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ABSTRACT

If there are extraordinarily large data, too large to fit into a single computer or too

expensive to perform a computationally intensive data analysis, what should we do?

To deal with this problem, we propose in this paper a split-and-conquer approach and

illustrate it using a computationally intensive penalized regression method, along with

a theoretical support. Consider a regression setting of generalized linear models with n

observations and p covariates, in which n is extraordinarily large and p is either bounded

or goes to ∞ at a certain rate of n. We propose to split the data of size n into K subsets

of size O(n/K). For each subset of data, we perform a penalized regression analysis and

the results from each of the K subsets are then combined to obtain an overall result. We

show that the combined overall result still retains the model selection consistency and

asymptotic normality under mild conditions. When K is less than O(n1/5), we also show

that the combined result is asymptotically equivalent to the corresponding analysis result

of using the entire data all together, assuming that there were a super computer that

could carry out such an analysis. In addition, when a computational intensive algorithm

is used in the sense that its computing expense is at the order of O(na), a > 1, we show

that the split-and-conquer approach can reduce computing time and computer memory

requirement. Furthermore, the split-and-conquer approach involves a random splitting

and a systemic combining. We establish an upper bound for the expected number of

falsely selected variables and a lower bound for the expected number for truly selected

variables. We also demonstrate that, from the splitting and combining, the approach

has an inherent advantage of being more resistant to false model selections caused by

spurious correlations. The proposed methodology is demonstrated numerically using

both simulation and real data examples.

Keywords: Generalized linear models, Information combining, Large data analysis,

Penalized regression



1 Introduction

Consider a generalized linear model:

E(yi) = g(x′
iβ), i = 1, . . . , n

where yi is a response variable and xi is a p × 1 explanatory vector, β is a p × 1

vector of unknown parameters, and g is a link function. Both the sample size n and

the number of parameters p can be potentially very large. We assume that, given

X = (x1, . . . ,xn)
′, the conditional distribution of y = (y1, . . . , yn)

′ follows the canonical

exponential distribution:

f(y;X,β) =
n∏

i=1

f0(yi; θi) =
n∏

i=1

{
c(yi)exp

[
yiθi − b(θi)

ϕ

]}
, (1)

where θi = x′
iβ, i = 1, . . . , n. The log-likelihood function log f(y;X,β) is then given by

ℓ(β;y,X) = [y′Xβ − 1′b(Xβ)]/n, (2)

where b(θ) = (b(θ1), . . . , b(θn))
′ for θ = (θ1, . . . , θn)

′. In the case when p is large (or

grows with n) and β is sparse (i.e., many elements of β are zero), a penalized likelihood

estimator is often used, which is defined as, in a general form,

β̂
(a)

= argmaxβ {ℓ(β;y,X)/n− ρ(β;λa)} . (3)

Here, y is a n × 1 response vector, X is a n × p matrix; ρ is the penalty function

with tuning parameter λa. The superscript a refers to the result obtained by analyzing

all data simultaneously. Depending on the choice of penalty function ρ(β;λa), we have

bridge regression (Frank and Friedman, 1993), LASSO estimator (Tibshirani, 1996; Chen

et al., 2001), LARS algorithm (Efron et al., 2004), SCAD estimator (Fan and Li, 2001)

and MCP estimators (Zhang, 2010), among others. In this paper, we focus on the

settings used in Fan and Lv (2011) which includes a class of the most commonly used

penalty functions to date. On these settings, Fan and Lv (2011) show that the penalized

estimators under the generalized linear models (3) have good asymptotic properties, such

as model selection consistency and asymptotic normality etc., under some regularity

conditions.

In this paper, we propose a split-and-conquer approach for the situation that n is

extraordinarily large, too large to perform the aforementioned penalized regression using

a single computer or available computing resources to us. In this case, we split the whole
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dataset into K subsets of smaller sample sizes. Each subset is then analyzed separately,

provided that such an analysis can be performed on the smaller subsets. A set of K

results are obtained. Subsequently, the K results are combined to obtain a final result.

The idea of this split-and-conquer approach is simple and straightforward. Its essence

can be easily illustrated using a simple special case of the regular Gaussian linear regres-

sion where we have finite p and non-sparse β. In particular, the least square estimator

using entire data all together in this case is

β̂
(a)

= (X ′X)−1X ′y.

When we split the dataset intoK pieces, the least square estimator obtained from the kth

subset is β̂k = (X ′
kXk)

−1X ′
kyk, where Xk is the design matrix and yk is the response

vector for data in the kth subset. These K least square estimators can be combined,

using the inverse of β̂k’s variance Sk
d
= X ′

kXk as their combining weights, to form a

new estimator

β̂
(c)

= (
K∑
k=1

X ′
kXk)

−1

K∑
k=1

{(X ′
kXk)β̂k} = (X ′X)−1

K∑
k=1

X ′
kyk = (X ′X)−1X ′y.

This combined new estimator β̂
(c)

is identical to β̂
(a)
, the least square estimator from

analyzing the entire data all together. Thus, we do not lose any information through

the split-and-conquer approach. For penalized estimators and under generalized linear

models, the results are not so straightforward. Our goal in this paper is to investigate

whether we have any similar results to support the split-and-conquer approach under

generalized linear models and for penalized estimators. We also investigate whether

there are any special properties and benefits for more complex settings beyond this

simple case of the least squared estimation with a small fixed p.

The answers to our questions are affirmative. We prove that, under some mild

conditions and with a suitable choice of K, our combined estimator using the split-

and-conquer approach is asymptotically equivalent to the penalized estimator obtained

from analyzing entire data all together, provided that a penalty function discussed in

Fan and Lv (2011) is used. The combined estimator can keep the sparsity property

and is model selection consistent as long as the penalized estimators from the imposed

penalty function are sparse and model selection consistent. When asymptotic normality

is attainable, the combined estimator does not lose any efficiency through the split-and-

conquer process, in the sense that it has the same asymptotic variance as the penalized

estimator using entire data all together. In other words, although the combined estimator
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may not be exactly the same as the one using complete data, it is as asymptotically

efficient and asymptotically equivalent as the overall penalized estimator analyzing the

entire data.

We study the choice of the number of subsets K. The number K should be relatively

large so that each subset can by analyzed using computing resources available to us.

But K cannot be too large either, because each subset should contain enough data to

provide a meaningful estimator for the unknown regression parameter β. When K is

chosen at the order O(nδ), 0 ≤ δ ≤ 1/5, we demonstrate that the combined estimator

has the desired properties mentioned in the previous paragraph.

Furthermore, when a computational intensive algorithm with computing expenses

at the order of O(na), a > 1, is used, we show using a simple calculation, as well as

demonstrate using numerical examples, that the split-and-conquer approach can release

the computing burden in the sense of reducing computing time and computer memory

requirement. Consider a simple example of linear regression with L1 norm penalty

function. Even the LARS (Efron et al., 2004) algorithm, which is considered as a fast

and efficient algorithm to solve the LASSO problem, requires O(n3) computations when

p ≥ n and the computing time can be costly when both n and p are extraordinarily large.

When generalized regression models or other more complicated penalty functions are

used, the computing cost increases tremendously. In these cases, the split-and-conquer

approach provides a feasible way to perform penalized regressions that can reduce both

computer memory requirement and computing time.

The split-and-conquer approach involves random splitting that can introduce random

errors. But the combining step provides a chance to average them out. In a penalized

regression, improvements in model selection can be expected through a majority voting

in the combining step. As a result, we are able to establish an upper bound for the ex-

pected number of falsely selected variables and a lower bound for the expected number

of truly selected variables. Several studies have noticed that averaging over independent

observations can reduce the impact of random errors. For example, Fan et al. (2010)

propose refitted cross-validation to attenuate false correlations among the random errors

and explanatory variables that they call spurious variables. Meinshausen and Buhlmann

(2010) introduce stability selection which is a combination of subsampling and model

selection algorithms. They get an exact error control bound because the data from sub-

sampling are independent. Similarly, the split-and-conquer approach provides resistance

to selection errors caused by spurious correlations and keeps a large amount of variables

that are in the true model at the same time.
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The rest of this article is organized as follows. Section 2 proposes a split-and-conquer

approach and a combined estimator under the generalized linear regression models. Sec-

tion 3 studies theoretical properties of the combined estimator and explores issues related

to computing and error bound controls. Section 4 illustrates the results using simula-

tions and real data from an application of cargo screening in the U.S. Port-of-Entries

(POEs) practices. Section 5 provides further discussions.

2 Split-and-conquer for penalized regressions

Suppose β is a p × 1 vector of parameters that lies in the parameter space Ω and the

true parameter, denoted by β0, is sparse. Let us divide the whole dataset into K subsets

and the kth subset has nk observations: (xk,i, yk,i), i = 1, . . . , nk. For the k
th subset, the

log-likelihood function is

ℓ(β;yk,Xk) = [y′
kXkβ − 1′b(Xkβ)]/nk, k = 1, . . . , K

where yk = (yk,1, . . . , yk,nk
)′ is a nk × 1 response vector, Xk = (x′

k,1, . . . ,x
′
k,nk

)′ is a

nk × p matrix. Corresponding to (3), the penalized estimator for the kth subset is:

β̂k = argmaxβ {ℓ(β;yk,Xk)/nk − ρ(β;λk)} ,

where ρ is the penalty function with tuning parameter λk. Suppose ρ(β;λk) is one of

the penalty functions studied in Fan and Lv (2011). From Fan and Lv (2011), β̂k has

the sparsity property with many zero entries.

Let us denote by Âk = {j : β̂k,j ̸= 0} the set of selected variables for β̂k. Also, for

any indices set S, denote by β̂k,S a |S| × 1 vector that is formed by the elements of β̂k

whose indices are in S. Thus, β̂k,Âk
is the sub-vector that contains only the non-zero

elements of β̂k. Note that, since each β̂k is estimated from different data, Âk can be

different from one to another and the K vectors β̂k,Âk
may have different lengths.

In order to obtain a combined estimator of β from β̂k’s that retains good performance

on model selection consistency, we use a majority voting method. This majority voting

method is applied based on two considerations. First, the combined estimator should

be formed based on β̂k’s. A variable that is not selected in any of Âk should also be

excluded by the combined estimator. On the other hand, Âk are subject to selection

errors because only a portion of data is analyzed and the penalized likelihood estimator

does not guarantee the perfect selection. In particular, Âk from the analysis of the kth

subset may contain variables that are not in the true nonzero set A d
= {j : β0

j ̸= 0} and
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some variables in A may be missed in Âk. In our majority voting method, we define

Â(c) d
= {j : vj ̸= 0} as the set of selected variables of the combined estimator, where

v(w) = (v1, . . . , vp)
′ is an p× 1 indicator such that

vj =

{
1
∑K

k=1 I(β̂k,j ̸= 0) > w

0 otherwise
(4)

with w ∈ [0, K) being a prespecified threshold and I being the indicator function. In one

extreme case with w = K−1, only variables that are selected by all penalized estimators

from the subsets are selected in Â(c). In the other extreme case with w = 0, variables

that are selected by at least one penalized estimator from the subsets are selected in

Â(c). According to (4), Â(c) is a subset of
∪K

k=1 Âk. When the numbers of elements

|Âk|, k = 1, . . . , K are small and the sets have lots of common elements, |Â(c)| can be

much smaller than p.

We introduce the following notations. For any θ = (θ1, . . . , θn), define

µ(θ) = (µ(θ1), . . . , µ(θn))
′ and Σ(θ) = diag(σ(θ1), . . . , σ(θn)),

where µ(θ) = ∂b(θ)/∂θ and σ(θ) = ∂2b(θ)/∂2θ. We also define weight matrices

Sk
d
= X ′

kΣ(θ̂k)Xk, (5)

where θ̂k = Xkβ̂k. The weight matrix Sk comes from the second order condition of the

penalized likelihood function. It is approximately the inverse of the covariance matrix

of β̂k.

We propose to use the following combined estimator, which is the weighted average

of β̂k,Â(c) , k = 1, . . . , K:

β̂
(c) d

= A

(
K∑
k=1

A′SkA

)−1 K∑
k=1

A′SkAβ̂k,Â(c) , (6)

where E = diag(v(w)) and A = EÂ(c) . Here, for any set S, ES stands for an p × |S|
submatrix of E formed by columns whose indices are in S.

The derivation of the combined estimator is similar to that discussed under the

framework of combining confidence distributions (c.f., Singh et al. (2005); Xie et al.

(2011); Liu (2011)), although the number of parameters considered in those cases is

fixed and finite. We will not repeat the detailed derivations in this paper. Instead,

we will directly show that the combined estimator presented in (6) is model selection

consistent and asymptotically equivalent to the penalized estimator directly using the

entire data all together.
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3 Theoretical results

In this section, we investigate the asymptotic properties of the combined estimator and

compare it with the penalized estimator β̂
(a)

that is obtained from the entire dataset as

defined in (3). We also provide nonasymptotic bounds for the expected number of false

selected variables and the expected number of truly selected variables through the split-

and-conquer approach. We assume in our development that the number of parameters

p = pn can potentially increase with the number of observations n.

3.1 Model selection consistency

We first show that the combined estimator is model selection consistent given that the

penalized estimator obtained from each subset is consistent. We show in this subsection

that the combined estimator converges under the L∞ and L2 norms.

Denote by β0 = (β0
1 , . . . , β

0
pn) the true parameter. Also, denote by A = {i : β0

i ̸= 0}
the true nonzero set and denote by B its complement Ac, the set of noise variables. We

write the half of the minimal signal as dn = 2−1min{|β0
j | : β0

j ̸= 0}. For any indices

set S, XS stands for an n × |S| submatrix of X formed by columns with indices in S.

Similarly, Xk,S stands for an nk × |S| submatrix of Xk formed by columns with indices

in S.

In order to obtain model selection consistency of the combined estimator, we require

certain regularity conditions on the penalty functions and the design matrix. The regular

conditions 1-5 listed in Appendix A are adapted from Fan and Lv (2011). Condition

1 requires that the increasing concave penalty function has continuous derivative and

Condition 2 provides the upper bound of the tail probability of the response variables.

In Conditions 3 and 5, we assume weak correlations between XB and XA. Here, we

require that each subset with sample size nk satisfies these conditions, which is the only

difference from Fan and Lv (2011). In Conditions 4 and 6, we assume that the minimal

signal is large enough for detection. Also, pn can not increase faster than o(enk) and the

model size sn = |A| may increase at a rate of o(nk). Under these conditions, following

Fan and Lv (2011), all K penalized estimators obtained from the subsets are model

selection consistent and converge under the L∞ or L2 norm. The following theorem

concerns the consistency of the combined estimator β̂
(c)

under the L∞ and L2 norms.

Theorem 1 Suppose the regularity Conditions 1-2 in Appendix A are satisfied. Assume

the dataset is divided into K = O(nδ), 0 ≤ δ ≤ 1/2 subsets and nk = O(n/K).
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(i) If the regularity Conditions 3-4 in Appendix A are satisfied, sn = o(n1−δ), log pn =

O(n(1−δ)(1−2α)) and in addition

max
δ∈N0={δ∈ℜsn :∥δ−β0

A∥∞≤dn}
∥[X ′

AΣ(XAδ)XA]
−1X ′

k,AΣ(Xk,Aδ)Xk,A∥∞ = O(nk/n), (7)

then we have, with probability approaching 1, β̂
(c)

B = 0 as n → ∞ and ∥β̂
(c)

A −
β0

A∥∞ = O(n−γ(1−δ) log n), for some 0 < γ < 1/2.

(ii) If the regularity Conditions 5-6 in Appendix A are satisfied, sn = o(n1−δ), log pn =

O(n(1−δ)(1−2α)) and in addition

λmax[{X ′
AΣ(XAδ)XA}−1X ′

k,AΣ(Xk,Aδ)Xk,A] = O(nk/n), (8)

for δ ∈ N0 = {δ ∈ ℜsn : ∥δ − β0
A∥∞ ≤ dn}, then we have, with probability

approaching 1, β̂
(c)

B = 0 as n→ ∞ and ∥β̂
(c)

A − β0
A∥2 = O(

√
sn/n1−δ).

The regularity conditions in Theorem 1 are mild, and they include the same class of

widely used penalty functions discussed in Fan and Lv (2011). According to Theorem 1,

the combined estimator is model selection consistent as long as the penalized estimator

for each subset β̂k is model selection consistent. The additional conditions in (7) and (8),

beyond those adapted from Fan and Lv (2011), are minor. They essentially require the

penalized estimator obtained from the kth subset contributes to the combined estimator

proportionally to the subset’s sample size nk. Asymptotically, the same limiting model

would be obtained whichever fixed w ∈ [0, K) is chosen.

Note that the sample size of each subset nk is smaller than n, the consistency rate

under L∞ loss is changed to ∥β̂k,A − β0
A∥∞ = O(n−γ

k log nk) = O(n−γ(1−δ) log n) rather

than O(n−γ log n) in Fan and Lv (2011). Thus, the combined estimator has slower

consistency rate than the penalized estimator using all data under L∞ norm because nk

may go to infinity at a slower rate compared with n, unless δ = 0 or equivalently K is a

constant. Similarly, under the L2 norm, the consistency rate of the combined estimator

is O(
√
sn/n1−δ) rather than O(

√
sn/n), unless K is a constant. This is not surprising,

since, without any further assumptions, the combined estimator typically converges at

the rate of its individual components. In the special case when δ = 0, or K is a constant,

the combined estimator converges at the same rate as the penalized estimator directly

using entire data all together.
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3.2 Oracle property

The usual penalized likelihood estimators possess oracle property, with a better rate of

model selection consistency and asymptotic normality, if we strengthen the regularity

conditions; see, e.g., Fan and Lv (2011). In this section, we show that our combined

estimator also has such an oracle property when the oracle property is attainable for the

penalized estimator obtained from each subset.

Before obtaining the asymptotic normality, we first show that, under the L2 norm, the

combined estimator is able to achieve the
√
sn/n convergence rate that is the same as the

penalized estimator using entire data all together, if we further constrain sn = o(n
1/3
k )

and K ≤ O(sn). This is a stronger consistency result than that in Theorem 1 (ii).

Then, we show that the combined estimator obtains asymptotic normality with the same

variance as the penalized estimator using entire data all together. Therefore, we fully

establish the asymptotic equivalence between the combined estimator and the penalized

estimator using entire data all together. The results are stated in the following theorem.

Theorem 2 Suppose the regularity Conditions 1-2, 5-6 in Appendix A are satisfied.

Assume the dataset is divided into K = O(nδ) subsets and nk = O(n/K).

(i) Suppose the regularity Condition 7 in Appendix is satisfied, sn = O(n(1−δ)/3) and

log pn = O(n(1−δ)(1−2α)). If 0 ≤ δ ≤ 1/4, we have, with probability approaching 1,

β̂
(c)

B = 0 as n→ ∞ and ∥β̂
(c)

A − β0
A∥2 = O(

√
sn/n).

(ii) Suppose the regularity conditions 8-9 in Appendix A are satisfied, sn = o(n(1−2δ)/3)

and D is a q × sn matrix such that DD′ → G, G is a q × q symmetric positive

definite matrix. If 0 ≤ δ ≤ 1/5, we have

D[XAΣ(θ0)XA]
1/2(β̂

(c)

A − β0
A)

D−→ N(0, ϕG).

Fan and Lv (2011) show that D[XAΣ(θ0)XA]
1/2(β̂

(a)

A − β0
A)

D−→ N(0, ϕG). From

Theorem 2 (ii), the combined estimator β̂
(c)

A has the same limiting normal distribution as

β̂
(a)

A . Thus, the combined estimator is as asymptotically efficient as the penalized estima-

tor β̂
(a)

A which is obtained using the entire data all together. Together with the fact that

both estimators are model selection consistent, the combined estimator is asymptotically

equivalent to the penalized estimator analyzing the entire data all together.

The conditions required in Theorem 2 are mostly adapted from Theorem 4 of Fan

and Lv (2011), but some of them required on the subset level. In addition, we require

λmax[X
′
k,A{Σ(θ0

k) − Σ(Xk,Aδ)}Xk,A] to be smaller than certain rate. This is because
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when calculate β̂
(c)
, estimated covariance matrix Σ(θ̂k) is used rather than the true

value Σ(θ0). To obtain the oracle properties, the estimated weight matrices have to be

close to the true ones. This requirement is usually satisfied in practice because β̂k is close

to β0, which we have already known, and the pug-in estimator Σ(θ̂k) usually is a good

estimator of Σ(θ0
k). In the simple case of linear regressions Σ(θ) is the identity matrix

not dependent on β̂k; thus, {Σ(θ0
k)−Σ(Xk,Aδ)} is always 0. Also, we can always choose

K that is small enough to accomplish this condition, such as K = O(1). In particular,

at least in the special case with K = O(1), the combined estimator achieves asymptotic

equivalence under the same conditions of Fan and Lv (2011).

3.3 Computing issues

In this subsection, we discuss potential computing savings through the split-and-conquer

approach. We have the following simple proposition for a computational demanding

procedure.

Proposition 1 Assume a statistical procedure requires O(na) computing steps, a > 1,

when sample size is n. Suppose the dataset is split into K subsets with almost equal

sample size nk = O(n/K) and the computing effort of the combination is ignorable.

Then, the split-and-conquer approach only needs K × O((n/K)a), that is O(na/Ka−1),

steps. Thus, using the split-and-conquer approach results in a computing saving by the

order of Ka−1 times.

Proposition 1 provides an intuitive interpretation on how much computing time can

be saved. In the numerical example of a relatively simple Gaussian regression with L1

penalty in Section 4.1, the exact order of the computing saving stated in the proposition

is achieved using the LARS algorithm. However, under more complex situations with

generalized linear models and more complicated algorithms such as those studied in

Section 4.2, the computing saving is less than what would be predicted by the simple

proposition, although the computing time is still reduced in a great amount in all those

examples. The complexity of an algorithm and its computing time are associated with its

computing paths in search for a numerical solution of the optimization. Cross-validations

used for selecting the tuning parameter in the penalized likelihood function add another

degree of complexity to the problem. We speculate that the computing time for analysis

of the K subset is different, sometimes substantially, from one to another in these more

complex situations. This makes a prediction of computing savings a much harder task.
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Although we can not use the simple proposition to calculate computing savings in the

more complex cases, it still provides an intuition that can help us understand why the

split-and-conquer approach can reduce computing time. In the simple setting of Section

4.1 where the LARS algorithm is used in a Gaussian regression with a L1 penalty, the

proposition can in fact be used to calculate the computing savings; see Section 4.1 later.

A similar finding in a computational intensive robust multivariate scale estimation is

also reported in Section 5.3 of Singh et al. (2005).

3.4 Error control

Since the observations are independent and the splitting is random, the majority voting

proposed in our approach enables us to find an upper bound of the expected number

of falsely selected variables and a lower bound of the expected number of truly selected

variables for the combined estimator. Let s̄k = E(|Âk|) be the average number of selected

variables of the penalized estimator from the kth subset. Theorem 3 below provides an

upper bound of the expected number of falsely selected variables and a lower bound of

the expected number of truly selected variables, both of which depend on the choice

of the threshold w in the proposed majority voting method. A similar result is also

provided by Meinshausen and Buhlmann (2010) who only consider the K = 2 situation

and only give a lower bound of the expected number of false selected variables.

Theorem 3 Assume the distribution of {1j∈Âk
: j ∈ A} and {1j∈Âk

: j ∈ B} are

exchangeable for all k = 1, . . . , K. Also, assume the penalized estimators used are not

worse than random guessing, i.e. E(|A ∩ Âk|)/E(|B ∩ Âk|) ≥ |A|/|B|, for the set of

selected variables Âk of any penalized estimator. If s∗ = supk s̄k, s∗ = infk s̄k and

w ≥ s∗K/p− 1, then for the combined estimator β̂
(c)
,

(i) the expected number of false selected variables has an upper bound: E(|B∩Â(c)|) ≤
|B|{1− F (w|K, s∗/p)}

(ii) the expected number of truly selected variables has a lower bound: E(|A ∩ Â(c)|) ≥
|A|{1− F (w|K, s∗/p)}

where F (·|m, q) is the cumulative distribution function of binomial distribution with m

trials and success probability q.

In an extreme case with w = K − 1, the combined estimator selects a variable when

it is selected by all penalized estimators from the K subsets. Then, the upper bound for
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the expectation of selected noise variables is (s∗)K/pK−1. Usually, it is hard to get s∗.

However, as long as s∗ is bounded by c1/Kp1−1/K , the average number of noise variables

is bounded by c, where c is constant. In sparse models, s∗ is usually small and so is

c. Therefore, the combined estimator controls the model selection error in a foreseeable

way. In another extreme case with w = 0, the combined estimator selects a variable

when it is selected by at least a penalized estimator from the K subsets. In this case,

the lower bound for the expected number of truly selected variables is tight, achieving

the true number of non-zero set |A|. However, in this latter case, the upper bound for

the expected number of false selected variables is very loose, up to |B| the number of

the entire noise set.

Indeed, there is a trade off between the upper and lower bounds in Theorem 3 for the

choice of w. A larger w typically gives us a smaller upper bound of the expected number

of false selected variable as well as a smaller lower bound of the expected number of truly

selected variables. A smaller w typically gives us a larger upper bound of the expected

number of false selected variable as well as a larger lower bound of the expected number

of truly selected variables. We use w = K/2 in our numerical studies in Section 4. It

appears to be able to provide a good balance between selecting nonzero coefficients in

the true model and excluding noise variables, provided that s∗ is smaller than half of

p. Our numerical studies show that when w = K/2, the combined estimators select

very few noise variables while keep most variables in the true model. In fact, when

w ∈ [K/3, K/2], variables that are selected by the split-and-conquer are often the same

or very similar. Our empirical experience seems to suggest that model selection results

are not very sensitive to the choice of w ∈ [K/3, K/2].

4 Numerical studies

In this section, we provide numerical studies, using both simulation and real data, to

illustrate the performance of the proposed split-and-conquer approach. We also compare

the combined estimators with their corresponding penalized estimators obtained using

the entire data all together, whenever the latter approach can be performed and does

not reach the limits of our computer. The L1 norm, SCAD and MCP, three of the most

widely used penalty functions in the literature, are used in our illustration. We focus on

two models, the Guassian linear regression model and the logistic model, with different

choices of sample size n, number of parameters p and true model size s (the number

of nonzero regression parameters). All analyses are performed on a W35653 20GHz,
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2G(RAM) workstation using R 2.13.1 under Windows 7.

4.1 Linear regression with L1 norm penalty

We consider in this subsection a simple case with a linear regression and the L1 norm

penalty to demonstrate the properties of the combined estimator. In particular, the

response variable y follows a Guassian linear model

y = Xβ + ε,

where ε are IID N(0, 1) errors and the explanatory variables X are generated from a

N(0, I) distribution with I being identity matrix. In our simulation study, we generate

p = 1000 variables and the true model A0 contains s = 30 nonzero coefficients. The total

sample size is picked to be n = 1000 which is equal to p. To get the LASSO estimators

using the L1 norm penalty, the LARS algorithm (Efron et al., 2004) is applied and a

10-fold cross-validation is used for selecting the tuning parameter. When p ≥ n, the

computing order of the LARS is O(n3) that is computationally intensive.

We repeat our simulation 100 times. For the final overall estimators, we record the

mean of computing time and the number of selected nonzero coefficients. To demon-

strate the error control property, we also calculate model selection sensitivity and model

selection specificity. Here, model selection sensitivity is defined as the number of truly

selected variables divided by the true model size, and model selection specificity is de-

fined as the number of truly removed variables divided by the number of noise variables.

The simulation results are shown in Table 1. In Table 1, K = 1 means the entire dataset

is used to get the LASSO estimator; otherwise, the combined estimator proposed in this

paper is used.

According to Table 1, all estimators select some noise variables in addition to the

true s = 30 nonzero variables. This is consistent with a known performance of the

LASSO-type estimators that they usually intend to include more variables than desired

in model selections. When K gets larger, the combined estimator shows the benefit

of error controls through the split-and-conquer approach. In particular, when K = 4

and 6, the model selection specificities increase a lot. This indicates that the combined

estimator is more efficient in removing noise and spurious variables from the selected

models. Moreover, the computing time is decreasing when K is increasing. Since the

computing order for the LARS algorithm is O(n3) when p ≥ n, Proposition 1 in Section

3.3 suggests that the split-and-conquer approach can save computing time by the order
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Table 1: Comparison of the combined estimator and the complete estimator (with stan-

dard deviation in the parenthesis)

Simulation setting Model selection

Design
n p K

Computing time # selected sensitivity specificity

matrix (in second) variables (in %) (in %)

Independent 10000 1000 1 1929.99 (91.46) 151.36 (24.53) 100 (0) 87.49 (2.53)

variables 2 433.87 (14.34) 210.16 (42.50) 100 (0) 81.43 (4.38)

4 140.39 (13.39) 97.64 (15.80) 100 (0) 93.03 (1.63)

6 90.69 (3.23) 47.92(6.85) 100 (0) 98.15 (0.71)

of K2. This is exactly the order achieved in this simulation study, as indicated in column

5 in the middle of Table 1.

4.2 Generalized linear model with SCAD and MCP penalties

The SCAD and MCP estimators are two commonly used estimators that are obtained

based on non-concave penalized likelihood functions. They often have a better perfor-

mance than the LASSO estimators, in terms of selecting a tighter model and fewer noise

variables. We consider in this subsection both the SCAD and MCP estimators under

both the linear regression and logistic models.

For the linear regression case, the response variable y follows the model y = Xβ+ε,

where ε are IID N(0, 1) errors. For the logistic regression case, the response variable y

follows the Bernoulli distribution with the success probability p(Xβ) = eXβ/(1+ eXβ).

In our simulations, we consider two settings to generate the design matrix X: one is for

independent variables and the other is for correlated variables.

1. Independent variables: a set of p variables are generated from a N(0, I) distribu-

tion, where I is identity matrix.

2. Correlated variables: a set of p variables are generated from a N(0,Σ) distribution,

where Σ(i, j) = 0.6|i−j| is the covariance matrix.

We consider two settings of sample sizes: n = 10000 that is large but not too large

and n = 100000 that is very large. In the linear regression, the number of parameters

p = 1000 and in the logistic model, the number of parameters p = 200. In all cases,

the true model contains s = 30 nonzero coefficients. The true model size s = 30 is
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chosen to be relatively small compared with p and n. In order to get the SCAD and

MCP estimators, the NCVREG algorithm (Breheny and Huang, 2011) is applied and a

10-fold cross-validation is used to select the tuning parameters.

The simulation is repeated 100 times. Similarly as in example 1, we record the

computing time and the number of selected variables and calculate model selection

sensitivity and specificity. In addition, the MSE (mean squared error) is calculated in

the linear regression case and the misclassification rate with 0.5 as threshold is reported

in the logistic regression case. The results are displayed in Table 2. In the table, K = 1

refers to the entire data is used all together with no splitting. For any K > 1, the

proposed split-and-conquer approach is applied.

According to Table 2, the SCAD estimators performs similar to the MCP estimators.

In either case, the combined estimator has good model selection results with high model

selection sensitivity and specificity that are similar to those of the penalized estimator

using entire data all together. Moreover, in the linear regression case, the combined esti-

mator has a similar MSE to that of the penalized estimator using entire data all together.

In the logistic regression case, the misclassification rate of the combined estimator is also

close to that of the penalized estimator using entire data all together.

The computing time is reduced through the split-and-conquer procedure, although we

cannot calculate the exact order of computing savings in these complicated settings. For

both the SCAD and MCP penalties, the proposed split-and-conquer approach can reduce

the computing time by almost 10 times on average in the linear regression setting. For

the logistic model, the average saving is a little less. When the explanatory variables are

independent, the combined estimator needs about half of the time compared to directly

performing the same analysis on the entire data all together. When the explanatory

variables are correlated, the combined estimator by the proposed method can save up

to 25% time compared to directly performing the same analysis on the entire data all

together. When the sample size n = 100000, we are not able to perform either the

SCAD or the MCP regression on the entire data all together due to computer memory

limitations. However, the combined estimators can still be obtained using the split-and-

conquer procedure.

We also compare the values of the combined estimators and the penalized estimators

analyzing entire data all together in all the settings of Table 2 when both are available;

see Figure 1. For the linear regression case, the boxplots of the β estimation in the

true model A = {j : β0
j ̸= 0} are plotted in the top panels. We can see that the

estimation of the combined estimators has the similar mean and spread to those of the
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estimators using entire data all together. For the logistic regression, the boxplots of the

β estimation in the true model are plotted in the bottom panels. In the logistic model

case, the estimation of covariance matrix can influence the combined estimator. We use

the maximum likelihood estimator based on only the selected variables in Â to get the

weight matrix. Again, the combined estimators using the proposed split-and conquer

approach perform similarly to the penalized estimators using entire data all together.

4.3 Numerical analysis on POEs manifest data

In this section, we study a set of manifest data collected at the US Port of Entries

(POEs) to demonstrate an application of the split-and-conquer approach. To counter

potential terrorists’ threats, substantial efforts have been made in devising strategies for

inspecting containers coming through the US POEs every day to interdict illicit nuclear

and chemical materials. Manifest data, compiled from the custom forms submitted

by merchants or shipping companies, are collected by the US custom offices and the

Department of Homeland Security (DHS). Analysis of the manifest data is a part of

effort to build up layered defenses for the national security. In a nuclear detection project

sponsored by the Command, Control, and Interoperability Center for Advanced Data

Analysis (CCICADA), a Department of Homeland Security (DHS) Center of Excellence,

we obtain a set of manifest data that contain all shipping records coming through the

POEs across the US in February, 2009. The goal is to make quantitative evaluations

of the manifest data and to develop an effective risk scoring approach that can be used

to assess future shipments. In our project, a logistic regression model has been used to

enhance the effectiveness of the real-time inspection system with binary response variable

indicating high-risk shipments. Since not all information collected in the manifest data

are relevant to risk scoring and there are also many redundant information, we need

to determine the effects of different sources of information in the manifest data and

penalized regression provides a way to evaluate the importance of these variables. Table

3 provides the definition and a description of some variables contained in the manifest

data. Most of these variables are categorical and dummy variables for each categorical

variable are created which results in p = 213 variables in total. There are also text fields

that can potentially lead to a much larger p. To simply our discussion and without loss of

our focus, we only illustrate the proposed split-and-conquer approach using this p = 213

variables and we do not consider any semantic analysis and text mining approaches in

this paper.

Practical issues and challenges exist in carrying out this important task. Due to
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Table 2: Comparison of the combined estimator and the complete estimator (standard

deviation in the parenthesis)

Part I: Linear regression

Simulation setting Model selection

Design
n p K

Computing time # selected sensitivity specificity
MSE

matrix (in second) variables (in %) (in %)

SCAD: Linear regression

Independent 10000 1000 1 815.27 (77.98) 34.58 (9.81) 100 (0) 99.53 (1.01) 1.00 (0.01)

10 104.96 (9.55) 30 (0) 100 (0) 100 (0) 1.00 (0.01)

Correlated 10000 1000 1 755.4 (157.56) 34.00 (12.22) 96.00 (19.79) 99.46 (1.02) 0.96 (0.20)

10 289.17 (61.03) 28.72 (6.13) 95.87 (19.78) 100 (0) 1.00 (0.01)

Independent 100000 1000 1 - (-) - (-) - (-) - (-) - (-)

100 1136.70 (74.65) 30 (0) 100 (0) 100 (0) 1.00 (0.01)

Correlated 100000 1000 1 - (-) - (-) - (-) - (-) - (-)

100 3074.53 (25.01) 30 (0) 100 (0) 100 (0) 1.06 (0.01)

MCP: Linear regression

Independent 10000 1000 1 2243.45 (155.82) 34.58 (9.81) 100 (0) 99.79 (0.41) 1.00 (0.01)

10 163.72 (12.95) 30 (0) 100 (0) 100 (0) 1.00 (0.01)

Correlated 10000 1000 1 1244.73 (80.86) 31.92 (5.69) 100 (0) 99.80 (0.59) 0.99 (0.01)

10 442.14 (42.42) 29.98 (0.14) 99.93 (0.47) 100 (0) 1.01 (0.02)

Independent 100000 1000 1 - (-) - (-) - (-) - (-) - (-)

100 1565.54 (132.38) 30 (0) 100 (0) 100 (0) 1.00 (0.01)

Correlated 100000 1000 1 - (-) - (-) - (-) - (-) - (-)

100 4256.52 (215.60) 30 (0) 100 (0) 100 (0) 1.02 (0.01)

Part II: Logistic regression

Simulation setting Model selection

Design
n p K

Computing time # selected sensitivity specificity Misclassificaton

matrix (in second) variables (in %) (in %) rate (in %)

SCAD: Logistic regression

Independent 10000 200 1 198.85 (5.88) 35.54 (5.71) 100 (0) 96.74 (3.36) 17.32 (0.40)

5 116.49 (2.78) 31.70 (1.33) 100 (0) 99.00 (0.78) 17.40 (0.38)

Correlated 10000 200 1 463.61 (20.16) 38.18 (5.58) 99.33 (1.35) 95.02 (3.15) 9.90 (0.29)

5 359.29 (7.94) 32.38 (2.42) 96.07 (2.75) 97.84 (1.27) 10.10 (0.26)

Independent 100000 200 1 - (-) - (-) - (-) - (-) - (-)

20 1352.14 (76.2) 30 (0) 100 (0) 100 (0) 17.38 (0.12)

Correlated 100000 200 1 - (-) - (-) - (-) - (-) - (-)

20 4014.48 (284.69) 29.97 (0.2) 99.87 (0.67) 100 (0) 9.96 (0.09)

MCP: Logistic regression

Independent 10000 200 1 201.46 (6.74) 31.8 (2.77) 100 (0) 98.94 (1.63) 17.31 (0.34)

5 118.85 (3.17) 30.24 (0.62) 99.87 (0.66) 99.84 (0.34) 17.38 (0.35)

Correlated 10000 200 1 582.182 (59.02) 35.48 (4.22) 98.73 (1.89) 96.55 (2.27) 9.84 (0.33)

5 557.43 (22.7) 28.7 (1.63) 92.93 (3.85) 99.52 (0.60) 10.17 (0.32)

Independent 100000 200 1 - (-) - (-) - (-) - (-) - (-)

20 1301.95 (63.27) 30 (0) 100 (0) 100 (0) 17.34 (0.13)

Correlated 100000 200 1 - (-) - (-) - (-) - (-) - (-)

20 4485.9 (186.29) 29.58 (0.50) 98.60 (1.66) 100 (0) 10.00 (0.09)
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Table 3: Manifest data: Dictionary of Variables

Variables Number of Categories Definition

X1 9 Vessel Country Code

X2 69 Voyage Number

X3 9 dp of Unlading

X4 14 Foreign Port Lading

X5 68 Foreign Port

X6 35 Inbond Entry Type

X7 17 Container Cotents

the enormous size of traffic and a large number of entry sites, it is impossible for us

to analyze the whole data simultaneously on a single computer. For instance, there are

164721 shipments in one week from February 20, 2009 to February 26, 2009. A computer

with 2 GB memory and 3.2GHz CPU fails to perform the SCAD penalized regression on

the one-week data. Even if high-performance computer is available, it will takes a long

time to carry out the task and this is very inefficient in practice, especially we may need

to constantly update the models over the months and years. Nevertheless, we can solve

this problem by applying the split-and-conquer approach with the assumption that the

underlying regression model stay more or less the same over a short period of time of

one week or one month.

Because of security concerns, the indicator of high-risk shipments are not accessible

to us, but we have been told to use the rate 1% to 10% of cargo containers that need

further inspections in the context of inspections of drugs and other illicit materials. To

illustrate our approach, we turn to a simulation to generate the risk scores based on the

given manifest data. In particular, potential influential characteristics are selected to

generate the risk scores using logistic models. Then, we perform the SCAD penalized

regression on everyday’s data and combine the seven daily estimators together to obtain

an overall combined estimator. Note that, due to the computing limitations of our

personal computer, we are not able to perform the SCAD analysis on the whole week of

data all together.

The results from the split-and-conquer approach are displayed in Tables 4 and 5, in

which we report the model selection sensitivity, model selection specificity, misclassifi-
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Table 4: Comparison of the combined weekly estimator and daily estimators (standard

deviation in the parenthesis)

Model selection

# of selected Sensitivity Specificity Misclassificaton

variables (in %) (in %) rate (in %)

Week (Combined) 21.06 (0.38) 95.25 (0.09) 99.95 (0.14) 3.97 (0.05)

Mon 32.66 (4.00) 92.53 (0.36) 94.2 (1.78) 3.99 (0.05)

Tues 29.18 (3.07) 95.4 (0.05) 96.14 (1.44) 3.98 (0.05)

Wed 9.22 (4.58) 23.13 (1.2 98.05 (1.18) 3.99 (0.05)

Thur 10.86 (4.6) 27.73 (1.08) 97.76 (1.28) 3.98 (0.05)

Fri 25.6 (2.09) 95.45 (0) 97.83 (0.98) 4.00 (0.05)

Sat 29.76 (3.47) 95 (0.14) 95.82 (1.61) 3.98 (0.05)

Sun 30.6 (3.31) 95.1 (0.12) 95.44 (1.57) 3.99 (0.05)

cation rate and the average estimates of the non-zero parameters from 100 replications,

based on the split-and-conquer approach as well as the SCAD penalized regression using

the data of a single day. The s = 22 non-zero parameters are from three categorical vari-

ables: Vessel Country Code, Foreign Port Landing and Container Contents. Clearly, the

split-and-conquer approach succeeds in performing the penalized logistic regression anal-

ysis on the whole week manifest data. As we can see from Table 4, the split-and conquer

approach has identified most influential variables in the manifest data. In particular,

the combined estimator has both high model selection sensitivity and specificity. On a

contrast, the daily estimators either selects many more noise variables or excludes many

influential variables. Also, the combined estimator is more stable than daily estimators

because it has much smaller variances in the values of the average model size, model se-

lection sensitivity and specificity. Although the combined estimator has a slightly smaller

misclassification rate, all estimators have more or less the similar misclassification rates,

which are on average slightly less than 4%.

In terms of estimation, as in Table 5, the combined estimator also has smaller variance

than the penalized estimators that only use daily data. For the categories Animals and

Office in Container Contents, some of the daily estimators fails to select them and they

are not significant in the combined estimators. Also, the Sporting variable is left out in

the model by all the estimators. But all other 19 variables are found by the combined
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Table 5: Manifest data analysis through split-and-conquer approach

Week Daily estimation

Categories (Combined) Mon Tues Wed Thur Fri Sat Sun

Vessel country code

PA 0.33(0.06) 0.2(0.17) 0.36(0.15) 0.07(0.14) 0.14(0.14) 0.46(0.07) 0.41(0.16) 0.4(0.14)

LR 1.78(0.07) 1.7(0.22) 1.75(0.19) 0.8(0.39) 1.64(0.16) 1.78(0.16) 1.75(0.17) 1.73(0.13)

DE 0.26(0.06) 0.22(0.17) 0.39(0.16) 0.01(0.06) 0.02(0.11) 0.47(0.11) 0.32(0.19) 0.31(0.2)

Foreign port lading

570 1.54(0.05) 1.59(0.15) 1.56(0.13) 0.92(0.35) 1.36(0.33) 1.53(0.08) 1.58(0.17) 1.53(0.12)

582 0.9(0.07) 1(0.23) 1.1(0.14) 0.26(0.21) 0.36(0.23) 0.84(0.17) 0.92(0.26) 0.63(0.25)

580 1.13(0.06) 1.39(0.17) 0.85(0.23) 0.03(0.09) 0.45(0.29) 1.33(0.1) 0.72(0.23) 1.27(0.14)

Container contents

Material 1.31(0.1) 1.98(0.24) 2.03(0.18) 0.12(0.27) 0.1(0.22) 2.06(0.17) 2(0.23) 1.97(0.24)

Animals 0.05(0.11) 0.27(0.21) 0.74(0.28) 0(0) 0(0) 0.63(0.21) 0.47(0.24) 0.46(0.25)

Entertainment 1.04(0.15) 1.55(0.36) 1.75(0.32) 0.03(0.12) 0.03(0.14) 1.85(0.23) 1.48(0.31) 1.56(0.33)

Industry 0.76(0.1) 1.39(0.25) 1.5(0.19) 0.03(0.22) 0.01(0.1) 1.55(0.18) 1.43(0.2) 1.44(0.18)

Cloth 0.65(0.08) 1.31(0.17) 1.37(0.12) 0.03(0.19) 0.02(0.13) 1.4(0.1) 1.32(0.17) 1.3(0.15)

Electro 0.44(0.13) 1.02(0.37) 1.09(0.28) 0.01(0.12) 0.01(0.12) 1.38(0.26) 0.91(0.26) 1.02(0.28)

Food 0.7(0.08) 1.41(0.14) 1.4(0.15) 0.02(0.17) 0.05(0.19) 1.46(0.11) 1.36(0.14) 1.34(0.12)

Furniture 1.34(0.11) 2.01(0.25) 2.09(0.22) 0.08(0.24) 0.12(0.23) 2.14(0.18) 2.01(0.26) 1.95(0.22)

Hardware 0.24(0.07) 0.88(0.18) 0.94(0.14) 0.01(0.1) 0(0.03) 0.97(0.1) 0.87(0.17) 0.9(0.15)

Health 0.53(0.09) 1.18(0.15) 1.23(0.13) 0.02(0.14) 0.01(0.12) 1.25(0.1) 1.19(0.15) 1.18(0.13)

Home 1.18(0.1) 1.91(0.24) 1.91(0.19) 0.09(0.26) 0.03(0.16) 1.95(0.15) 1.87(0.2) 1.83(0.2)

Motor 0.28(0.14) 0.89(0.3) 1.01(0.32) 0.03(0.25) 0.01(0.1) 1.19(0.29) 1.18(0.37) 1(0.33)

Media 0.98(0.11) 1.69(0.23) 1.75(0.26) 0.03(0.14) 0.02(0.13) 1.79(0.2) 1.47(0.29) 1.46(0.28)

Office -0.17(0.13) 0.24(0.25) 0.55(0.26) 0.01(0.06) 0(0) 0.55(0.25) 0.4(0.25) 0.54(0.29)

Sporting 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

Mature 0.45(0.08) 1.15(0.13) 1.17(0.13) 0.02(0.15) 0.01(0.1) 1.23(0.1) 1.14(0.14) 1.14(0.11)
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estimator. The same performance can not be achieved by any of the penalized estimators

using only daily data. By incorporating one-week information, the split-and-conquer

approach provides more reliable results with better performance than any of the daily

analysis.

5 Discussions

We propose in this paper a split-and-conquer methodology for analysis of extraordinarily

large data. The split-and-conquer approach contains two operational steps. Firstly, the

entire dataset is randomly split into non-overlapped small subsets, and each subset is

analyzed separately using desired statistical procedures. Then, the results from all sub-

sets are combined together and provide a final overall statistical inference that contains

information from the entire dataset. We demonstrate the split-and-conquer approach

for penalized regression models that are widely used in the analysis high-dimensional

data.

The split-and-conquer approach provides an applicable way to analyze extraordinar-

ily large datasets. The approach is very general and can have a lot of applications.

As the entire dataset is split into smaller pieces, each subset requires a smaller storage

space and computer memory when we perform our statistical analysis. Moreover, we

have shown that the split-and-conquer approach needs less computing time when the

desired statistical method is computationally intensive. Even in the case in which the

desired statistical method is efficient, a reduced computing time can be expected oper-

ationally because we now can analyze different subsets at the same time using different

computers. This computing improvement is very useful in many practical applications.

One important step in the split-and-conquer approach is the combination. We have

demonstrated in our settings that the combined results obtained from the subsets do not

cause any bias or efficiency loss, asymptotically. The specific combination method to be

used depends on the desired statistical procedure. As illustrated by penalized regressions

in this paper, the properly weighted and linearly combined estimator is asymptotically

equivalent to the one from analyzing the entire data all together. According to Singh

et al. (2005), Xie et al. (2011) and Liu (2011), equivalent combined statistics or asymp-

totic efficiency are achievable for many other models. The proposed split-and-conquer

approach can be easily extended to other problem settings as well as problems beyond

point estimations including those using hypothesis testings and confidence intervals.
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6 Appendix

6.1 Appendix A

Condition 1 ρ(t;λ) is increasing and concave in t ∈ [0,∞), and has a continuous

derivative ρ′(t;λ) with ρ′(0+;λ) > 0. In addition, ρ′(0+;λ) is increasing in λ ∈ [0,∞)

and ρ′(0+;λ) is independent of λ.

Condition 2 Let Y = (Y1, Y2, . . . , Yn) be the n-dimensional independent random re-

sponse vector and a ∈ ℜn. Assume

P(|a′Y − a′µ(θ0)| > ∥a∥2ϵ) ≤ ψ(ϵ)

where ψ(ϵ) = 2e−c1ϵ2 and c1 is a constant, see Fan and Lv (2011) for details about c1.

Condition 3 The sub-design matrix Xk, k = 1, . . . , K satisfies

∥[X ′
k,AΣ(Xk,Aδ)Xk,A]

−1∥∞ = O(bsn
−1
k ),

∥X ′
k,BΣ(θ0

k)Xk,A[X
′
k,AΣ(θ0

k)Xk,A]
−1∥∞ ≤ min{Cρ′(0+)/ρ′(dn), O(n

α1
k )},

max
δ∈N0

max
j=1,...,pn

λmax[X
′
k,Adiag{|xk,j| ◦ |µ′′(Xk,Aδ)|}Xk,A] = O(nk),

where C ∈ (0, 1), α1 ∈ [0, 1/2] and N0 = {δ ∈ ℜsn : ∥δ − β0
A∥∞ ≤ dn}. Here, bs is

associated with the non-sparsity size sn = O(nα0
k ); see Fan and Lv (2011) for a detailed

definition. The derivative is taken componentwise.

Condition 4

For some γ ∈ (0, 1/2], assume that dn ≥ n−γ
k log nk and bs = o{min(n

1/2−γ
k )

√
log nk, s

−1
n nγ

k/ log nk}.
In addition, assume ρ′(dn;λk) = o(b−1

s n−γ
k log nk), λk ≫ n−α

k (log nk)
2, and λkκ0 = o(τk0),

where α = min(1/2, 2γ−α0)−α1, τk0 = maxδ∈N0 λmin[n
−1
k X ′

k,AΣ(Xk,Aδ)Xk,A]. Assume

that maxj=1,...,pn ∥xk,j∥∞ = o(nα
k/
√
log nk) if the responses are unbounded.

Condition 5 The sub-design matrix Xk, k = 1, . . . , K satisfies

min
δ∈N0

λmin[X
′
k,AΣ(Xk,Aδ)Xk,A] ≥ cnk, tr[X ′

k,AΣ(θ0
k)Xk,A] = O(snnk)

∥X ′
k,BΣ(θ0

k)Xk,A∥2,∞ = O(nk)

max
δ∈N0

max
j=1,...,pn

λmax[X
′
k,Adiag{|xk,j| ◦ |µ′′(Xk,Aδ)|}Xk,A] = O(nk)
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where N0 = {δ ∈ ℜsn : ∥δ − β0
A∥∞ ≤ dn}, c is some positive constant, and ∥B∥2,∞ =

max∥v∥2=1 ∥Bv∥∞.

Condition 6 Assume that dn ≫ λk ≫ max{
√
sn/nk, n

(α−1)/2
k (log nk)

1/2}, ρ′(dn;λk) =
O(n

−1/2
k K−1/2); and λkκ0 = o(1), where κ0 = maxδ∈N0 κ(ρ; δ). In addition assume that

maxpnj=1 ∥xk,j∥∞ = o(n
(1−α)/2
k /

√
log nk) if the responses are unbounded.

Condition 7

λmax[X
′
k,A{Σ(θ0

k)−Σ(Xk,Aδ)}Xk,A] = O(nk/
√
sn) (9)

where δ is in N0 = {δ ∈ ℜsn : ∥δ − β0
A∥∞ ≤ dn}.

Condition 8

λmax[X
′
k,A{Σ(θ0

k)−Σ(Xk,Aδ)}Xk,A] = o(nk/
√
snK) (10)

where δ is in N0 = {δ ∈ ℜsn : ∥δ − β0
A∥∞ ≤ dn}.

Condition 9 Assume that ρ′(dn;λk) = o(s
−1/2
n n−1/2), maxi=1,...,nE|yi − b′(θ0i )|3 =

O(1) and
∑n

i=1(z
′
iB

−1zi)
3/2 → 0 as n → ∞, where B = X ′

AΣ(θ0)XA and XA =

(z1, . . . , zn)
′.

6.2 Appendix B

Proof of Theorem 1 Proof: We first prove part (1). According to Fan and Lv (2011),

under the regularity conditions, when nk → ∞, k = 1, . . . , K, with probability 1, we

have β̂k,B = 0,Sk = diag(Sk,A, 0) and A = diag(Isn , 0). Therefore,

β̂
(c)

B = 0

In addition, the definition of β̂
(c)

shows that

β̂
(c)

A − β0
A = [

K∑
k=1

X ′
k,AΣ(θ̂k)Xk,A]

−1[
K∑
k=1

X ′
k,AΣ(θ̂k)Xk,A(β̂k,A − β0

A)]

.
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Since ∥β̂k,A − β0
A∥∞ = O(n−γ

k log nk) and (7) in conditions 4, we have

∥β̂
(c)

A − β0
A∥∞ = ∥[

K∑
k=1

X ′
k,AΣ(θ̂k)Xk,A]

−1[
K∑
k=1

X ′
k,AΣ(θ̂k)Xk,A(β̂k,A − β0

A)]∥∞

≤
K∑
k=1

{∥[
K∑
k=1

X ′
k,AΣ(θ̂k)Xk,A]

−1X ′
k,AΣ(θ̂k)Xk,A∥∞∥β̂k,A − β0

A∥∞}

=
K∑
k=1

{∥[X ′
AΣ(θ̂)XA]

−1X ′
k,AΣ(θ̂k)Xk,A∥∞∥β̂k,A − β0

A∥∞}

=
K∑
k=1

O(nk/n)O(n
−γ
k log nk)

= O(n−γ
k log n) = O(n−γ(1−δ) log n)

The proof of part (2) is similar. Since ∥β̂k,A − β0
A∥2 = O(

√
sn/nk) (Fan and Lv,

2011) and (8) in condition 6, it gives us

∥β̂
(c)

A − β0
A∥2 ≤ ∥

K∑
k=1

[{
K∑
k=1

X ′
k,AΣ(θ̂k)Xk,A}−1X ′

k,AΣ(θ̂k)Xk,A(β̂k,A − β0
A)]∥2

≤
K∑
k=1

λmax[{
K∑
k=1

X ′
k,AΣ(θ̂k)Xk,A}−1X ′

k,AΣ(θ̂k)Xk,A]∥β̂k,A − β0
A∥2

≤
K∑
k=1

O(nk/n)O(
√
sn/nk) = O(

√
sn/nk) = O(

√
sn/n1−δ)

Proof of Theorem 2 We first prove part (1). Constrained on the subspace {β : βB =

0}, we take Taylor expansion of the penalized likelihood function at β0
A. Since β̂k,A is

local maximum and ∥β̂k,A − β0
A∥2 = O(

√
sn/nk),

n−1
k X ′

k,A[yk − µ(θ0
k)]− n−1

k X ′
k,A[Σ(θ0

k)−Σ(θ̂k)]Xk,A(β̂k,A − β0
A) (11)

− n−1
k X ′

k,AΣ(θ̂k)Xk,A(β̂k,A − β0
A)− ρ̄(β̂k,A;λk) +Op(s

3/2
n n−1

k ) = 0 (12)

From (9) in condition 7, we have

∥n−1
k X ′

k,A[Σ(θ0
k)−Σ(θ̂k)]Xk,A(β̂k,A − β0

A)∥2 ≤ O(1/
√
sn)∥β̂k,A − β0

A∥2 = O(1/
√
nk)(13)

Since sn = O(n(1−δ)/3) = O(n
1/3
k ) and ρ′(dn;λk) = o(s

−1/2
n n

−1/2
k ), together with (13),

(11) gives

n−1
k X ′

k,AΣ(θ̂k)Xk,A(β̂k,A − β0
A) = n−1

k X ′
k,A[yk − µ(θ0

k)] +O(1/
√
nk)
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By the definition of β̂
(c)
, we have

[
K∑
k=1

X ′
k,AΣ(θ̂k)Xk,A](β̂

(c)

A − β0
A) =

K∑
k=1

X ′
k,A[yk − µ(θ0

k)] +O(
√
nK)

Therefore,

[
K∑
k=1

X ′
k,AΣ(θ0

k)Xk,A](β̂
(c)

A − β0
A)

=
K∑
k=1

X ′
k,A[yk − µ(θ0

k)] +O(
√
nK)− [

K∑
k=1

Xk,A{Σ(θ̂k)−Σ(θ0
k)}Xk,A](β̂

(c)

A − β0
A)

Since ∥β̂
(c)

A − β0
A∥2 = O(

√
snK/n) and (9) in condition 7, we have

[
K∑
k=1

X ′
k,AΣ(θ0

k)Xk,A](β̂
(c)

A − β0
A) =

K∑
k=1

X ′
k,A[yk − µ(θ0

k)] + o(
√
nK)

The above equation is equivalent to

β̂
(c)

A − β0
A = [X ′

AΣ(θ0)XA]
−1XA[y − µ(θ0)] + o(

√
K/n)

Since K = O(nδ), 0 ≤ δ ≤ 1/4 and sn = O(n
1/3
k ), we have K ≤ O(sn) and

∥β̂
(c)

A − β0
A∥2 = ∥[X ′

AΣ(θ0)XA]
−1XA[y − µ(θ0)]∥2 + o(

√
K/n)

= O(
√
sn/n) + o(

√
K/n) = O(

√
sn/n)

Proof of (2). From (10) in condition 8, we have

∥n−1
k X ′

k,A[Σ(θ0
k)−Σ(θ̂k)]Xk,A(β̂k,A − β0

A)∥2 ≤ o(1/
√
snK)∥β̂k,A − β0

A∥2 = o(1/
√
Knk)(14)

Since sn = o(n
1/3
k /K1/3) and ρ′(dn;λk) = o(s

−1/2
n n

−1/2
k K−1/2), together with (14), (11)

gives

n−1
k X ′

k,AΣ(θ̂k)Xk,A(β̂k,A − β0
A) = n−1

k X ′
k,A[yk − µ(θ0

k)] + o(1/
√
nkK)

By the definition of β̂
(c)
, we have

[
K∑
k=1

X ′
k,AΣ(θ̂k)Xk,A](β̂

(c)

A − β0
A) =

K∑
k=1

X ′
k,A[yk − µ(θ0

k)] + o(
√
n)
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Therefore,

[
K∑
k=1

X ′
k,AΣ(θ0

k)Xk,A](β̂
(c)

A − β0
A)

=
K∑
k=1

X ′
k,A[yk − µ(θ0

k)] + o(
√
n)− [

K∑
k=1

Xk,A{Σ(θ̂k)−Σ(θ0
k)}Xk,A](β̂

(c)

A − β0
A)

Since ∥β̂
(c)

A − β0
A∥2 = O(

√
sn/n) and (9) in condition 8, we have

[
K∑
k=1

X ′
k,AΣ(θ0

k)Xk,A](β̂
(c)

A − β0
A) =

K∑
k=1

X ′
k,A[yk − µ(θ0

k)] + o(
√
n)

The above equation is equivalent to

[X ′
AΣ(θ0)XA](β̂

(c)

A − β0
A) = XA[y − µ(θ0)] + o(

√
n)

Thus,

β̂
(c)

A − β0
A = [X ′

AΣ(θ0)XA]
−1XA[y − µ(θ0)] + o(1/

√
n)

In addition,

D[XAΣ(θ0)XA]
1/2(β̂

(c)

A − β0
A) = D[XAΣ(θ0)XA]

−1/2XA[y − µ(θ0)] + o(1)

and under Condition 9, we have

D[XAΣ(θ0)XA]
−1/2XA[y − µ(θ0)]

D−→ N(0, ϕG)

This complete the proof.

Proof of Theorem 3

We fist show that P(j ∈ Âk) ≤ s̄k/p, j ∈ B, and P(j ∈ Âk) ≥ s̄k/p, j ∈ A,

k = 1, . . . , K.

Because E(|B ∩ Âk|) = E(|Âk|) − E(|A ∩ Âk|) = s̄k − E(|A ∩ Âk|) and E(|A ∩
Âk|)/E(|B ∩ Âk|) ≥ |A|/|B|, we have E(|B ∩ Âk|) ≤ s̄k/(1+ |A|/|B|) and E(|A∩Âk|) ≥
s̄k/(1 + |B|/|A|). Therefore, E(|B ∩ Âk|) ≤ s̄k|B|/p and E(|A ∩ Âk|) ≥ s̄k|A|/p.

Using the exchangeability assumption, P(j ∈ Âk) = E(|B ∩ Âk|)/|B|, j ∈ B and

P(j ∈ Âk) = E(|A ∩ Âk|)/|A|, j ∈ A. Therefore, P(j ∈ Âk) ≤ s̄k/p ≤ s∗/p, j ∈ B and

P(j ∈ Âk) ≥ s̄k/p ≥ s∗/p, j ∈ A.
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Since the observations in each subset are independent and w ≥ s∗K/p − 1, P(j ∈
Â) ≤ 1 − F (w|K, s∗/p), j ∈ B and P(j ∈ Â) ≥ 1 − F (w|K, s∗/p), j ∈ A. Therefore,

E(|B ∩ Â|) =
∑

j∈B P(j ∈ Â) ≤ |B|{1 − F (w|K, s∗/p)} and E(|A ∩ Â|) =
∑

j∈A P(j ∈
Â) ≥ |A|(1− F (w|K, s∗/p))

Proof of Proposition 1: Each sub-sample has n/K observations, so the computing

steps for the combined estimator is O(K · (n/K)a) = O(nα/Ka−1). The result follows

immediately.
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