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ABSTRACT

Traditional machine learning methods only consider relationships between feature values
within individual data instances while disregarding the dependencies that link features across
instances. In this work, we develop a general approach to supervised learning by leveraging
higher-order dependencies between features. We introduce a novel Bayesian framework for
classification named Higher Order Naive Bayes (HONB). Unlike approaches that assume
data instances are independent, HONB leverages co-occurrence relations between feature
values across different instances. Additionally, we generalize our framework by develop-
ing a novel data-driven space transformation that allows any classifier operating in vector
spaces to take advantage of these higher-order co-occurrence relations. We also develop
a O ((m+ n)n2) time algorithm for obtaining the counts of higher-order paths in boolean
data. This algorithm improves over the O (m2n3) complexity of a straight-forward path
counting algorithm. Results obtained on several benchmark text corpora demonstrate that
higher-order approaches achieve significant improvements in classification accuracy over the
baseline (first-order) methods.

Key words: machine learning, text classification, higher order learning, statistical relational
learning, higher order naive bayes, higher order support vector machine



1 Introduction

A well known problem in real-world applications of machine learning methods is that expert
labeling of large amounts of data for training a classifier is prohibitively expensive. Often in
practice, only a small amount of labeled data is available for training. Traditional methods
of classification treat individual data instances independently. In this case, however, a small
training set makes an adequate estimation of the model parameters of a classifier very chal-
lenging. Prior work has demonstrated the value of leveraging explicit [1, 12, 18] as well as
implicit [4, 7] link information within data in order to provide a richer data representation
for model estimation.

In Sect. 4.1, we build on a graph-based data representation from our prior work [4] and
introduce a novel Bayesian framework for classification named Higher Order Naive Bayes
(HONB). Unlike approaches that assume data instances are independent, HONB leverages
co-occurrence relations between feature values across different instances. We term these
implicit co-occurrence relations higher-order paths. Features (e.g., words in documents of a
text collection) are richly connected by such higher-order paths, and a model built by HONB
exploits this rich connectivity.

We further generalize our framework in Sect. 4.2 by developing a novel data-driven space
transformation that allows any classifier operating in vector spaces to take advantage of
relational dependencies captured by higher-order paths between features.

In Sect. 4.3, we develop a O ((m+ n)n2) time algorithm for obtaining the counts of
higher-order paths in boolean data. This algorithm improves over the O (m2n3) complexity
of a straight-forward path counting algorithm also given in Sect. 4.3.

We evaluate the proposed methods1 on several benchmark text corpora across a wide
range of training set sizes in Sect. 5. In that section, we also draw comparisons with the
results reported in [17], where a word clustering approach was proposed for dealing with
small and sparse training data for text classification.

The paper is organized as follows. Related work is discussed in Sect. 2. In Sect. 3, we
provide the necessary background for development of the proposed methods described in Sect.
4. Experimental results are presented in Sect. 5. A discussion of the effects of leveraging
higher-order dependencies for text classification is provided in Sect. 6. Concluding remarks
are made in Sect. 7.

2 Related Work

Our motivation for using higher-order dependencies for classification stems from advances in
the areas of link mining [5] and information retrieval. In addition to (or sometimes instead
of) using the more traditional data representation by feature vectors characterizing each
data instance independently of the others, link-based approaches [18, 11, 13] to collective

1“Systems and Methods for Data Transformation for Supervised Machine Learning,” M.C. Ganiz, N.I. Lytkin
and W.M. Pottenger, U.S. Patent Pending 61/185255
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classification leverage explicit dependencies, or links, within networked data [13]. Several
studies [1, 12, 18] have shown that collective classification can achieve significant reductions
in classification errors by performing inferences about multiple data instances simultaneously.
However, such methods are context-dependent and are therefore not designed to classify sin-
gle data instances. This restriction limits the domain of applicability of link-based classifiers.

In this work, we propose classification methods that leverage higher-order dependencies
in the form of implicit links between instances and features of the training data. Unlike
collective classifiers, methods presented in this work maintain the ability to classify single
data instances without requiring any additional context information.

In [7], we gave a mathematical proof supported by

Figure 1: Higher-order co-
occurrences [7]

empirical results of the dependence of Latent Semantic
Indexing (LSI) [2], a technique often used in text min-
ing and information retrieval, on higher-order relations
and in particular on higher-order term co-occurrences ex-
pressed via higher-order paths. A higher-order path is
exemplified in Fig. 1 (reproduced from [7]) in the con-
text of text data. Figure 1 depicts three documents, D1,
D2 and D3, each containing two terms represented by
the letters A, B, C and D. Shown below the three docu-
ments in Fig. 1 is a higher-order path that links term A
with term D through B and C. This path contains three
edges and is therefore referred to as a third-order path.

Higher-order relations play an important role in many
other systems for text mining and information retrieval.

In [10], higher-order associations were used for rule mining in textual data. Higher-order
co-occurrences were used in [3] for solving a component of the problem of lexical choice,
which identifies synonyms in a given context. In another effort, [21] used second-order co-
occurrences for improving the runtime performance of LSI. Higher-order co-occurrences have
also been used in other applications including word sense disambiguation [15] and stemming
[20].

It should be noted that our framework extends beyond the textual domain. In other
words, instances D1, D2 and D3 from Fig. 1 need not be text documents – they may be
records in a database, or instances in a labeled training dataset. Likewise, features A, B, C,
etc. need not be terms – they may be values in a database record, or feature-value pairs in
a data instance.

In fact, in [4] we have successfully used higher-order paths for capturing dependencies
amongst data instances when modeling time series data for anomaly detection in the Border
Gateway Protocol, which constitutes the backbone of the Internet’s routing infrastructure.
The approach presented in this work builds on the data representation introduced in our
prior work [4] and also described in Sect. 3.2.
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3 Background

In this section we review parts of the Bayesian learning theory (Sect. 3.1) and the data
representation (Sect. 3.2) underlying the development of approaches presented in Sect. 4.
Although the methods discussed in this work are not limited to a particular application
domain, here we restrict our attention to textual data. We assume the input space to be an
n-dimensional binary vector space where each document is represented by a vector whose
non-zero coordinates correspond to terms present in the document.

Formally, let W = {w1, . . . , wn} denote the set of binary features that correspond to
terms in the vocabulary. Any document d can therefore be represented by an n-dimensional
binary vector w(d) = (w1(d), . . . , wn(d)), where

wi(d) =

{
1, if document d contains term wi
0, otherwise.

For convenience of further exposition, we will simply write d to denote the corresponding
vector w(d).

3.1 Bayesian Learning Theory

Given a document d and two classes c1 and c2, the Bayes discriminant function can be written
as

f(d) = log
P (c1|d)

P (c2|d)
= log

P (d|c1)P (c1)

P (d|c2)P (c2)
, (1)

where
P (d|cj) = P (w1(d), . . . , wn(d)|cj), ∀j ∈ {1, 2}, (2)

is the conditional likelihood of document d belonging to class cj, and P (cj) is the prior
probability of class cj.

By assumption of mutual independence of terms given a class, the conditional likelihood
(2) becomes

P (w1(d), . . . , wn(d)|cj) =
n∏
i=1

P (wi(d)|cj), (3)

where P (wi(·)|cj) denotes the conditional probability mass function of term wi in class cj.
The Bayes discriminant function (1) therefore becomes

f(d) =
∑

i:wi(d)=1

log P (wi|c1)
P (wi|c2)

+∑
i:wi(d)=0

log 1−P (wi|c1)
1−P (wi|c2)

+ log P (c1)
P (c2)

,
(4)

where P (wi|cj) denotes the conditional probability of occurrence of term wi in documents of
class cj, i.e., P (wi|cj) = P (wi(·) = 1|cj). The log likelihood ratios in (4) are, essentially, term
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weighting factors that attain large absolute values for terms that are strong discriminators
between a pair of classes.

This framework is not limited to binary classification problems. The Bayes discriminant
function for a general K-class classification task can be written as

g(d) = arg max
j=1,...,K

P (cj|d). (5)

Given a set of class labels C = {c1, . . . , cK} and the corresponding (training) set Dj of
documents representing class cj for each j ∈ {1, . . . , K}, conditional probabilities P (wi|cj)
are estimated by

P (wi|cj) =

1 +
∑
d∈Dj

wi(d)

2 + |Dj|
, (6)

which is the ratio of the number of documents that contain term wi in class cj to the total
number of documents in class cj. The constants in numerator and denominator in (6) are
introduced according to Laplace’s rule of succession in order to avoid zero-probability terms.

The prior class probabilities P (cj) are estimated by

P (cj) =
|Dj |
K∑
k=1

|Dk|
. (7)

Together, equations (3) and (5–7) comprise the well-known Naive Bayes classifier.

3.2 Higher Order Data Representation

The data representation on which we build in the following section was initially used in our
prior work [4] for anomaly detection in time series data. In the representation employed
herein, a set D of documents is considered as a bipartite graph G = (VD ∪ VW , E). Vertices
in VD correspond to documents, while vertices in VW correspond to terms. Two vertices
d ∈ VD and w ∈ VW are connected by an edge (d, w) ∈ E iff document d contains the term
w.

A higher-order path in dataset D is a chain subgraph of G. For example, a chain wi—
dl—wk—dr—wj, which we will denote by (wi, dl, wk, dr, wj), encodes the fact that document
dl ∈ D contains terms wi and wk, while document dr ∈ D contains terms wk and wj. The
order of a path is determined by the number of document vertices the path spans. Thus, path
(wi, dl, wk, dr, wj) captures a second-order co-occurrence between terms wi and wj, realized
through term wk shared by distinct documents dl and dr.

Higher-order paths simultaneously capture term co-occurrences within documents as well
as term sharing patterns across documents, and in doing so provide a much richer data
representation than the traditional feature vector form. As we will see in Sect. 5, the
richness of representation becomes crucial when the small size of a training dataset prohibits
traditional methods from accurately estimating model parameters.
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4 Approach

In this section we present two novel methods of leveraging higher-order dependencies between
features for supervised machine learning. In Sect. 4.1, we build on the Naive Bayes classifier
by introducing a higher-order classifier termed Higher Order Naive Bayes. Our approach,
however, can be generalized beyond the probabilistic machine learning methods. In Sect.
4.2, we introduce a data-driven space transformation that allows any learner that operates
in vector spaces to leverage higher-order dependencies in data. An efficient path counting
algorithm is given in Sect. 4.3.

4.1 Higher Order Naive Bayes

Higher-order paths as defined in Sect. 3.2 allow us to extract rich relational information
between features in a dataset. We incorporate this information into a Bayesian learning
framework by modifying the parameter estimation equations (6) and (7) to depend on the
counts of higher-order paths as follows.

Let ϕ(wi, D) denote the number of higher-order paths that contain term wi given the
dataset D, and let Φ(D) denote the total number of higher-order paths in D. The parameter
estimation equations of the proposed Higher Order Naive Bayes classifier are:

P̂ (wi|cj) =
1 + ϕ(wi, Dj)

2 + Φ(Dj)
, (8)

and

P̂ (cj) =
Φ(Dj)
K∑
k=1

Φ(Dk)

. (9)

4.2 Leveraging Higher Order Dependencies by a Vector Space-
Based Classifier

In this section, we present a novel data transformation that allows any classifier operating in
vector spaces to take advantage of higher-order dependencies between features. We describe
our approach for the case of binary classification. This, however, does not limit the appli-
cability of the proposed approach, because numerous methods for multi-class classification
based on binary classifiers have been proposed (see [14] for an overview). The proposed data
transformation proceeds as follows.

Given two sets Dj and Dk of (training) documents from classes cj and ck, resp., the class
conditional term probabilities (8) are computed. Let us denote the corresponding conditional
log likelihood ratios as

φ
(1)
i = log

P̂ (wi|cj)
P̂ (wi|ck)

, (10)
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and

φ
(0)
i = log

1− P̂ (wi|cj)
1− P̂ (wi|ck)

. (11)

Each binary document vector d = (d1, . . . , dn), d ∈ Dj ∪Dk, is then transformed into a real

vector d̂ = (d̂1, d̂2, . . . , d̂n), where

d̂i =


φ

(1)
iq
|φ(1)

i |
, if di = 1, φ

(1)
i 6= 0

φ
(0)
iq
|φ(0)

i |
, if di = 0, φ

(0)
i 6= 0

0, otherwise.

(12)

Finally, the resulting dataset D̂j ∪ D̂k is used as input for training a binary classifier for
classes cj and ck.

Data transformation (12) assigns weights that are high in absolute values for highly
discriminative terms present in a document. The normalizing factors2 in (12) moderate the
spread of values of each feature in order to allow less discriminative terms to retain a certain
level of influence over the classification. This level of influence depends on the discriminative
power of a term as measured by (10) and (11). An illustration of the effect of the normalizing
factors can be found in Sect. 6.

4.3 Algorithms for Counting Second Order Paths

For convenience of exposition, in this subsection we denote features by small letters and
instances by capital letters. Thus, for a given m × n data matrix X = ||xiL||, i = 1, . . . , n,
j = 1, . . . ,m, xiL denotes the value of feature i in data instance L.

The number of second-order paths for each feature in a boolean dataset X with m objects
and n features can be obtained in O (m2n3) time by Algorithm 1. This algorithm is trivial
to implement and requires no additional memory space beyond the O(mn) space needed to
store the dataset X.

However, the O (m2n3) computational complexity can be reduced to O ((m+ n)n2) if
enough memory is available to store two additional symmetric n × n matrices, which we
denote by A and A2. Matrix A = XTX holds the number of first-order paths between every
pair of features, and is used to compute the matrix A2 = AA. The ij-th element a

(2)
ij of

matrix A2 holds the upper bound on the number of second-order paths where features i
and j are the two end vertices. In order to obtain the exact number of such second-order
paths, the value a

(2)
ij must be corrected by first subtracting the number of paths where

one of the features appears more than once (e.g. (i, L, i,M, j)) and then subtracting the
number of paths where the same object vertex appears twice (e.g. (i, L, k, L, j)). The first
correction can be accomplished by setting to zero all the diagonal elements of matrix A prior

2It is possible to omit the normalizing factors in (12). However, we have found experimentally that the
normalized transformation, on average, yields slightly higher classification accuracies.
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Algorithm 1: Count Second-Order Paths

Input: Boolean m× n matrix X = ||xiL||
Output: Vector p = (p1, . . . , pn), whose i-th coordinate pi equals the number of

second-order paths that contain feature i = 1, . . . , n
Output: The total number t of second-order paths
Initialize vector p to be a zero vector: pi := 0, i = 1, . . . , n1

Initialize the path counter t := 02

for i ∈ {1, . . . , n} do3

for k ∈ {1, . . . , n} \ {i} do4

for j ∈ {1, . . . , n} \ {i, k} do5

for L ∈ {1, . . . ,m− 1} do6

for M ∈ {L+ 1, . . . ,m} do7

a := xiLx
k
Lx

k
Mx

j
M8

pi := pi + a9

pk := pk + a10

pj := pj + a11

t := t+ a12

end

end

end

end

end
return (p, t)13
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to computing A2. Matrix A can also be used for obtaining for each feature i, the count of
second-order paths where feature i is the middle vertex (e.g. (k, L, i,M, j)).

Algorithm 2 implements this faster, but more memory consuming approach. The two
correction steps mentioned above are implemented by steps 6 and 12-14. Computation of
matrices A and A2 in steps 5 and 8, respectively, of Algorithm 2 takes O(mn2 + n3) time.
The loop in step 9 takes O(mn2) due to step 12, which iterates over the data instances.
The computational complexity of Algorithm 2 is dominated by computation of matrices A
and A2, and is therefore O ((m+ n)n2). Because of its lower computational complexity,
Algorithm 2 was used in all the experiments reported in this work.

5 Experimental Results

Experimental evaluation was carried out on six widely-used text corpora. Four of these
datasets were RELIGION, SCIENCE, POLITICS and COMP subsets of the 20 News Groups
(20NG) [9] benchmark data. These particular subsets were selected to allow us to draw
comparisons of our results with the related work [17], which will be discussed later in this
section. Our preprocessing procedures closely followed those in [17]. First, all cross-postings
in the 20NG data were removed. Then, for each dataset we performed stop word removal,
stemming and removal of all terms that occurred in fewer than three documents in the
dataset. The remaining terms were ranked by Information Gain. The top 2000 terms were
selected. Finally, 500 documents were sampled at random from each class to comprise the
20NG datasets used in our experiments.

The other two datasets, Citeseer and Cora, are collections of scholarly research articles
preprocessed by [16]. The Citeseer dataset contained 3312 documents with a vocabulary
of 3703 terms. The Cora dataset comprised of 2708 documents with a vocabulary of 1433
terms. A summary description of all six datasets is provided in Table 1.

Naive Bayes (NB) was used as the baseline for evaluation of the proposed Higher Order
Naive Bayes (HONB) classifier. Support Vector Machine (SVM) [19] was chosen as the base
classifier for evaluation of the data transformation proposed in Sect. 4.2. SVM with the linear
kernel has been shown [6] to perform well on text classification problems. The linear kernel
allows us to observe the direct impact of leveraging higher-order dependencies, without any
additional data transformations as performed implicitly by other kernel functions. Multi-
class problems were addressed using the “one-against-one” classification scheme [8]. Under
this scheme, a binary SVM classifier is constructed for every pair of classes. A data instance
is then classified by each binary classifier and the final classification is determined by the
majority vote over the assigned class labels. We refer to a SVM classifier constructed on the
transformed data as Higher Order SVM (HOSVM). Experiments described in this section
were done using second-order paths for HONB and HOSVM. We have conducted additional
experiments using third-order paths, but the results did not differ significantly.

Figure 2 shows mean classification accuracies obtained by varying training set size from
5% up to 60%. For each training set size, eight trials were performed. On each trial, a set of
documents were randomly sampled from each class for training, while the rest were used for
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Algorithm 2: Count Second-Order Paths

Input: Boolean m× n matrix X = ||xiL||
Output: For each feature i = 1, . . . , n, output the number of second-order paths that

include feature i
Output: The total number of second-order paths in X
Initialize vector p = (p1, . . . , pn)

T
of per-feature path counts to be a zero vector1

pi := 0, i = 1, . . . , n
Initialize scalar t, which will store the total number of second-order paths2

t := 0
Compute vector l = (l1, . . . , lm)

T
of `1 norms of object (row) vectors of X3

lL =
n∑
i=1

xiL, L = 1, . . . ,m

Compute vector r = (r1, . . . , rm)
T

of numbers of pairs of non-zero features within each4

data instance with one feature removed
rL = 1

2
(lL − 1)(lL − 2), L = 1, . . . ,m

Compute the first-order feature co-occurrence matrix A = ||aij||5

A := XTX
Set all diagonal elements aii of A to zero6

diag(A) := 0

Compute vector c = (c1, . . . , cn)
T

of squared column sums of A7

ci =

(
n∑
j=1

aji

)2

, i = 1, . . . , n

Compute the second-order feature co-occurrence matrix A2 = ||a(2)
ij ||8

A2 := AA
for i = 1, . . . , n do9

if i < n then10

for j = i+ 1, . . . , n do11

Compute the number s of paths (i, L, k, L, j), k ∈ {1, . . . , n} \ {i, j}, where12

feature i (j) is an end vertex and where both object vertices are the same

s =
m∑
L=1

xiLx
j
L

(
lL − 2

)
pi := pi + a

(2)
ij - s13

pj := pj + a
(2)
ij - s14

t := t+ a
(2)
ij - s15

end

end
Add to pi the number of paths (k, L, i,M, j), k, j 6= i, k 6= j, L 6= M , where feature16

i is the middle vertex
Let b = (b1, . . . , bn)

T
be a vector of cumulative sums of elements of the i-th column

a·i of matrix A, i.e., bh =
h∑
g=1

agi, h = 1, . . . , n

pi := pi + ci − aT·ib− rTxi
end
return (p, t)17
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Table 1: Six datasets used in the experiments

Dataset Classes
RELIGION (3) alt.atheism, soc.religion.christian, talk.religion.misc
SCIENCE (4) sci.crypt, sci.electronics, sci.med, sci.space
POLITICS (3) talk.politics.guns, talk.politics.mideast, talk.politics.misc

COMP (5) comp.graphics, comp.os.ms-windows.misc, comp.sys.ibm.pc.hardware,
comp.sys.mac-hardware, comp.windows.x

Citeseer (6) AI, Agents, DB, HCI, IR, ML
Cora (6) Case Based, Genetic Algorithms, Neural Networks, Probabilistic Methods, Re-

inforcement Learning, Theory

testing. On every trial, all terms that did not appear in any of the training documents were
disregarded. The classifiers were then trained in the corresponding subspace of the original
term space.

As can be seen from Figs. 2(a)–2(d), HONB and HOSVM3 consistently outperformed
first-order classifiers NB and SVM3, resp., on the RELIGION, SCIENCE, POLITICS and
COMP datasets. All of these accuracy improvements were statistically significant at the 5%
level for (HONB, NB) pair of classifiers and in 83% of the cases for the (HOSVM, SVM)
pair.

A slightly different pattern of performance can be observed on the Citeseer (Fig. 2(e))
and Cora (Fig. 2(f)) datasets. While classification accuracy of each method monotonically
increased with increasing training set size, HONB drastically outperformed NB when training
sets were small, reaching close to accuracy levels of SVM-based methods. HOSVM performed
1.5-2% better than SVM 66% of the time, but never worse overall. These results are especially
encouraging in that they suggest that higher-order methods were able to construct robust
models even when training data was particularly scarce. We speculate that changes in the
distribution of highly-discriminative terms across classes as a result of increasing training set
size allowed NB to outperform HONB on the Citeseer and Cora datasets once the amount
of training data reached a certain point. We are currently investigating this hypothesis and
intend to report our findings as part of our future work.

Consistent and statistically significant accuracy improvements attained by higher-order
classifiers on small training sets led us to explore this aspect further. In order to simulate a
real-world scenario where only a few labeled data instances are available, and to illustrate
accuracy improvements in a setting comparable with the related work [17], we focused our
attention on 5% training samples. In case of the 20NG datasets, for instance, this corre-
sponded to training on 25 documents per class and testing on the other 475 documents per

3When selecting the value of the soft margin cost parameter C for SVM, we considered the set
{10−4, 10−3, . . . , 104} of possible values. On every trial, we picked the smallest value of C which resulted in
the highest accuracy obtained on the training set.
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(a) RELIGION (b) SCIENCE

(c) POLITICS (d) COMP

(e) Citeseer (f) Cora

Figure 2: Scalability across training set size
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class. Classification accuracies averaged over eight trials are reported in Table 2. Highest
accuracies for pairs (NB, HONB) and (SVM, HOSVM) of classifiers are highlighted in bold.
The corresponding standard deviations are also reported in Table 2.

Table 2: Mean classification accuracies

NB HONB SVM HOSVM
Dataset Acc. St. dev. Acc. St. dev. Acc. St. dev. Acc. St. dev.

RELIGION (3) 0.66 0.051 0.741 0.03 0.699 0.022 0.723 0.023
SCIENCE (4) 0.632 0.071 0.833 0.043 0.751 0.029 0.792 0.039
POLITICS (3) 0.73 0.042 0.832 0.01 0.763 0.03 0.793 0.047

COMP (5) 0.539 0.051 0.623 0.036 0.585 0.022 0.614 0.031
Citeseer (6) 0.444 0.025 0.539 0.015 0.609 0.01 0.602 0.01

Cora (6) 0.315 0.006 0.532 0.021 0.553 0.021 0.554 0.026

The obtained results indicate that leveraging higher-order dependencies in the RELI-
GION, SCIENCE, POLITICS and COMP datasets lead to significant improvements in clas-
sification accuracies of both Bayesian and SVM-based approaches. The improvements of
HONB over NB and of HOSVM over SVM on those datasets are statistically significant at
the 5% level. The only exception is the (HOSVM, SVM) pair on the POLITICS dataset.
Although the difference in SVM and HOSVM accuracies on the POLITICS dataset was sig-
nificant at level α = 0.158, HOSVM outperformed SVM on seven out of eight trials on that
data by an average of 3%.

HONB performed particularly well on the 20NG data, outperforming NB by 11.7% and
SVM by 5.8% on average. HONB also outperformed HOSVM by an average of 2.7%, although
the differences in accuracy between the two classifiers were not statistically significant at the
5% level. HOSVM consistently outperformed SVM by an average of 3.1%.

On the Citeseer dataset, HONB outperformed NB by about 9% (significant at the 5%
level), while HOSVM and SVM performed at the same level. On the Cora dataset, NB’s av-
erage classification accuracy was 31.5%, which is the lowest accuracy across all datasets and
classifiers considered in this work. Such low accuracy and almost zero standard deviation (Ta-
ble 2) resulted from NB assigning all test documents to the majority class Neural Networks.
By exploiting valuable higher-order dependencies, HONB attained approximately 53% av-
erage accuracy, which is not significantly different at the 5% level from the roughly 55%
accuracy of SVM and HOSVM.

In another set of experiments, we expanded our reach to compare the performance of
higher-order classifiers to other approaches that also attempt to achieve better generalization
performance on sparse input data. These related research efforts use clustering as a dimen-
sionality reduction technique. In general they cluster words into groups and these groups
are used as features in text classification. The authors of [17] observed that one advantage
of using word clusters can be seen when word statistics (i.e., NB parameter estimates) are
relatively hard to estimate. In order to demonstrate this, they conducted experiments with
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small numbers of labeled training documents from the subsets listed in Table 1 of the 20NG
data. To provide a more objective comparison, we focused on the relative improvement over
respective base models. In [17] the authors used multinomial NB (mNB) as their base model
and improved on the performance of this model using word clusters as features instead of just
words. The latter algorithm is indicated as NBWC in Table 3. Similarly, we used binomial
NB as our base model and improved on the performance of this model using higher-order
paths instead of individual documents to estimate parameters.

Table 3: Mean classification accuracies reported by [17]

Dataset mNB NBWC
RELIGION (3) 0.525 0.553
SCIENCE (4) 0.65 0.725
POLITICS (3) 0.62 0.67

COMP (5) 0.473 0.508

Tables 2 and 3 show that compared to NBWC, HONB achieved much better performance
than the corresponding base model for all datasets (4.7% average difference between NBWC
and mNB versus 11.7% average difference between HONB and NB). Additionally, our results
are statistically significant.

In order to further verify the value of leveraging higher-order dependencies within the
data, additional experiments were conducted. In the first experiment, when estimating the
conditional probabilities (8) and (9), we used only the “pure” second-order paths, i.e., paths
that involved terms which did not co-occur together in any single document of the training
set. The results of these experiments are reported in Table 4 comparing performance of
HONB with that of the pure HONB. The differences in performance of these classifiers were
minimal and not statistically significant.

Table 4: Mean classification accuracies of a pure higher-order classifier

Dataset HONB pure HONB
RELIGION (3) 0.741 0.745
SCIENCE (4) 0.833 0.842
POLITICS (3) 0.832 0.836

COMP (5) 0.623 0.649

In the second experiment, prior to training an SVM classifier with the linear kernel, a
data transformation analogous to (12) was performed using the first-order conditional term
probabilities (6) instead of higher-order probabilities (8). The resulting approach is referred
to as NBSVM. Mean classification accuracies attained by NBSVM3 are shown in Table 5.
Comparison of Tables 2 and 5 makes it clear that NBSVM performed worse than both SVM



– 14 –

and HOSVM. These results indicate that taking advantage of higher-order dependencies was
indeed crucial for achieving the performance improvements attained by HONB and HOSVM.

Table 5: Mean classification accuracies of NBSVM

Dataset NBSVM HOSVM
RELIGION (3) 0.678 0.723
SCIENCE (4) 0.745 0.792
POLITICS (3) 0.759 0.793

COMP (5) 0.576 0.614

We have also conducted experiments with the Radial Basis Function (RBF) kernel for the
HOSVM and SVM classifiers. The results were consistent with the findings of [6]. Namely,
there were no significant differences between classification accuracies attained with the linear
kernel and those attained with the RBF kernel.

In summary, higher-order approaches HONB and HOSVM outperformed their first-order
counterparts. Consistent performance improvements were observed on the 20NG data across
a wide range of training set sizes. On the Citeseer and Cora datasets, HONB outperformed
NB when training set sizes were below 10% and 25%, respectively. Under the conditions
of small (5%) training samples from the Citeseer dataset, HOSVM performed the same as
SVM, which outperformed HONB by 7%. HONB, SVM and HOSVM produced very similar
results on the Cora dataset. It is interesting to note that while HOSVM scaled better across
datasets, HONB did not require any parameter tuning and performed exceptionally well on
the 20NG data.

6 Discussion

In order to gain a deeper understanding of the effect of using higher-order paths for estimation
of conditional term probabilities (8), let us consider Fig. 3 generated based on one of the
5% (25 documents per class) training samples from the RELIGION dataset using two of
its classes, “alt.atheism” and “soc.religion.christian”. For every term wi, Fig. 3(a) presents
a plot of the conditional log probability ratio (10) obtained from higher-order probabilities
(8) (horizontal axis) versus the log ratio obtained from first-order probabilities (6) (vertical
axis). Notice the differences in scales of values on the axes of Fig. 3(a): [−20, 20] for higher-
order log ratios versus [−4, 4] for first-order log ratios. Additionally, three distinct groups of
terms appeared as a result of using higher-order paths for estimating the model parameters.
We found that terms that fell into the right (left) most group are highly-discriminative
terms that appeared in documents of only one of the classes in the training set. Figure 3(a)
reveals that due to drastic difference in scales of values of higher- and first-order log ratios,
highly-discriminative terms exert much stronger influence on classification in HONB than
in NB. In other words, highly-discriminative terms contribute more heavily to the Bayesian
discriminant function (4) under HONB than under NB.
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(a) (b)

Figure 3: Conditional log probability ratios obtained from higher-order probabilities (8)
(horizontal axes) versus the log ratios obtained from first-order probabilities (6) (vertical
axes) on “alt.atheism” and “soc.religion.christian” classes of one of the 5% (25 documents
per class) training samples from the RELIGION dataset.

Similarly, Fig. 3(b) shows a plot of the conditional log probability ratios (11) of non-
occurrence of a term in a HONB model versus a NB model. An important feature in this
figure is the one order of magnitude difference in values on the axes: [−0.1, 0.1] for higher-
order log ratios on the horizontal axis versus [−1.5, 1.5] for first-order log ratios on the
vertical axis. Together, Figs. 3(a) and 3(b) indicate that while both NB and HONB take
into account presence of terms as well as their absence, HONB tends to place more emphasis
on the presence of terms in a document being classified.

As was noted in Sect. 4.2, the normalizing factors in (12) were introduced in order to
allow terms that may appear in multiple classes, but are still good discriminators as measured
by the log likelihood ratios (10) and (11), to have a non-negligible impact during document
classification by HOSVM. The effect of these normalizing factors can be seen by comparing
Figs. 3(a) and 3(b) with Figs. 4(a) and 4(b).

On the vertical axes in Figs. 4(a) and 4(b) are plotted the same first-order conditional
log probability ratios as in Figs. 3(a) and 3(b), respectively. Plotted on the horizontal axes
of Figs. 4(a) and 4(b) are the higher-order conditional log probability ratios shown on the
horizontal axes of Figs. 3(a) and 3(b), respectively, and normalized as in (12). Note the
change in scales of the horizontal axes once normalization has been applied: [−20, 20] before
normalization (Fig. 3(a)) versus [−4, 4] after, and [−0.1, 0.1] before normalization (Fig.
3(b)) versus [−0.3, 0.3] after. It is this change in scales coupled with the increased spread of
the middle group of terms along the horizontal axis that allowed good discriminator terms
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(a) (b)

Figure 4: Conditional log probability ratios obtained from higher-order probabilities (8) and
normalized as in (12) for use by HOSVM (horizontal axes) versus the log ratios obtained
from first-order probabilities (6) (vertical axes) on the same dataset as in Fig. 3.

from the middle group in Fig. 3(a) to increase their relative influence during document
classification by HOSVM.

Although it is trivial to identify strongly discriminative features in a given training set,
the question remains of how to weight those features for pattern classification. Methods
proposed in this work address this question by leveraging higher-order dependencies between
features.

7 Conclusions and Future Work

In prior work [7], we gave a mathematical proof supported by empirical results of the de-
pendence of LSI on higher-order paths. In this work, a general approach to leveraging
higher-order dependencies for supervised learning was developed. We presented a novel clas-
sification method termed Higher Order Naive Bayes (HONB). We further generalized our
framework by developing a new data transformation that allows any classifier operating in
vector spaces to take advantage of the rich relational information captured by higher-order
paths. We also developed a O ((m+ n)n2) time algorithm for obtaining the counts of higher-
order paths in boolean data. This algorithm improves over the O (m2n3) complexity of a
straight-forward path counting algorithm.

Higher-order paths allow a classifier to operate on a much richer data representation
than the conventional feature vector form. This is especially important when working with
small and sparse training sets where accurate parameter estimation of traditional (first-
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order) models becomes very challenging [17]. Experimental results affirmed the value of
leveraging higher-order paths, resulting in significant improvements in classification accura-
cies on benchmark text corpora across a wide range of training set sizes. In addition, we
compared our results with those reported in [17], where term clusters were used (instead of
terms) as features for classification by Naive Bayes (NBWC). Our experiments demonstrated
that HONB consistently achieved better performance over the baseline Naive Bayes (NB)
classifier than did NBWC.

In ongoing efforts, we are developing methods for leveraging higher-order dependencies
in various domains including nuclear detection, as well as in large datasets. We are also
investigating extensions of the proposed framework to a number of other supervised learning
approaches, and to unsupervised machine learning.
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