 8) and differential privacy
(with ε = 1) provide almost the same privacy-utility tradeoff
for a wide range of h values tested.

Figure 6(b) shows the effect on the curve of varying the
size of the data 10% to 100% of the original input. Increasing
the dataset size without changing other parameters increases
the accuracy of both query answering and the classifier. We
observe an interesting dependence on the size of data available:
when less data is provided, differential privacy occupies the
bottom right of the plot (more privacy, less utility); but when
more data is provided, it is dominated by k-anonymity, in the
region of less privacy but more utility.

IV. CONCLUDING REMARKS

By taking a pragmatic approach to anonymization, we
are able to take a holistic view of the variety of different
privacy models that have been proposed. The bottom line
is that differential privacy often provides the best empirical
privacy for a fixed (empirical) utility level, but for more
accurate answers it can be preferable to adopt a method like

t-closeness or `-diversity (with correspondingly higher privacy
risk). This matches our intuitive expectation, but quantifies it
more rigorously. Further, we see that by these measures, the
difference between the methods is not so large. This suggests
different use-cases: when releasing data to a third party (say,
an external data analysis company), differential privacy is
the current method of choice. But when releasing data to a
more trusted entity (say, a different department within the
same organization), `-diversity suffices to prevent trivial data
leakages while preserving more of the utility.

REFERENCES

[1] R. J. Bayardo and R. Agrawal, “Data privacy through optimal k-
anonymization,” in ICDE, 2005.

[2] X. Xiao and Y. Tao, “Anatomy: simple and effective privacy preserva-
tion,” in VLDB, 2006.

[3] A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam,
“`-diversity: Privacy beyond k-anonymity,” in ICDE, 2006.

[4] R. C.-W. Wong, A. W.-C. Fu, K. Wang, and J. Pei, “Minimality attack
in privacy preserving data publishing,” in VLDB, 2007, pp. 543–554.

[5] D. Kifer, “Attacks on privacy and deFinetti’s theorem,” in SIGMOD,
2009.

[6] C. Dwork, “Differential privacy,” in ICALP, 2006, pp. 1–12.
[7] D. Kifer and A. Machanavajjhala, “No free lunch in data privacy,” in

SIGMOD, 2011.
[8] G. Cormode, “Individual privacy vs population privacy: Learning to

attack anonymization,” in KDD, 2011.
[9] K. LeFevre, D. DeWitt, and R. Ramakrishnan, “Mondrian multidimen-

sional k-anonymity,” in ICDE, 2006.
[10] T. Li and N. Li, “On the tradeoff between privacy and utility in data

publishing,” in KDD, 2009, pp. 517–526.
[11] B.-C. Chen, D. Kifer, K. LeFevre, and A. Machanavajjhala, Privacy-

Preserving Data Publishing, ser. Foundations and Trends in Databases.
NOW publishers, 2009.

[12] L. N. Li, L. T. Li, and S. Venkatasubramanian, “t-closeness: Privacy
beyond k-anonymity and `-diversity,” in ICDE, 2007.

[13] A. Inan, M. Kantarcioglu, G. Ghinita, and E. Bertino, “Private record
matching using differential privacy,” in EDBT, 2010.

[14] Y. Xiao, L. Xiong, and C. Yuan, “Differentially private data release
through multidimensional partitioning,” in SDM Workshop at VLDB,
2010.

[15] G. Cormode, C. M. Procopiuc, E. Shen, D. Srivastava, and T. Yu,
“Differentially private spatial decompositions,” in ICDE, 2012.

[16] J. Brickell and V. Shmatikov, “The cost of privacy: Destruction of data-
mining utility in anonymized data publishing,” in KDD, 2008.

[17] S. Ruggles, J. Alexander, K. Genadek, R. Goeken, M. Schroeder,
and M. Sobek, “Integrated public use microdata series: Version 5.0.”
Minneapolis, MN: Minnesota Population Center, 2010.

[18] A. Machanavajjhala, D. Kifer, J. M. Abowd, J. Gehrke, and L. Vilhuber,
“Privacy: Theory meets practice on the map,” in ICDE, 2008.


