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ABSTRACT

A d-graph G = (V ; E1, . . . , Ed) is a complete graph whose edges are arbitrarily partitioned
into d subsets (colored with d colors); G is a Gallai d-graph if it contains no three-colored tri-
angle ∆; furthermore, G is a CIS d-graph if

⋂d
i=1 Si 6= ∅ for every set-family S = {Si | i ∈ [d]},

where Si ⊆ V is a maximal independent set of Gi = (V, Ei), the ith chromatic component
of G, for all i ∈ [d] = {1, . . . , d}. A conjecture suggested in 1978 by the third author says
that every CIS d-graph is a Gallai d-graph. In this paper we obtain a partial result. Let Π
be the two-colored d-graph on four vertices whose two non-empty chromatic components are
isomorphic to P4. It is easily seen that Π and ∆ are not CIS d-graphs but become CIS after
eliminating any vertex. We prove that no other d-graph has this property, that is, every
non-CIS d-graph G distinct from Π and ∆ contains a vertex v ∈ V such that the sub-d-graph
G[V \ {v}] is still non-CIS. This result easily follows if the above ∆-conjecture is true, yet,
we prove it independently.

A d-graph G = (V ; E1, . . . , Ed) is complementary connected (CC) if the complement
Gi = (V, Ei) = (V,

⋃
j∈[d]\{i}Ej) to its ith chromatic component is connected for every

i ∈ [d]. It is known that every CC d-graph G, distinct from Π, ∆, and a single vertex,
contains a vertex v ∈ V such that the reduced sub-d-graph G[V \ {v}] is still CC.

It is not difficult to show that every non-CC d-graph with contains a vertex v ∈ V such
that the sub-d-graph G[V \ {v}] is not CC.

Keywords: d-graph, complementary connected, Gallai, weakly monotone, minimal and
locally minimal.



1 Introduction: Gallai and CIS d-graphs

A d-graph G = (V ; E1, . . . , Ed) is a complete graph whose edges are arbitrarily partitioned
into d subsets (colored with d colors). Graph Gi = (V, Ei) is called the ith chromatic
component of G, where i ∈ [d] = {1, . . . , d}. Some of these components might be empty Ei =
∅. A d-graph is called k-colored if k is the number of its non-empty chromatic components.
Obviously, 0 ≤ k ≤ d; moreover, k = 0 if and only if G consists of a single vertex. Let us
note that in case d = 2 a d-graph is just a graph, or more precisely, a pair: a graph and its
complement. Thus, d-graphs can be viewed as a generalization of graphs.

Let us choose a maximal independent set Si ⊆ V in every graph Gi and denote by
S = {Si | i ∈ [d]} the obtained set-family; furthermore, let S =

⋂d
i=1 Si. Obviously, |S| ≤ 1

for every S; indeed, if v, v′ ∈ S then (v, v′) 6∈ Ei for all i ∈ [d], that is, this edge has no color.
We say that G has the CIS property and call G a CIS d-graph [1] if S 6= ∅ for every S.

Two d-graphs Π and ∆ given in Figure 1 will play an important role:

Π is defined for any d ≥ 2 by V = {v1, v2, v3, v4};
E1 = {(v1, v2), (v2, v3), (v3, v4)}, E2 = {(v2, v4), (v4, v1), (v1, v3)}, and Ei = ∅ whenever i > 2;

∆ is defined for any d ≥ 3 by V = {v1, v2, v3},
E1 = {(v1, v2)}, E2 = {(v2, v3)}, E3 = {(v3, v1)}, and Ei = ∅ whenever i > 3.
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Figure 1: 2- and 3-colored d-graphs Π and ∆.

Remark 1 Clearly, Π and ∆ are respectively 2- and 3-colored d-graphs; both non-empty
chromatic components of Π are isomorphic to P4 and ∆ is a three-colored triangle. Let us
also notice that, formally, d-graphs Π(d) (respectively, ∆(d)) is defined for every fixed d ≥ 2
(respectively, d ≥ 3) and d− 2 (respectively, d− 3) of its chromatic components are empty.
Yet, we will omit argument d assuming that it is a fixed parameter.

Both were introduced in 1967 by Gallai in his seminal paper [11]. Numerous applications
of Π- and ∆-free d-graphs in theory of positional games are considered in [14, 15, 16, 17]. A
∆-free d-graph is called Gallai d-graph.
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∆-Conjecture ([14]) Each CIS d-graph is a Gallai d-graph, or in other words, CIS
property holds for no d-graph that contains a ∆.

Since 1978, this conjecture is open; partial results are given in [1], where in particular,
∆-conjecture for an arbitrary d is reduced to the case d = 3.

It is also shown in [1] that, modulo ∆-conjecture, the characterization of CIS d-graphs is
reduced to the case d = 2, that is, to the characterization of CIS graphs; see Section 4 and
also [1] Sections 1.6 and 1.7.

Let us note, however, that case d = 2 is still very difficult. The problem of character-
ization and recognition of CIS graphs was suggested in early 90s by Vasek Chvatal to his
graduate student from RUTCOR Wenan Zang who published first partial results in [28].
Further results on CIS graphs were obtained in [8, 9, 1] and some related results (on almost
CIS graphs) in [5, 27].

Let us also mention in passing that both P4-free and CIS graphs are closed under com-
plementation.

2 Main result

It is not difficult to verify that Π and ∆ are not CIS d-graphs; moreover, they are minimal,
that is, every sub-d-graph of Π or ∆ is a CIS d-graph. As our main result, we will show that
Π and ∆ are the only minimal and, moreover, the only locally minimal, not CIS d-graphs.

Theorem 1 Each non-CIS d-graph G distinct from Π and ∆, contains a vertex v ∈ V such
that the sub-d-graph G[V \ {v}] is still not CIS.

In the next Section we will give a proof and in Section 4.4 show that this result easily
follows from ∆-conjecture.

In contrast, minimal and locally minimal CIS d-graphs differ already for d = 2. Indeed,
let G = L(K3,3) be the line graph of the complete bipartite 3 × 3 graph; see Figure 1.4 in
[1]. It is easy to verify that G is a CIS graph, while for each v ∈ V the induced subgraph
G[V \ {v}] has no CIS property. By symmetry, it is enough to verify this claim for one
arbitrary v ∈ V . Thus, G is a locally minimal CIS 2-graph. Yet, it is not minimal, since
there is only one minimal CIS graph, the trivial one, which consists of a single vertex.

Remark 2 Let us remark that G = L(K3,3) is also a locally edge-minimal perfect graph,
that is, G is perfect but it becomes imperfect whenever we delete an edge from it or add to G
an edge (between two its already existing vertices) [3]. Yet, G is not an edge-minimal perfect
graph, since it contains the edge-free graph on the same vertex-set. An infinite family of
locally edge-minimal but not edge-minimal perfect graphs, so-called Rotterdam graphs, was
introduced in [3]. However, no good characterization of locally edge-minimal perfect graphs
or locally vertex-minimal CIS d-graphs is known yet.
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3 Proof of Theorem 1

3.1 Plan of the proof

Let us assume that G = (V ; E1, . . . , Ed) is a non-CIS d-graph, while G[V \ {v}] is a CIS
sub-d-graph for every v ∈ V .

Furthermore, without loss of generality, we will also assume that Ei 6= ∅ for all i ∈ [d] =
{1, . . . , d}, or in other words, that our d-graph G is d-colored.

First, we shall prove several preliminary statements, then that d ≤ 3 must hold, and next
that G is either ∆ (if d = 3) or Π (if d = 2).

3.2 Preliminary claims

By our assumption G = (V ; E1, . . . , Ed) is a non-CIS d-graph, that is, for every i ∈ [d] one
can choose a maximal stable set Si in graph Gi = (V, Ei) so that

⋂d
i=1 Si = ∅. Let us fix

such a family S = {Si | i ∈ [d]}.

Lemma 1 Family S is a vertex-cover, that is,
⋃d

i=1 Si = V .

Proof. Assume indirectly that
⋃d

i=1 Si 6= V . Then, by eliminating a vertex v ∈ V \
⋃d

i=1 Si,
one gets a non-CIS sub-d-graph G ′ = G[V \ {v}], in contradiction with our assumptions. �

Furthermore, by the same assumption, for each vertex v ∈ V there is an index i ∈ [d]
such that the stable set Si \ {v} is not maximal in graph Gi.

Lemma 2 In fact, there is exactly one such i = i(v).

Proof. Indeed, let us assume indirectly that there are two distinct i, j ∈ [d] such that the
stable sets Si \ {v} and Sj \ {v} are not maximal in the corresponding graphs Gi and Gj,
respectively. Then, obviously, v ∈ Si ∩ Sj. Furthermore, by our assumption, G[V \ {v}]
is a CIS d-graph. Hence, there is a vertex u ∈ V such that the sets (Si \ {v}) ∪ {u}
and (Sj \ {v}) ∪ {u} are stable in Gi and Gj, respectively. Obviously, u 6∈ Si ∪ Sj, since
otherwise already Si\{v} or Sj \{v} would be maximal. Moreover, (u, w) 6∈ Ei (respectively,
(u, w) 6∈ Ej) for every w ∈ Si \{v} (respectively, w ∈ Sj \{v}). Since Si and Sj are maximal
stable sets, the edge (v, u) must belong to Ei and Ej simultaneously, which is a contradiction.

�

(i) Thus, to each vertex v ∈ V we can assign a unique index i = i(v) ∈ [d] such that the
stable set Si \ {v} is not maximal in Gi. Hence, given i ∈ [d], there is a unique subset
S ′i ⊆ Si such that i = i(v) if and only if v ∈ S ′i.

(ii) Furthermore, as the above proof shows, to every vertex v ∈ S ′i we can associate a vertex
u = u(v) 6∈ Si such that (u, v) ∈ Ei and (u, w) 6∈ Ei for all w ∈ Si \ {v}. Namely, since
G[V \ {v}] is CIS, for an arbitrary maximal stable set Q ⊃ Si \ {v} of Gi we must have
a (unique) vertex u ∈ Q ∩ (

⋂
6̀=i S`).
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(iii) Due to property (ii), we must have u(v) 6= u(v′) whenever v and v′ are two distinct
vertices of S ′i.

Thus, introducing the notation Xi =
⋂

`∈[d] | `6=i S` for i ∈ [d] we must have by (ii) and

(iii) above that

|S ′i| ≤ |Xi| for all indices i ∈ [d], (3.1)

from which it follows that

|V | =
d∑

i=1

|S ′i| ≤
d∑

i=1

|Xi| ≤ |V |, (3.2)

where the last inequality follows from the fact that G is not a CIS d-graph and hence⋂d
`=1 S` = ∅. Therefore, we must have equalities everywhere in (3.1) and (3.2). Consequently,

every vertex v ∈ V belongs to exactly (d − 1) maximal stable sets of the considered family
S = {Si | i ∈ [d]}. In other words,

(iv) The sets Xi, i ∈ [d] are pairwise disjoint, form a partition of V , and Si = V \Xi holds
for all i ∈ [d].

Furthermore, by property (iii) for every i ∈ [d] and u ∈ Xi there is a unique edge (v, u) ∈ Ei

such that v ∈ S ′i ⊆ Si, since |Xi| = |S ′i|, by (3.1) and (3.2). Note that u = u(v) as introduced
in (ii) above.

Let us introduce Yij = Xi∩S ′j for all i, j ∈ [d]. By this definition, Yii = ∅ and Yij∩Yk` = ∅
whenever {i, j} 6= {k, `} since the sets S ′i, i ∈ [d] are pairwise disjoint, by Lemma 2, and the
sets Xi, i ∈ [d] are pairwise disjoint by (iv). Thus, the following equalities define partitions
of the sets Xi and S ′i, i ∈ [d]:

Xi =
⋃

j∈[d] | j 6=i

Yij and S ′i =
⋃

`∈[d] | `6=i

Y`i. (3.3)

Corollary 1 For any index i ∈ [d] the edge set Ei ∩ (Xi× S ′i) is a matching. Consequently,
for any two distinct indices i 6= j ∈ [d] only the vertices of Yij are connected by edges of Ej

between the sets Xi and Xj, matching Yij to a subset of Xj. �

Lemma 3 For any two distinct indices i 6= j we must have

either Xi \ Yij = ∅ or Xj \ Yji = ∅. (3.4)

Proof. Assume indirectly that there are vertices u ∈ Xi \ Yij, v ∈ Xj \ Yji. We claim that
the edge (u, v) does not belong to E` for all ` ∈ [d] contradicting the fact that G is a d-graph,
and hence proving the statement of the lemma.

To see the claim, let us first note that (u, v) 6∈ E` whenever ` 6∈ {i, j}, since u, v ∈ S`.
Let us note next that (u, v) 6∈ Ei ∪Ej either by Corollary 1, since neither u nor v belongs to
Yij ∪ Yji. �
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3.3 Case d > 3

Now, we shall show that inequality d ≤ 3 must hold.
Proof. Let us assume indirectly that d > 3, i.e., at least four pairwise distinct color classes
are not empty. Equivalently, without any loss of generality, we can assume that the sets X1,
X2, X3 and X4 are all not empty, or in other words, that Si 6= V for i = 1, 2, 3, 4).

Let us then successively apply property (3.4) by setting (i, j) to (1, 2), (1, 3), (1, 4) and
(3, 4).

If (i, j) = (1, 2), then without loss of generality we can assume by (3.4) that X1 \Y12 = ∅
and thus Y12 6= ∅ is implied, since X1 6= ∅. If (i, j) = (1, 3) then X1 \Y13 ⊇ Y12 6= ∅, and thus
by (3.4) we must have X3 \ Y31 = ∅. Furthermore, since X3 6= ∅ we also must have Y31 6= ∅.

Similarly, if (i, j) = (1, 4) then X1 \ Y14 ⊇ Y12 6= ∅, and hence by (3.4) we must have
X4 \ Y41 = ∅, and analogously, when (i, j) = (3, 4) then X3 \ Y34 ⊇ Y31 6= ∅ implies by (3.4)
that X4 \ Y43 = ∅.

Thus, we arrive to the contradiction ∅ 6= X4 ⊆ (X4 \ Y41) ∪ (X4 \ Y43) = ∅ implying that
d ≤ 3 must hold. �

To complete the proof of the theorem, we only need to consider the cases d = 3 and
d = 2.

3.4 If d = 3 then G is a ∆.

Proof. Setting successively (i, j) to (1, 2), (1, 3), (2, 3) and applying the same arguments
using (3.4) as in the previous subcase we can conclude by (3.3) that

either Y13 = Y21 = Y32 = ∅ or Y12 = Y23 = Y31 = ∅.

Without loss of generality, we can assume that the former two equalities hold. Then we have
X1 = Y12 = S ′2, X2 = Y23 = S ′3, and X3 = Y31 = S ′1, and furthermore, |Y12| = |Y23| = |Y31| =
y by (3.1).

Let us recall that by Corollary 1 those edges of Ei which connect Xi to S ′i form a matching,
i = 1, ..., 3. Thus, if we can show that y ≤ 1, then it follows that y = 1, since G is not empty
and, therefore, G is indeed a ∆, as stated in the theorem.

To this end, let us assume indirectly that y ≥ 2, that is by Corollary 1 that there are
two distinct edges of color 1, say (u1, u2), (v1, v2) ∈ E1, both between the sets X1 = Y12 and
S ′1 = X3 = Y31.

We can prove then that no color in [d] = {1, 2, 3} is feasible for edge (u1, v2).
First, let us notice that (u1, v2) 6∈ E1, since for every vertex of X1 there is a unique edge

in E1 connecting it to S1 = X2 ∪X3 by Corollary 1 and, from vertex u1, this unique edge is
(u1, u2) ∈ E1 according to our assumption.

Let us next note that S2 = X1 ∪X3 and, hence, (u1, v2) 6∈ E2, either.
Finally, let us note that the edges of E3 connecting X3 to S3 = X1 ∪X2 are all incident

with Y23 = X2 by Corollary 1 and, hence, no edge between X1 and X3 can be of color 3.
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Thus, edge (u1, v2) must be colored by a fourth color, in contradiction with our assump-
tion that G is a 3-colored graph and, hence, y ≤ 1 follows, concluding the proof of this case.

�

3.5 If d = 2 then G is a Π

Proof. If G = (V ; E1, E2) is a non-CIS 2-graph then for i = 1, 2 there is a maximal stable set
Si in graph Gi = (V, Ei) such that S1 ∩ S2 = ∅. Let us fix such a pair S1, S2. If S1 ∪ S2 6= V
then by eliminating any vertex v ∈ V \ (S1 ∪ S2) one gets a non-CIS sub-2-graph G[V \ {v}]
and the theorem follows. Hence, our assumption implies that S1 ∪ S2 = V .

For each v1 ∈ S1 the stable set S1 \ {v1} is not maximal, since, by the assumption,
G[V \ {v1}] is already a CIS sub-d-graph. Hence, there is a vertex v2 ∈ S2 such that
(S1 \ {v1}) ∪ {v2} is a stable set in G1; obviously, it is maximal. Hence, (v′1, v2) ∈ E2

for every v′1 ∈ V1 distinct from v1. Clearly, (v1, v2) ∈ E1, since otherwise stable set S1

itself would not be maximal. Furthermore, let us consider two vertices v1, w1 ∈ S1 and the
corresponding v2, w2 ∈ S2. It is clear that v2 6= w2 whenever v1 6= w1. Indeed, (v1, v2) ∈ E1,
while (v1, w2) ∈ E2. Hence, |S2| ≥ |S1|. Yet, by symmetry, |S1| ≥ |S2| and we conclude that
|S1| = |S2|. Moreover, the above construction defines two edge-disjoint perfect matchings
between S1 and S2 in graphs G1 and G2, respectively. In addition, for every pair of vertices
v1 ∈ V1, v2 ∈ V2 the edge (v1, v2) must belong to one of these two matchings. Obviously, this
happens if and only if |S1| = |S2| = 2 and in this case G = Π. �

4 Modular decomposition of Gallai d-graphs and its

applications to CIS d-graphs

4.1 Substitution

Given two d-graphs G ′ = (V ′; E ′1, . . . , E
′
d) and G ′′ = (V ′′; E ′′1 , . . . , E ′′d ) such that V ′ ∩ V ′′ = ∅,

let us fix a vertex v ∈ V ′, substitute the whole d-graph G ′′ into G ′ for v and denote the
obtained d-graph G = (V ; E1, . . . , Ed) by G ′(v,G ′′).

By this definition, V = V ′′ ∪ V ′ \ {v} and colors Ei for i ∈ [d] are as follows:

if v′, v′′ ∈ V ′′ (respectively, v′, v′′ ∈ V ′ \v) then edge (v′, v′′) is colored in G with the same
color as it was colored in G ′′ (respectively, in G ′);

if v′ ∈ V ′ \ {v} and v′′ ∈ V ′′ then (v′, v′′) is colored in G with the same color as edge
(v, v′) was colored in G ′.

Let us remark that G contains as subgraphs both G ′ and G ′′; the latter is called a module.
In case d = 2 the above definition agrees with the standard concept of substitution for graphs.
In general, substitution is defined in the same way for digraphs [21], Boolean functions [22],
etc. [23].
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We say that a family of d-graphs F (and, in particular, of graphs) is exactly closed with
respect to substitution [1] if G ′(v,G ′′) ∈ F if and only if G ′,G ′′ ∈ F .

Proposition 1 The CIS d graphs, as well as Gallai d-graphs, are exactly closed with respect
to substitution.

Proof. In case of Gallai d-graphs it is enough to verify that G contains a ∆ if and only if G ′
or G ′′ do; see, for example, [7, 6, 18, 1]. In case of CIS d-graphs proof is reduced to a tedious
but simple case analysis; see [1], Section 4.1. �

4.2 Modular decomposition

Every more than 2-colored Gallai d-graph G can be decomposed into 2-colored Gallai d-
graphs. This results immediately from the following claim.

Theorem 2 (Cameron and Edmonds, [6]; Gyárfás and Simonyi, [18]).
Let G be an at least 3-colored Gallai d-graph. Then G = G ′(v,G ′′), where G ′ and G ′′ are
Gallai d-graphs distinct from G.

Clearly, we can proceed with this decomposition until both G ′ and G ′′ become 2-colored,
since they remain ∆-free. Decomposing in such a way recursively, we will represent G by
a binary tree T (G) whose leaves are associated with 2-colored d-graphs. The following two
properties of the Gallai d-graphs are instrumental for such decomposition.

Lemma 4 [6, 18]. Let G = (V ; E1, . . . , En) be a Gallai d-graph; at least one of its chromatic
component, say G1 = (V, E1), be disconnected and V ′1 and V ′′1 be the vertex-sets of two
connected components of G1. Then all edges between V ′1 and V ′′1 are homogeneously colored,
more precisely, they all are of the same color i ∈ [d] for some i 6= 1.

Proof. Since V ′1 and V ′′1 are connected components of G1, no edge between them can be
of color 1. Assume indirectly that (x′, x′′) ∈ E2 and (y′, y′′) ∈ E3 for some x′, y′ ∈ V ′1 and
x′′, y′′ ∈ V ′′1 . Since V ′1 and V ′′1 are connected, we can choose a path p′ between x′ and y′ in
C ′1 and p′′ between x′′ and y′′ in C ′′1 . Then we can get a contradiction by showing that the
d-graph induced by V (p′) ∪ V (p′′) contains a ∆, namely, a triangle colored by 1, 2 and 3.
This is easy to show by induction on the lengths of p′ and p′′. �

Lemma 5 ([11], [6], and [18]) Every Gallai d-graph G = (V ; E1, . . . , Ed) with at least 3
non-trivial chromatic components has a color i ∈ [d] = {1, . . . , d} that does not span V , that
is, Gi = (V, Ei) is not connected for some i ∈ [d].
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Gyárfás and Simonyi remark that Lemma 5 “is essentially a content of Lemma (3.2.3)
in [11]”. Lemmas 4 and 5 imply Theorem 2. Indeed, let G = (V ; E1, . . . , Ed) be a Gallai d-
graph. If it is 2-colored then we are done. Otherwise, by Lemma 5, there is a non-connected
graph Gi = (V, Ei). Let us decompose it into connected components and let V = V1 ∪ . . . Vk

be the corresponding partition of V . At least one of these sets, say V1, is of cardinality at
least 2, since Ei 6= ∅. By Lemma 4, for every two distinct vertex-sets Vj′ and Vj′′ all edges
between them are homogeneously colored, that is, there exists a color i′ ∈ [d] such that i′ 6= i
and (v′, v′′) ∈ Ei′ for every v′ ∈ Vj′ , v′′ ∈ Vj′′ . Thus, collapsing V1 into one vertex v we obtain
a non-trivial modular decomposition G = G(G ′, v,G ′′), where “non-trivial” means that both
G ′ and G ′′ are distinct from G.

It is well-known that decomposing a graph into connected components can be executed in
linear time. Hence, given a Gallai d-graph G, its decomposition tree T (G) can be constructed
in linear time, too.

4.3 Extending Cameron-Edmonds-Lovász’ Theorem

Some nice properties of Gallai colorings easily results from Theorem 2.

Corollary 2 A Gallai d-graph with n vertices contains at most n− 1 non-trivial chromatic
components.

As it was mentioned in [18], this result by Erdős, Simonovits, and Sós [10] immediately
follows from Theorem 2 by induction.

Corollary 3 If all but one chromatic components of a Gallai d-graph are perfect graphs then
the remaining one is a perfect graph too.

This claim was proved by Cameron, Edmonds, and Lovász [7]. (Clearly, it turns into
Lovász’ Perfect Graph Theorem [19, 20] if d = 2.) Later, Cameron and Edmonds [6] strength-
ened this claim showing that the same statement holds not only for perfect graphs but, in
fact, for any family of graphs that is closed under: (i) substitution, (ii) complementation,
and (iii) taking induced subgraphs. In [1] the claim is strengthened further as follows.

Theorem 3 [1]. Let F be a family of graphs closed under complementation and exactly
closed under substitution and let G = (V ; E1, . . . , Ed) be a Gallai d-graph such that at least
d− 1 of its chromatic components, say Gi = (V, Ei) for i = 1, . . . , d− 1, belong to F . Then

(a) the last component Gd = (V, Ed) is in F too, and moreover,

(b) all 2d graphs associated with G belong to F , that is, for each subset J ⊆ [d] =
{1, . . . , d} the graph GJ = (V,∪j∈JEj) is in F .

Proof. Part (a). By Theorem 2, G is a modular decomposition of 2-colored d-graphs.
Such a decomposition of G is given by a tree T (G) whose leaves correspond to 2-colored
d-graphs. It is easy to see that by construction each chromatic component Gi = (V, Ei) of
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G is decomposed by the same tree T (G). Hence, all we have to prove is that both chromatic
components of every 2-colored d-graph belong to F . For colors 1, . . . , d− 1 this holds, since
F is exactly closed under substitution, and for the last color d it holds, too, since F is also
closed under complementation.

Part (b). It follows easily from part (a). Given a d-colored d-graph G = (V ; E1, . . . , Ed,
let us identify the last two colors d and d−1 and consider the (d−1)-graph G ′ = (V ; E1, . . . , Ed−1,
where Ed−1 = Ed−1 ∪ Ed. We assume that G is ∆-free and that Gi = (V, Ei) ∈ F for
i = 1, . . . , d − 1. Then G ′ is ∆-free too and it follows from part (a) that Gd−1 = (V, Ed−1)
is also in F . Hence, the union of any two colors is in F . From this by induction we derive
that the union of any set of colors is in F , too. �

This theorem and the following Lemma imply Cameron-Edmonds’ Theorem.

Lemma 6 Let F be a family of graphs closed with respect to substitution and taking induced
subgraphs then F is exactly closed under substitution.

Proof. If G = G(G′, v, G′′) then both G′ and G′′ are induced subgraphs of G. �

In particular, Theorem 3 is applicable to the family F of the CIS d-graphs, although
Cameron-Edmonds’ Theorem is not, because only conditions (i) and (ii) hold in this case
but (iii) does not.

4.4 Theorem 1 results from ∆-conjecture

Again, let us assume that G is a non-CIS d-graph, while G[V \ {v}] is a CIS sub-d-graph for
every v ∈ V and prove that G is either Π or ∆.

Case 1: G = ∆. Then there is nothing to prove.

Case 2: G strictly contains a ∆. Then let us eliminate any vertex outside it. Obviously, the
reduced d-graph G ′ still contains this ∆. Then, by ∆-conjecture, G ′ is a non-CIS d-graph.

Let us remark that ∆-conjecture gives us a lot of freedom: one can delete any vertex of
G that does not belong to some ∆. In fact, Theorem 1 claims much less: it only says that
there is a vertex v ∈ V such that the reduced d-graph G[V \ {v}] is still a non-CIS d-graph.

Case 3: G is ∆-free, or in other words, is a Gallai d-graph.

Subcase 3a: G is 2-colored (that is, it contains only two non-empty chromatic components).
In this case we have to borrow the proof from Section 3.5.

Subcase 3b: d-graph G is more than 2-colored. Since G is a Gallai d-graph, there is a
modular decomposition of it into 2-colored d-graphs. Let us choose such a decomposition
and consider the corresponding decomposition tree. At least one of its vertices is associated
with a non-CIS 2-colored d-graph, since CIS property is exactly closed with respect to sub-
stitution. The rest easily follows from subcase 3a and structure of modular decomposition
G = G ′(v,G ′′). �
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5 Complementary connected d-graphs

A d-graph G = (V, E1, . . . , Ed) is called complementary connected (CC) if for every i ∈ [d] =
{1, . . . , d} graph Gi = (V,

⋃
j∈[d]\{i}Ej), complementary to Gi = (V, Ei), is connected. In

other words, for every v, v′ ∈ V and i ∈ [d] there is a path from v to v′ that contains no edge
from Ei.

It is easy to verify that one edge (|V | = 2) is not a CC d-graph. Furthermore, a triangle
(|V | = 3) colored by one or two colors is not a CC d-graph either.

Yet, Π and ∆ are CC d-graphs; moreover, they are minimal, that is, every sub-d-graph
of Π or ∆ is already a non-CC d-graph.

Remark 3 For the last claim to hold we have to postulate that the trivial d-graph, which
consists of a single vertex, is not CC. Indeed, otherwise CC d-graphs Π and ∆ would not be
minimal.

Furthermore, it appears that Π and ∆ are the only minimal and, moreover, the only
locally minimal, CC d-graphs.

Theorem 4 Each CC d-graph G = (V ; E1, . . . , Ed), distinct from Π and ∆, contains a
vertex v ∈ V such that the sub-d-graph G[V \ {v}] is still CC.

Remark 4 This statement was announced in [14, 16] and its proof was recently published in
[3]. The case d = 2 is simpler than the general one, since ∆ cannot exist when d ≤ 2. This
case was considered earlier, in [25, 26, 24, 13, 14, 16]. It was also suggested as a problem for
Moscow Mathematical Olympiad in 1971 (Problem 72 in [12]) and was successfully solved by
seven high school students.

Interestingly, two distinct families, the CC and non-CIS d-graphs, have the same (locally)
minimal elements: Π and ∆. However, it is easy to see that these two families are in general
position already for d = 2. For example, the A-graph (or bull) is CC and CIS; adding a
vertex of degree 4 to P4 one obtains a non-CC and non-CIS graph; furthermore, a single
edge is not CC but CIS graph; finally, P4 is CC but not CIS graph; recall that Π and ∆ are
CC but not CIS d-graphs.

6 Not complementary connected d-graphs

As we just mentioned, a single edge is not a CC graph. In other words, it is not a CC d-graph
for d = 2. Moreover, it is not a CC d-graph for every d ≥ 1. However, this CC d-graph is
still not minimal, since by convention, a single vertex is not CC either. Obviously, it is the
only minimal CC d-graph. Moreover, it is the only locally minimal one.

Proposition 2 Each non-CC d-graph G = (V ; E1, . . . , Ed) with |V | ≥ 2 contains a vertex
v ∈ V such that the sub-d-graph G[V \ {v}] is still not CC.
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Proof. It is simple. Since G is not CC, there is an i ∈ [d] such that graph Gi = (V, Ei) is
not connected. Let us eliminate vertices v ∈ V one by one in a way to keep this property.
Obviously, V can be reduced to two vertices. Then, as the last step, we reduce V to one
vertex. �

7 Weakly monotone Boolean functions

Given a Boolean function f : {0, 1}n → {0, 1} of n variables, a vector x = (x1, . . . , xn) ∈
{0, 1}n is called a true (false) vector of f if f(x) = 1 (respectively, f(x) = 0). Furthermore,
x is a minimal true vector of f if all its predecessors are false; in other words, f(x) = 1,
while f(x′) = 0 whenever x′ ≤ x and x′ 6= x. Finally, x is a locally minimal true vector of f
if all it immediate predecessors are false; in other words, if f(x) = 1, while f(x− ei) = 0 for
all i ∈ supp(x) = {i ∈ [n] | xi 6= 0}, where [n] = {1, . . . , n} and ei is a Boolean vector whose
ith coordinate is 1, while all others are equal to 0.

Let T = T (f), M = M(f), L = L(f) ⊆ {0, 1}n denote the sets of true, minimal true,
and locally minimal true vectors of f , respectively.

Containments M ⊆ L ⊆ T hold for every f , by the above definitions.

Remark 5 It is also obvious from the definitions that the local minimality in f can be verified
in polynomial time whenever f is given by a polynomial oracle. In contrast, even in this case
verifying minimality is exponential. Indeed, the number of immediate predecessors of a vector
x ∈ {0, 1}n is n, while the number of all predecessors of x is 2k, where k = k(x) = |supp(x)|.

Boolean function f is monotone if f(x′) = 1 whenever x′ ≤ x and f(x) = 1; furthermore,
f is weakly monotone [2, 3] if every its not minimal true vector has an immediate true
predecessor, or in other words, if x ∈ T \M implies that x− ei ∈ T for some i ∈ [n], that
is, x 6∈ L. The next two properties of weakly monotone functions immediately follow from
the above definitions.

Claim 1 A Boolean function f is weakly monotone if and only if the sets of its minimal
and locally minimal true vectors coincide: M(f) = L(f). �

Claim 2 Every monotone Boolean function is weakly monotone. �

Weakly monotone Boolean functions frequently appear in combinatorics; see [3, 4] for their
applications in graph and game theories.

All above statements related to CC and CIS d-graphs can be reformulated in terms of
weak monotonicity as follows:

The families of CC and non-CIS d-graphs are weakly monotone, moreover, they have the
same (local) minima: Π and ∆; see Theorems 1 and 4.



– 12 –

Family of the non-CC d-graphs is also weakly monotone; it has a unique minimal element,
the trivial (single-vertex) d-graph; see Proposition 2.

Thus, both CC and non-CC d-graphs form weakly monotone (although not monotone)
families.

In contrast, family of the CIS d-graphs is not weakly monotone already for d = 2. For
example, G = L(K3,3) is a CIS graph but the CIS property will be lost after eliminating any
vertex.

As we already mentioned in Remark 2, the same graph G is a locally edge-minimal
(but not edge-minimal) perfect graph too. Thus, the family of perfect graphs is not weakly
monotone (with respect to edges) either. However, let us remark that, with respect to
vertices, this family is monotone and, hence, weakly monotone too. Indeed, perfectness is a
hereditary property, just by definition.
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