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Today’s Outline

• Knapsack Cover inequalities

¦ Facets

¦ Lifting

• Why would we care?
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Valid Inequalities for the Knapsack Problem

• We are interested in valid inequalities for the knapsack set knap

knap = {x ∈ Bn|
X
j∈N

ajxj ≤ b}

• N = {1, 2, . . . n}
• A set C ⊆ N is a cover if

P
j∈C aj > b

• A cover C is a minimal cover if C \ j is not a cover ∀j ∈ C

• If C ⊆ N is a cover, then the cover inequality
X
j∈C

xj ≤ |C| − 1

is a valid inequality for S
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Using Valid Inequalities for a Relaxation

• I want to solve MIPs, why do I care about strong inequalities for the

knapsack problem?

• If P = {x ∈ Bn | Ax ≤ b}, then for any row i,

Pi = {x ∈ Bn | aT
i x ≤ bi} is a relaxation of P .

• P ⊆ Pi ∀i = 1, 2, . . . m

• P ⊆ Tm
i=1 Pi

• Any inequality valid for a relaxation of an IP is valid for the IP itself.

• Generating valid inequalities for a relaxation is often easier.

• If the intersection of the relaxations is a good approximation to the

true problem, then the inequalities will be quite useful.

• Crowder, Johnson, and Padberg is the seminal paper that shows this

to be true.
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Example

myknap = {x ∈ B7 | 11x1 + 6x2 + 6x3 + 5x4 + 5x5 + 4x6 + x7 ≤ 19}

• Some minimal covers are the following:

x1 + x2 + x3 ≤ 2

x1 + x2 + x6 ≤ 2

x1 + x5 + x6 ≤ 2

x3 + x4 + x5 + x6 ≤ 3
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Back to the Knapsack

• If C ⊆ N is a cover, the extended cover E(C) is defined as

¦ E(C) = C ∪ {j ∈ N | aj ≥ ai ∀i ∈ C}
• If E(C) is an extended cover for S, then the extended cover

inequality ∑

j∈E(C)

xj ≤ |C| − 1,

is a valid inequality for S

• Note this inequality dominates the cover inequality if
E(C) \ C 6= ∅

• (Example, cont.) The cover inequality x3 + x4 + x5 + x6 ≤ 3
is dominated by the extended cover inequality
x1 + x2 + x3 + x4 + x5 + x6 ≤ 3
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In General...

• Order the variables so that a1 ≥ a2 . . . ≥ an

• Let C be a cover with C = {j1, j2, . . . jr} (j1 < j2 < . . . < jr) so
that aj1 ≥ aj2 ≥ . . . ≥ ajr . Let p = min{j | j ∈ N \ E(C)}.

• If any of the following conditions hold, then
∑

j∈E(C)

xj ≤ |C| − 1

gives a facet of conv(knap)

¦ C = N

¦ E(C) = N and (*)
∑

j∈C\{j1,j2} aj + a1 ≤ b

¦ C = E(C) and (**)
∑

j∈C\j1 aj + ap ≤ b

¦ C ⊂ E(C) ⊂ N and (*) and (**).
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Examples

• C = {1, 2, 6}. E(C) = C.

¦ If a2 + a6 + a3 ≤ b, then x1 + x2 + x6 ≤ 2 is a facet of
conv(myknap)

¦ 16 ≤ 19. It is a facet!

• C = {3, 4, 5, 6}. E(C) = {1, 2, 3, 4, 5, 6}. C ⊂ E(C) ⊂ N .
x1 + x2 + x3 + x4 + x5 + x6 ≤ 3 is a facet of conv(myknap) if...

¦ a4 + a5 + a6 + a7 ≤ b? (Yes!)

¦ a5 + a6 + a1 ≤ b (No!),

• So x1 + x2 + x3 + x4 + x5 + x6 ≤ 3 is not facet-defining for
conv(myknap)
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conv(myknap)

xj ≥ 0 ∀j = 1, 2, . . . , 7

xj ≤ 1 ∀j = 1, 2, . . . , 7

x1 + x5 + x6 ≤ 2

x1 + x4 + x6 ≤ 2

x1 + x4 + x5 ≤ 2

x1 + x3 + x6 ≤ 2

x1 + x3 + x5 ≤ 2

x1 + x3 + x4 ≤ 2

x1 + x2 + x6 ≤ 2

x1 + x2 + x5 ≤ 2

x1 + x2 + x4 ≤ 2

x1 + x2 + x3 ≤ 2

2x1 + x2 + x3 + x4 + x5 + x6 ≤ 3
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Covers and Lifting

• Let P1,2,7 = myknap ∩ {x ∈ <7 | x1 = x2 = x7 = 0}
• Consider the cover inequality arising from C = {3, 4, 5, 6}.
• ∑

j∈C xj ≤ 3 is facet defining for P1,2,7

• If x1 is not fixed at 0, can we strengthen the inequality?

• For what values of α1 is the inequality

α1x1 + x3 + x4 + x5 + x6 ≤ 3

valid for
P2,7 = {x ∈ myknap | x2 = x7 = 0}?

¦ If x1 = 0 then the inequality is valid for all values of α1
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The Other Case

• If x1 = 1, the inequality is valid if and only if

α1 + x3 + x4 + x5 + x6 ≤ 3

is valid for all x ∈ B4 satisfying

6x3 + 5x4 + 5x5 + 4x6 ≤ 19− 11

• Equivalently, if and only if

α1 + max
x∈B4

{x3 + x4 + x5 + x6 | 6x3 + 5x4 + 5x5 + 4x6 ≤ 8} ≤ 3

• Equivalently if and only if α1 ≤ 3− γ, where

γ = max
x∈B4

{x3 + x4 + x5 + x6 | 6x3 + 5x4 + 5x5 + 4x6 ≤ 8}.
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Solving the Knapsack Problem

• In this case, we can “solve” the knapsack problem to see that
γ = 1. Therefore α1 ≤ 2.

• The inequality

2x1 + x3 + x4 + x5 + x6 ≤ 3

is a valid inequality for P27

¦ Is it facet-defining?
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An “Uplifting” Experience

• What we’ve done is called lifting. Lifting is a process in which
a valid (and facet defining) inequality for S ∩ {x ∈ Bn | xk = 0}
is turned into a facet defining inequality for S.

• Theorem. Let S ⊆ Bn, for
δ ∈ {0, 1}, Sδ = S ∩ {x ∈ Bn | x1 = δ}. Suppose

n∑

j=2

πjxj ≤ π0

is valid for S0.

June 23, 2004 DIMACS Reconnect Conference on MIP Slide 13



Lifting Thm. (2)

• If S1 = ∅, then x1 ≤ 0 is valid for S

• If S1 6= ∅, then

α1x1 +
n∑

j=2

πjxj ≤ π0

is valid for S for any α1 ≤ π0 − γ, where

γ −max{
n∑

j=2

πjxj | x ∈ S1}.
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Lifting Thm. (3)

• If α1 = π0 − γ and
∑n

j=2 πjxj ≤ π0 defines a face of dimension
k of conv(S0), then

α1x1 +
n∑

j=2

πjxj ≤ π0

defines a face of dimension at least k + 1 of conv(S).
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You Can Also “DownLift”

• Let
∑n

j=2 πjxj ≤ π0 be valid for S1.

• If S0 = ∅, x1 ≥ 1 is valid for S, otherwise

ξ1x1 +
n∑

j=2

πjxj ≤ π0 + ξ1

is valid for S, for ξi ≥ γ − π0

¦ γ = max{∑n
j=2 πjxj | x ∈ S0}.

• Similar facet/dimension results to uplifting if the lifting is
maximum.
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Group Exercise

• Group exercise

• Find facets of the polyhedron:

35x1+27x2+23x3+19x4+15x5+15x6+12x7+8x8+6x9+3x10 ≤ 39
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Quiz Problem

( 12) + x1 + x9 <= 1

( 13) + x1 + x8 <= 1

( 14) + x1 + x7 <= 1

( 15) + x1+ x2 + x6 <= 1

( 16) + x1+ x2 + x5 <= 1

( 17) + x1+ x2+ x3+ x4 <= 1

( 18) + 2x1+ x2 + x8+ x9 <= 2

( 19) + x1+ x2 + x7 +x10 <= 2

( 20) + 2x1+ x2+ x3 + x7 + x9 <= 2

( 21) + 2x1+ x2+ x3 + x7+ x8 <= 2

( 22) + 2x1+2x2+ x3+ x4+ x5+ x6 <= 2

( 23) + x1+ x2+ x3 + x6 +x10 <= 2

( 24) + x1+ x2+ x3 + x5 +x10 <= 2

( 25) + 2x1+ x2+ x3+ x4 + x6 + x9 <= 2

( 26) + 2x1+ x2+ x3+ x4 + x6 + x8 <= 2

( 27) + 2x1+ x2+ x3+ x4+ x5 + x9 <= 2

( 28) + 2x1+ x2+ x3+ x4+ x5 + x8 <= 2

( 29) + 2x1+ x2+ x3+ x4+ x5+ x6+ x7 <= 2

( 30) + 3x1+2x2+2x3+2x4+ x5+ x6 + x9 <= 3

( 31) + 3x1+2x2+2x3+2x4+ x5+ x6 + x8 <= 3

( 32) + 2x1+2x2+2x3+ x4+ x5+ x6 +x10 <= 3

( 33) + 2x1+ x2+ x3 + x8+ x9+x10 <= 3

( 34) + 3x1+2x2+2x3+ x4+ x5+ x6+ x7 + x9 <= 3

( 35) + 3x1+2x2+2x3+ x4+ x5+ x6+ x7+ x8 <= 3

( 36) + 2x1+ x2+ x3+ x4 + x7 + x9+x10 <= 3

( 37) + 2x1+ x2+ x3+ x4 + x7+ x8 +x10 <= 3
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( 38) + 2x1+2x2+ x3+ x4+ x5+ x6+ x7 +x10 <= 3

( 39) + 2x1+ x2+ x3+ x4+ x5+ x6 + x8 +x10 <= 3

( 40) + 3x1+2x2+ x3+ x4+ x5+ x6+ x7+ x8+ x9 <= 3

( 41) + 3x1+2x2+ x3+ x4 +2x7 + x9+x10 <= 4

( 42) + 3x1+2x2+ x3+ x4 +2x7+ x8 +x10 <= 4

( 43) + 3x1+3x2+2x3+ x4+ x5+2x6+ x7 +x10 <= 4

( 44) + 3x1+3x2+2x3+ x4+2x5+ x6+ x7 +x10 <= 4

( 45) + 3x1+2x2+2x3+ x4+ x5+2x6 + x8 +x10 <= 4

( 46) + 3x1+2x2+2x3+ x4+2x5+ x6 + x8 +x10 <= 4

( 47) + 4x1+3x2+2x3+2x4+ x5+2x6+ x7+ x8+ x9 <= 4

( 48) + 4x1+3x2+2x3+2x4+2x5+ x6+ x7+ x8+ x9 <= 4

( 49) + 4x1+2x2+2x3+ x4+ x5+ x6+2x7+ x8+ x9 <= 4

( 50) + 3x1+2x2+2x3+2x4+ x5+ x6+ x7 + x9+x10 <= 4

( 51) + 3x1+2x2+2x3+2x4+ x5+ x6+ x7+ x8 +x10 <= 4

( 52) + 3x1+2x2+2x3+ x4+ x5+ x6+ x7+ x8+ x9+x10 <= 4

( 53) + 4x1+4x2+3x3+2x4+2x5+2x6+ x7 +x10 <= 5

( 54) + 5x1+3x2+3x3+2x4+2x5+2x6+2x7+ x8+ x9 <= 5

( 55) + 5x1+4x2+3x3+3x4+2x5+2x6+ x7+ x8+ x9 <= 5

( 56) + 4x1+3x2+3x3+2x4+2x5+2x6+ x7+ x8 +x10 <= 5

( 57) + 4x1+3x2+3x3+2x4+ x5+2x6+ x7+ x8+ x9+x10 <= 5

( 58) + 4x1+3x2+3x3+2x4+2x5+ x6+ x7+ x8+ x9+x10 <= 5

( 59) + 4x1+3x2+2x3+2x4+ x5+ x6+2x7+ x8+ x9+x10 <= 5

( 60) + 5x1+3x2+3x3+3x4+2x5+2x6+ x7+2x8 +x10 <= 6

( 61) + 5x1+4x2+3x3+3x4+2x5+2x6+2x7+ x8+ x9+x10 <= 6

( 62) + 5x1+3x2+3x3+2x4+2x5+2x6+ x7+2x8+ x9+x10 <= 6

( 63) + 5x1+4x2+4x3+3x4+2x5+2x6+ x7+ x8+ x9+x10 <= 6

( 64) + 5x1+3x2+3x3+2x4+ x5+ x6+2x7+ x8+2x9+x10 <= 6

( 65) + 5x1+3x2+3x3+2x4+ x5+ x6+2x7+2x8+ x9+x10 <= 6

( 66) + 6x1+5x2+4x3+3x4+3x5+3x6+2x7+ x8 +x10 <= 7

( 67) + 6x1+4x2+4x3+3x4+2x5+2x6+2x7+ x8+2x9+x10 <= 7

( 68) + 6x1+4x2+4x3+3x4+2x5+3x6+ x7+2x8+ x9+x10 <= 7

( 69) + 6x1+4x2+4x3+3x4+3x5+2x6+ x7+2x8+ x9+x10 <= 7

( 70) + 7x1+5x2+4x3+3x4+2x5+2x6+3x7+2x8+2x9+x10 <= 8

June 23, 2004 DIMACS Reconnect Conference on MIP Slide 19



( 71) + 7x1+5x2+5x3+4x4+3x5+3x6+2x7+2x8+ x9+x10 <= 8

( 72) + 7x1+5x2+5x3+4x4+2x5+3x6+2x7+ x8+2x9+x10 <= 8

( 73) + 7x1+5x2+5x3+4x4+3x5+2x6+2x7+ x8+2x9+x10 <= 8

( 74) + 8x1+6x2+5x3+4x4+3x5+3x6+3x7+2x8+2x9+x10 <= 9

( 75) + 8x1+6x2+6x3+5x4+3x5+3x6+2x7+ x8+2x9+x10 <= 9

( 76) + 9x1+7x2+6x3+5x4+3x5+4x6+3x7+2x8+2x9+x10 <= 10

( 77) + 9x1+7x2+6x3+5x4+4x5+3x6+3x7+2x8+2x9+x10 <= 10

( 78) + 9x1+7x2+6x3+5x4+4x5+4x6+3x7+2x8+ x9+x10 <= 10

( 79) +10x1+8x2+7x3+6x4+4x5+4x6+3x7+2x8+2x9+x10 <= 11

( 80) +12x1+9x2+8x3+6x4+5x5+5x6+4x7+3x8+2x9+x10 <= 13
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Knapsack Separation

• So there are lots of inequalities. How do I find one that might
be useful?

• First note that
∑

j∈C xj ≤ |C| − 1 can be rewritten as
∑

j∈C

(1− xj) ≥ 1.

• Separation Problem: Given a “fractional” LP solution x̂, does
∃ C ⊆ N such that

∑
j∈C aj > b and

∑
j∈C(1− x̂j) < 1?

• Is γ = minC⊆N{
∑

j∈C(1− x̂j |
∑

j∈C aj > b} < 1

• Let zj ∈ {0, 1}, zj = 1 if j ∈ C, zj = 0 if j 6∈ C.

• Is γ = min{∑j∈N (1− x̂j)zj |
∑

j∈N ajzj > b, z ∈ Bn} < 1?

• If γ ≥ 1, x̂ satisfies all cover inequalities
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• If γ < 1 with optimal solution zR, then
∑

j∈R xj ≤ |R| − 1 is a
violated cover inequality.
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Example

myknap = {x ∈ B7 | 11x1 + 6x2 + 6x3 + 5x4 + 5x5 + 4x6 + x7 ≤ 19}
• x̂ = (0, 2/3, 0, 1, 1, 1, 1)

γ = min
z∈B7

{z1+1/3z2+z3 | 11z1+6z2+6z3+5z4+5z5+4z6+z7 ≥ 20}.

• γ = 1/3

• z = (0, 1, 0, 1, 1, 1, 1)

• x2 + x4 + x5 + x6 + x7 ≤ 4

• Minimal Cover: x2 + x4 + x5 + x6 ≤ 3

• Extended Cover: x1 + x2 + x3 + x4 + x5 + x6 ≤ 3

• To get the facet, you would have to start lifting from the
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minimal cover, with x1, x2, x7 fixed at 0.
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General Lifting and SuperAdditivity

• K = conv({x ∈ Z|N |+ , y ∈ <|M |
+ | aT x + gT y ≤ b, x ≤ u})

• Partition N into [L,U,R]

¦ L = {i ∈ N | xi = 0}
¦ U = {i ∈ N | xi = ui}
¦ R = N \ L \ U

• We will use the notation: xR to mean the vector of variables
that are in the set R.

¦ aT
RxR =

∑
j∈R ajxj

• K(L,U) = conv({x ∈ Z|N |+ , y ∈ <|M |
+ | aT

Rx + gT y ≤ d, xR ≤
uR, xi = 0 ∀i ∈ L, xi = ui ∀i ∈ U.})
¦ So d = b− aT

UxU
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Lifting

• Let πT xR − σT y ≤ π0 be a valid inequality for K(L, U).

• Consider the lifting function Φ : < → < ∪ {∞}
¦ (∞) if lifting problem is infeasible

Φ(α) = π0−max{πT
RxR+σT y | aT

RxR+gT y ≤ d−α, xR ≤ uR, xR ∈ Z|R|+ , y ∈ <|M |
+ }

• In words, Φ(α) is the maximum value of the LHS of the valid
inequality if the RHS in K is reduced by α.
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Φ, Schmi

• Why do we care about Φ?

πT
RxR + πT

LxL + πT
U (uU − xU ) + σT y ≤ π0

is a valid inequality for K if and only if

πT
LxL + πT

U (uU − xU ) ≤ Φ(aT
LxL + aT

U (xU − uU )) ∀(x, y) ∈ K.

Proof.?
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Example—Sequential Lifting

• Lifting one variable (at a time) in 0-1 IP (like we have done so far)...

• αxk + πT
RxR ≤ π0 is valid for P ⇔ αxk ≤ Φ(akxk) ∀x ∈ P

¦ xk = 0, 0 ≤ Φ(0) is always true.

¦ xk = 1, ⇒ α ≤ Φ(al)

• If I “know” Φ(q)(∀q ∈ <), I can just “lookup” the value of the lifting

coefficient for variable xk

? Note that if I have restricted more than one variable, then this

“lookup” logic is not necessarily true

¦ For lifting two (0-1) variables, I would have to look at four

possible values.

¦ In general, the lifting function changes with each new variable

“lifted”.
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Superadditivity

• A function φ : < → < is superadditive if

φ(q1) + φ(q2) ≤ φ(q1 + q2)

• Superadditive functions play a significant role in the theory of
integer programming. (See N&W page 229). (We’ll probably
revisit them later).

• Superadditive Fact:

∑

j∈N

φ(aj)xj ≤
∑

j∈N

φ(ajxj) ≤ φ


∑

j∈N

ajxj


 .
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“Multiple Lookup”—Superadditivity

• Suppose that φ is a superadditive lower bound on Φ that
satisfies πi = φ(ai) ∀i ∈ L and πi = φ(−ai) ∀i ∈ U

∑

i∈L

φ(ai)xi +
∑

i∈U

φ(−ai)(ui − xi) ≤ φ(aT
LxL + aT

U (xU − uU ))

≤ Φ(aT
LxL + aT

U (xU − uU ))

• So
πT

RxR + πT
LxL + πT

U (uU − xU ) + σT y ≤ π0

is a valid inequality for K
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The Main Result

• If φ is a superadditive lower bound on Φ, any inequality of the
form πT

RxR − σT y ≤ π0, which is valid for K(L,U), can be
extended to the inequality

πT
RxR +

∑

j∈L

φ(aj)xj +
∑

j∈U

φ(−aj)(uj − xj) + σT y ≤ π0

which is valid for K.

• If πi = φ(ai) ∀i ∈ L and πi = φ(−ai) ∀i ∈ U and
πT xR − σT y = π0 defines a k-dimensional face of K(L,U), then
the lifted inequality defines a face of dimension at least
k + |L|+ |U |.
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