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Abstract

In graph pebbling, a connected graph is called Class 0 if it has a pebbling num-
ber equal to its number of vertices. This paper addresses the question of when it
is possible to edge-partition a complete graph into k complementary Class 0 sub-
graphs. We define the notion of k-Class 0 graphs: a graph G is k-Class 0 if it contains
k edge-disjoint subgraphs, where each subgraph is Class 0. We next present a family
of k-Class 0 graphs for k = 2, showing that for n ≥ 9, Kn is 2-Class 0. We finally
provide a probabilistic argument to prove that ∀k ∈ N, ∃n ∈ N such that Kn can be
edge-partitioned into k cyclically symmetric subgraphs of diameter 2 and connec-
tivity 3: that is Kn is k-Class 0.
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1 Introduction

In the traditional pebbling framework for a graph G, we define a pebbling distribution
P : V(G)→ N which places a number of pebbles on each vertex of the graph[1]. A legal
pebbling move consists of taking two pebbles from one vertex and removing them from
the graph, while adding one pebble to an adjacent vertex. Many problems in graph
pebbling relate to the pebbling number π(G) of the graph (the minimum number of
pebbles required such that any pebbling distribution placing that many pebbles on the
graph will allow for any target vertex to be reached through a series of pebbling moves).

In this paper we will study the partitioning of complete graphs into complimentary
cyclically symmetric Class 0 subgraphs. We define the notion of k-Class 0 graphs: a
graph G is k-Class 0 if it contains k edge-disjoint subgraphs, where each subgraph is
Class 0. To provide context, one can consider a multi-colored relative of the classic
graph pebbling problem. The game in question is a generalization of graph pebbling
to a version with k players, each representing one of k colors which are assigned to
both pebbles and edges (see [2] for a similar game). When can the edges of a graph
be colored with k colors, such that each implies a Class 0 subgraph? We show that for
a given natural k, there exists an n such that the complete graph on n vertices can be
edge-partitioned into k circularly symmetric Class 0 subgraphs, and hence is k-Class 0.

We’ll begin by introducing definitions relevant to k-Class 0 graphs, as well as a
known sufficient condition for a graph to be Class 0: diameter 2 and 3-connectivity
(2D3C). We present a set of constructive operations on 2D3C graphs, and find a family
of 2-Class 0 graphs. We then introduce a construction for cyclically symmetric sub-
graphs of complete graphs. We finally present a probabilistic argument to prove our
main result.

2 Definitions and Framework

Recall the following important definitions from standard graph pebbling [3]:

Definition. A pebbling move consists of the removal of two pebbles from a single vertex
and adding one to an adjacent vertex.

Definition. The pebbling number for a graph G, π(G), is the minimum number such that
any distribution of π(G) pebbles on G will allow for any target vertex to be reached by
a series of pebbling moves.

It is clear that π(G) ≥ |V (G)|.

Definition. A graph G is Class 0 if π(G) = |V (G)|.

We introduce the following pertinent definition concerning Class 0 subgraphs of a
Class 0 graph.

Definition. A graph G on n vertices is considered k-Class 0 if it contains k edge-disjoint
Class 0 subgraphs spanning n vertices.
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A graph which is k-Class 0 can hence be partitioned into k subgraphs, leaving room
for a k-player graph pebbling game with each player moving on a Class 0 subgraph of
the initial graph. It is clear that being k-Class 0 is a monotone property in graph edges;
that is, adding edges to a graph which is already k-Class 0 will leave it k-Class 0. Note
also that these subgraphs do not need to be a precise decomposition; unassigned edges
won’t affect k-Class 0 by monotonicity.

Two properties of graphs which are relevant in the discussion of Class 0 graphs are
diameter and connectivity.

Definition. Let G be a connected graph. Then the diameter of G, diam(G), is the greatest
distance between any pair of vertices.

Definition. A graph G graph is said to be k-connected if there does not exist a set of k− 1
vertices whose removal disconnects the graph. By convention, we require G to either
have k + 2 or greater vertices, or be the complete graph on k + 1 vertices. For a given
graph, the maximum k such that the graph is k-connected is written as κ(G), the graph’s
vertex connectivity.

Intuititively, one can see that graphs of smaller diameter are more likely to be Class
0, and that low connectivity prevent a graph from being Class 0. There has been much
work done characterizing Class 0 graphs, but one result which is used multiple times in
our paper is given here.

Theorem (Clarke, et. al.). If diam(G) = 2, and κ(G) ≥ 3, then G is of Class 0 [4].

It will be convenient to define this subset of Class 0 graphs, as results in this paper
work directly with diameter and connectivity as a sufficient condition for Class 0.

Definition. We call a graph 2D3C if it has diameter 2 and is 3-connected.

From the previous theorem, we see that the 2D3C condition is stronger than that of
Class 0. In particular, this condition implies that almost all graphs are Class 0, since
almost all graphs are 2D3C [4]. While 2D3C is a sufficient condition for being Class
0, it is not necessary; a subsequent theorem [5] states that there exists a function k(d),
bounded in 2d

d
≤ k(d) ≤ 22d+3, such that if G is a graph of diameter d, and κ(G) ≥

k(d), then G is of Class 0. Below we present an example of a Class 0 graph with high
connectivity but diameter greater than 2.

Example. Consider the icosahedron, a graph with 12 5-regular vertices, alternatively
defined as having 20 equilateral triangle faces. One can show that the icosahedron has
diameter 3 and is 5-connected, but is Class 0. Note that the connectivity does not lie
within the bounds of the function k(d) guaranteed by the theorem mentioned above [5].

3 Operations on 2D3C Graphs

We now present a pair of operations on graphs which preserve 2D3C.
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Definition (Strong Product). Given graphs G and H , we’ll define G�H as a graph with
vertex set equal to the Cartesian Product of V (G) and V (H), and an edge relation such
that (ui, vi)(uj, vj) ∈ E(G�H) if any one of the following holds:

(i) uiuj ∈ E(G) and vi = vj

(ii) ui = uj and vivj ∈ E(H)

(iii) uiuj ∈ E(G) and vivj ∈ E(H)

We call this the Strong Product of the two graphs.

Definition (Vertex Splitting). Let G be a graph on n vertices, and v ∈ V (G). We split the
vertex v to form graph Gv, duplicating the vertex by adding v0, and connecting v0 by an
edge to all adjacencies of v. Note that Gv is now a graph on n+ 1 vertices.

In particular, we find that both strong products and vertex splitting preserve 2D3C
across any number of subgraphs.

Theorem 1. Let G and H be graphs which can be edge-partitioned into k 2D3C graphs. Then
G�H can be edge-partitioned into k 2D3C graphs, and hence is k-Class 0.

Theorem 2. Let G be a graph which can be edge-partitioned into k 2D3C graphs. Then for any
v ∈ V (G), Gv can be edge-partitioned into k 2D3C graphs, and hence is k-Class 0.

Since we can show that K9 is 2-Class 0 by example (see Figure 1), a consequence of
Theorem 2 is our first family of 2-Class 0 graphs.

Theorem 3. For n ≥ 9, complete graphs of the form Kn can be partitioned into two 2D3C
subgraphs, and in particular are 2-Class 0.

4 Cyclic Constructions

While the previous section provides a family of 2-Class 0 graphs and two constructive
operations on 2D3C graphs, the next will introduce a concrete construction for this fam-
ily when k is odd. This cyclically symmetric construction will lay the foundation for the
existence result in the final section.

Definition (Cyclic Construction). Let n ∈ N, S = {1, . . . , bn
2
c}. Let A = {a1, a2, . . .} ⊆ S,

and define Cn(A) = Cn(a1, a2, . . .) as the graph on vertices v1, v2, . . . , vn, where vivj ∈
E(Cn(A)) if and only if j − i = ±m mod n for some m ∈ A.

Remark. Note that Cn(A) is symmetric under cyclic permutations of v1, . . . , vn, and is a
subgraph of Kn. Note also that it suffices to consider S with cardinality bn

2
c, as paths to

the vertices of the opposite half will follow by symmetry.

Remark. Partitioning the edges of the graph into k cyclically symmetric subgraphs is
equivalent to partitioning the set S = {1, 2, . . . , bn

2
c} into k subsets A1, . . . , Ak such that

the elements of a given subset will represent the edge lengths uniquely attributed to that
subgraph according to our cyclic construction. Moreover, it is clear that Kn = Cn(S) =
Cn(A1) ∪ · · · ∪ Cn(Ak).
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G = C9(1, 2) Gc = C9(3, 4) K9

Figure 1: 2-Class 0 construction for n = 9

Example. We now focus on the particular subgraph construction that will be relevant in
the next proof. Let r ∈ {2, 3, . . .}, and consider G = C4r+1(1, . . . , r) and Gc = C4r+1(r +
1, . . . , 2r). We more clearly illustrate this construction when r = 2, n = 9 in Figure 1.

In Figure 1, S = {1, 2, 3, 4}, where A1 = {1, 2} and A2 = {3, 4} define C9(1, 2) and
C9(3, 4). Note also that K9 = C9(1, 2) ∪ C9(3, 4).

Cn(A) in general appears to be highly connected. The following lemma gives an
example of when 3-connectivity is guaranteed.

Lemma 4. Let n ∈ N, A ⊆ S = {1, . . . , bn
2
c}, and consider Cn(A). If A contains an element s

such that gcd(s, n) = 1, and at least one other element, then Cn(A) is 3-connected.

Proof. Let s, t ∈ S such that s and n are coprime, and consider C(s, t). Starting with a
particular vertex v0, we relabel the vertices v0, v1, v2, . . . , vn−1 as v0, vs, v2s, . . . , v(n−1)s, to
show that Cn(s, t) ' Cn(1, s

−1t). From an arbitrary 2-vertex cut, we are left with at most
two connected components from the circular path of edge-length 1 alone (see Figure 2).
One of the resulting arcs must have less than or equal to the number of vertices in the
other, and we label the vertices circularly such that we removed v0, vk for k ≤ bn

2
c. Since

s−1t ≤ bn
2
c and the arc containing our vertex is smaller, we have k − 1 + s−1t < n. This

implies that an edge connects vk−1 to a vertex (not v0) in the opposite arc, from which
we conclude that the two arcs are connected, and the graph itself is 3-connected.

We surmise that the actual connectivity condition is stronger, but this lemma suffices.
By restricting ourself to a prime number of vertices in a complete graph, any subparti-
tion with two or more edge lengths will be 3-connected.

Theorem 5. Complete graphs of the form K4r+1 for r = 2, 3, . . . can be edge-partitioned into
two cyclically symmetric 2D3C subgraphs C4r+1(1, . . . , r) and C4r+1(r+ 1, . . . , 2r), and hence
are 2-Class 0.
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K11 = C11(S) C11(2) C11(2) \ {v2, v8} C11(2, 3) \ {v2, v8}

Figure 2: Illustration of proof method of Theorem 5 where n = 11, s = 2, t = 3. It is
clear that as long as s 6= t, the two components must be connected by an element of the
subgraph generated by t.

Proof. Let r ∈ {2, 3, · · · }, and letH = K4r+1. We now show that using the cyclic construc-
tion above, G = C4r+1(1, 2, . . . , r) and its complement in H , Gc = C4r+1(r+1, . . . , 2r), are
Class 0 by showing that they are 2D3C.
Claim: G,Gc are 3-connected. We note that 1 ∈ A1 is relatively prime to 4r+1, and 2r ∈ A2

is as well. Since both A1, A2 contain multiple elements, by Lemma 4 the two subgraphs
are each 3-connected.
Claim: diam(G) = diam(Gc) = 2. Let v, w ∈ V (G) such that vw /∈ E(G). Since both v and
w are connected to 2r vertices, but there are only 4r− 1 remaining distinct vertices in G,
then v and w must have a common neighbor, implying that there is a two-path between
them. Since the same logic follows for Gc, diam(G) = diam(Gc) = 2.

We have thus shown that when n = 9, 13, . . ., Kn can be edge-partitioned into two
cyclically symmetric 2D3C graphs, and hence is 2−Class 0.

Through a similar method, we can extend a similar construction to graphs of the form
K4r+3, for r = 2, 3, . . ., in which the number of possible neighbors for a given vertex is
odd but not divisible by 4.

Theorem 6. Complete graphs of the form K4r+3 for r = 2, 3, . . . can be edge-partitioned into
two cyclically symmetric 2D3C subgraphs C4r+3(1, . . . , r + 2) and C4r+1(r + 3, . . . , 2r + 1),
and hence are 2-Class 0.

Both of these cyclic constructions are for complete graphs with odd numbers of ver-
tices. An open question we have is when it is possible to create cyclically symmetric
partitions for K10, K12, . . .? In Figure 4, we can use the cyclic construction for K9 to
demonstrate the effect of vertex splitting in creating a partition of K10, showing that it
indeed can be partitioned into two 2D3C subgraphs. However it is possible to show
that K10 is not symmetric 2-Class 0, and we ask for what even-vertex complete graphs
it is possible. Another question is to find families of constructions for partitioning com-
plete graphs into k > 2 subgraphs which are 2D3C; we tackle this problem through a
different approach in the next section.

6



G Gc K11

Figure 3: 2-Class 0 construction for K11

Figure 4: Splitting v9 to form 2-Class 0 K10 from K9

5 Existence of k-Class 0 graphs for all k

We will now prove the existence of a k-Class 0 decomposition for each k ∈ N. In partic-
ular, we invoke the probabilistic method to show that there exists an n ∈ N such that Kn

can be edge-partitioned into k cyclically symmetric Class 0 subgraphs.
We first show that for each k ∈ N, there is some n ∈ N such that Kn can be edge-

partitioned into k disjoint cyclically symmetric subgraphs, each of which has diameter
2. To do so, we will prove that for each k > 2, there is an n such that each subgraph
in a random decomposition of Kn into k symmetric subgraphs has diameter 2. We can
abstract this problem to one of basic additive number theory, in which the addition
or subtraction of any two elements of a set A ⊆ S represents a two-path to a vertex
corresponding to the resulting element of S, and the size of the subsequent sum and
difference set relates to the number of elements one can reach via a two-path.

To clarify this arithmetic, we define the dihedral sumset as follows.

Definition. Let n ∈ N, S = {1, . . . , bn
2
c}, and A ⊆ S. Then we define the dihedral sumset
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Number of Vertices (n)

Partitioning complete graphs on n vertices into k=10 symmetric subgraphs

Method: We let n ∈ N be a prime number, and fix some k ∈ N to be the number of partitions of the complete graph Kn. Next,

we consider a random permutation of 1, . . . , bn
2
c and take (in order)

⌊ bn
2
c

k

⌋
elements out at a time, each of which corresponds

to a random selection of an appropriately sized partition of Kn such that there will be a total of k partitions. We then attempt a
simulation, in which we take random selections of appropriately sized subsets of S for various Kn, and evaluate the size of their
dihedral sumset. We chose prime graph sizes n in order to deal with the 3-connected condition; the explanation of this lies in Lemma
4. In this figure we present the simulated probability that a given random symmetric subgraph of a complete graph with a prime
number of vertices (x-axis) will be successfully of diameter 2, i.e. that the dihedral sumset generated by the corresponding A ⊆ S is
sufficiently large.

Figure 5: Simulated probability that a randomly selected subgraph of a complete graph
on a prime number p of vertices will have diameter 2

of A to be the set

A� A = {x ∈ S : x = a+ b or x = b− a or x = n− (a+ b), for a, b ∈ A, b ≥ a}

Our definition of dihedral arithmetic exhausts the ways that one can use a pair of
edge lengths to reach vertices around the graph. This is in comparison to the typical
sumset, which under modulo n is defined asA+A = {x ∈ S : x = a+b mod n, for a, b ∈
A} [6].

Proposition 7. Cn(A) has diameter 2 if and only if |A � A| = |S| = bn
2
c. In fact, Cn(A) has

diameter less than or equal to k if and only if |A� A� · · ·� A|︸ ︷︷ ︸
k times

= |S|.

This is intuitive; each additional dihedral sumset operation corresponds to length of
a path between two elements. We also are interested in when an x ∈ S can be reached
via two-path using elements of a set A.

Definition. For a given x ∈ S, we consider pairs of elements a, b ∈ S, a ≤ b such that
either a+ b = x, b− a = x, or n− (a+ b) = x. We call the event that both are included in
a particular subset A a pair event (a, b) for x in S.

We can get some intuition on where this probabilistic argument comes from looking
at Figure 5. In simulation, the larger the size of the complete graph (and hence the
larger the size of a random subgraph, for fixed k), the more likely the subgraph will be
of diameter 2. The proof begins below.
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n−x
2
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(1, x+ 1), (2, x+ 2), . . . ,

(
bn2 − xc, b

n
2c
)} ⌈(⌊

n
2

⌋
− x
)

1
2

⌉
Figure 6: Distinct independent pair events for x in S.

Theorem 8. Let n ∈ N, S = {1, . . . ,
⌊
n
2

⌋
}. ∀x ∈ S, there are at least f(n) =

⌊
n
8

⌋
+1 pair events

in S, {(a1, b1), . . . , (af(n), bf(n))}, such that a1, . . . , af(n), b1, . . . , bf(n) are all distinct elements
of S.

Proof. Fix v0 ∈ Kn as 0, and consider some x ∈ S as a target, corresponding to vx. Figure
6 presents the number of distinct independent pair events for x ∈ S. We denote the
classes of event pairs by the order of their rows in Figure 6 as 1, 2, and 3. There exists one
more possibility: that x itself is an element of A ⊆ S. Grouping this single element event
with class 1, we define f1(n, x) = bx2c+ 1, f2(n, x) = max

{⌊⌊
n
2

⌋
−
⌈
n−x
2

⌉⌋
,
⌊⌊

n−x
2

⌋
− 1
⌋}

,
and f3(n, x) = d(bn2 c − x)

1
2
e.

We note that f3 is weakly decreasing in x and f1 is weakly increasing in x, and hence
the intersection of the two functions will yield a lower bound for the number of inde-
pendent pair events for x. We define a function f(n, x) which selects the greatest number
of independent pairs depending on x, as below:

f0(n, x) =

{
f1(n, x) if x ≥ bn

4
c

f3(n, x) if x < bn
4
c

This will bound the smallest number of independent pair events. The minimum of
this function on S is achieved when bx

2
c+1 = d(bn

2
c−x)1

2
e, which occurs when x = bn

4
c.

The minimum for this function will be equivalent to bn
8
c+1, and thus there exist at least

f(n) = bn
8
c+ 1 distinct pair events in S for each x ∈ S.

Definition (Independent sorting process). We utilize the following process to sort ele-
ments of S into k distinct partitions: we randomly assign each element of S to a partition
of Ai with probability 1

k
that a particular partition will end up containing a particular el-

ement.

Hence, from the perspective of the partition itself each element will be placed inde-
pendently with probability 1

k
.

Theorem 9. For k ∈ N and n ∈ N, let A1, . . . , Ak be defined according to the independent
sorting process. Then

lim
n→∞

P (diam(Cn(Ai)) = 2 for all i ∈ {1, . . . , k}) = 1.

In particular, the probability that at least one of A1, . . . , Ak is not of diameter 2 is bounded above
by

k
⌊n
2

⌋[
1−

(
1

k

)2
]bn8 c+1
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Proof. We approach this using a probabilistic argument. Consider the probability of
being able to reach some x ∈ S, given Ai ⊆ S. Since we are assuming independent
sorting of elements of S into partitions with probability 1

k
, the probability that a single

fixed pair event fails will be bounded above by 1 −
(
1
k

)2. Since we have at least f(n) =
bn
8
c+ 1 independent events, we know that

P (all the events fail for x) ≤

[
1−

(
1

k

)2
]bn8 c+1

By this fact and noting that there are exactly bn
2
c elements in S,

P (at least one x ∈ S is inaccessible in Ai) ≤
⌊n
2

⌋[
1−

(
1

k

)2
]bn8 c+1

and subsequently

P

(
at least one x ∈ S will be inaccessible

in some A1, . . . , Ak

)
≤ k

⌊n
2

⌋[
1−

(
1

k

)2
]bn8 c+1

.

Hence,
lim
n→∞

P (diam(Cn(Ai)) = 2 for all i ∈ {1, . . . , k}) = 1

In particular, we have just shown that for each k ∈ N, there is some n ∈ N such
that Kn can be edge-partitioned into k disjoint cyclically symmetric subgraphs, each of
which has diameter 2. We can now conclude with the following theorem.

Theorem 10. For each k ∈ N, there exists some n ∈ N such that Kn can be edge-partitioned
into k cyclically symmetric 2D3C subgraphs. That is, there exists some n large enough such that
Kn is k−Class 0.

Proof. Theorem 9 gives a probabilistic bound on the diameter 2 condition. To bound the
3-connectivity condition, consider the case of n prime, n ≥ 11, S = {1, . . . , bn

2
c}, and

A1, . . . , Ak defined according to the random sorting process.
It follows from Lemma 4 that restricting ourselves to prime n, for a partition of S into

A1, . . . , Ak according to our independent sorting process, as long as for each i ∈ N, Ai

has more than one element, then Kn is partitionable into k 3-connected subgraphs. Note
that according to our sorting process,

P (|Ai| ≤ 1) =
⌊n
2

⌋ 1
k

(
k − 1

k

)bn2 c−1
+

(
k − 1

k

)bn2 c
Moreover, by the same logic as in the previous theorem,

P (|Ai| ≤ 1 for at least one i) =
⌊n
2

⌋(k − 1

k

)bn2 c−1
+ k

(
k − 1

k

)bn2 c
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Combining the result from Theorem 9,

P

(
|Ai| ≤ 1 for at least one i OR

at least one x ∈ S will be inaccessible
in at least one of the k subsets

)

≤
⌊n
2

⌋(k − 1

k

)bn2 c−1
+ k

(
k − 1

k

)bn2 c
+ k

⌊n
2

⌋[
1−

(
1

k

)2
]bn

8
c+1

There exists a prime n0 large enough such that

⌊n
2

⌋(k − 1

k

)bn2 c−1
+ k

(
k − 1

k

)bn2 c
+ k

⌊n
2

⌋[
1−

(
1

k

)2
]bn

8
c+1

≤ 1

and hence there exists by probabilistic argument a partition of Kn0 into k symmetric
2D3C subgraphs.

6 Future steps

In Figure 7, for selected k we note the smallest k-Class 0 complete graph guaranteed by
Theorem 10, along with the smallest we have found by inspection.

Number of partitions Best by asymptotic bound Best known
2 137 9
3 467 19
4 929 43

10 8501 ?

Figure 7: For fixed number of partitions k, existence result implied by theorem

It is evident that the existence result is not by any means a tight bound. Among
possible future steps, we hope to:

(i) Reconcile the gap between smallest observed k-Class 0 graphs and the ones guar-
anteed by probabilistic argument. A first step would be to more cleanly address
the 3-connectivity result.

(ii) Shift focus from complete graphs to large random graphs, and ask the same ques-
tions.

(iii) Investigate how strong products and vertex splitting affect general Class 0 graphs,
and specifically assess the conjecture that vertex splitting preserves Class 0 on
graphs with two vertices or more.

(iv) Begin to analyze strategies and characteristics of the multicolor pebbling game.
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