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ABSTRACT

Given a digraph D, the set of all pairs (N−(v), N+(v)) constitutes the neighborhood dihy-
pergraph N (D) of D. The Digraph Realization Problem asks whether a given dihypergraph
H coincides with N (D) for some digraph D. This problem was introduced by Aigner and
Triesch [2] as a natural generalization of the Open Neighborhood Realization Problem for
undirected graphs, which is known to be NP-complete.
We show that the Digraph Realization Problem remains NP-complete for orgraphs (orienta-
tions of undirected graphs). As a corollary, we show that the Matrix Skew-Symmetrization
Problem for square {0, 1,−1} matrices (aij = −aji) is NP-complete. This result can be
compared with the known fact that the Matrix Symmetrization Problem for square 0 − 1
matrices (aij = aji) is NP-complete.
Extending a negative result of Fomin, Kratochv́ıl, Lokshtanov, Mancini, and Telle [15] we
show that the Digraph Realization Problem remains NP-complete for almost all hereditary
classes of digraphs defined by a unique minimal forbidden subdigraph.
Finally, we consider the Matrix Complementation Problem for rectangular 0 − 1 matrices,
and prove that it is polynomial-time equivalent to graph isomorphism. A related known
result is that the Matrix Transposability Problem is polynomial-time equivalent to graph
isomorphism.
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1 Introduction

Let D = (V,A) be a digraph without loops and multiple arcs. For a vertex v ∈ V , we denote

N−(v) = {u ∈ V : (u, v) ∈ A},

the in-neighborhood of v, and

N+(v) = {w ∈ V : (v, w) ∈ A},

the out-neighborhood of v. Suppose that we know all pairs (N−(v), N+(v)), is it possible to
restore the digraph? To formalize the problem, let us define a directed hypergraph, or shortly
dihypergraph, as an ordered pair (V,A) = H consisting of a finite set V , the vertex-set of H,
and a finite multi-set of hyperarcs, a hyperarcs a ∈ A being an ordered pair (a−, a+) = a of
some subsets a− and a+ of V . It is possible that a− = ∅ or a+ = ∅ or a− = a+. Also note
that a− and a+ are not necessarily disjoint.

Definition 1. The neighborhood dihypergraph of a digraph D = (V,A), N (D), has V as
its vertex-set, and A(N (D)) = {(N−(v), N+(v)) : v ∈ V }.

An obvious property of N (D) is that the number of vertices is the same as the number
of hyperarcs. The following problem was proposed by Aigner and Triesch [2].

Decision Problem 1 (Digraph Realization Problem).
Instance: A directed hypergraph H.
Question: Does H = N (D) hold for some digraph D?

This problem generalizes the Open Neighborhood Realization Problem for undirected
graphs: given a hypergraph H (with possible multiple hyperedges), the problem is asking to
find a graph G for which H is the hypergraph of open neighborhoods N op(G), of vertices of
G, that is V (H) = V (G) and E(H) = {N(v) : v ∈ V (G)}. Here N(v) = {w ∈ V (G) : vw ∈
E(G)} is the neighborhood of a vertex v of G. The Open Neighborhood Realization Problem
was proposed by Sós [21] under the name the Star System Problem, and it is also attributed
to G. Sabidussi by Babai [4]. Also, Babai [4] noticed that the problem is at least as hard as
graph isomorphism. The Graph Isomorphism Problem is well-known: Are two given graphs
isomorphic? Boros, Gurvich, and Zverovich [8] survey different equivalent formulations of
the problem.

The Closed Neighborhood Realization Problem is defined in a similar way, using the closed
neighborhoods N [v] = {v} ∪ N(v) of vertices. Also, one can consider a hypergraph N (G)
of open and closed neighborhoods of G, that is, for each vertex v either N(v) or N [v] is
a hyperedge of N (G). The Neighborhood Realization Problem is to decide whether a given
hypergraph H is N (G) for some graph G.
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Theorem 1 (Lalonde [16, 17]). The Open Neighborhood Realization Problem, the Closed
Neighborhood Realization Problem, and the Neighborhood Realization Problem are NP-
complete.

An undirected graph G can be viewed as a digraph on V (G) if we replace every edge
uv ∈ E(G) by the corresponding pair (u, v), (v, u) of opposite arcs.

Corollary 1 (Aigner and Triesch [2]). The Digraph Realization Problem is NP-complete.

Theorem 1 has an interesting interpretation. A square matrix A = (aij) is symmetric if
aij = aji for all i and j. A square matrix A is symmetrizable if it is possible to permute rows
of A in such a way that the resulting matrix is symmetric. The Neighborhood Realization
Problem is equivalent to the Matrix Symmetrization Problem: Is a given square 0−1 matrix
is symmetrizable? If we additionally require that all entries in the main diagonal are 0s
(respectively, 1s), then we obtain a problem which is equivalent to the Open (respectively,
Closed) Neighborhood Realization Problem. The three symmetrization problems are NP-
complete.

We show that the Digraph Realization Problem remains NP-complete for orgraphs (ori-
entations of undirected graphs) and for almost all hereditary classes of digraphs defined by
a unique minimal forbidden subdigraph. As a corollary, we show that the Matrix Skew-
Symmetrization Problem for square {0, 1,−1} matrices is NP-complete. The problem is to
bring a matrix to skew form (aij = −aji) using permutations of rows. Then we consider the
Matrix Complementation Problem for rectangular 0− 1 matrices: to construct the comple-
mentary matrix (defined by aij = 1 − aji) using row and column permutations. We prove
that it is polynomial-time equivalent to graph isomorphism.

2 Representations

It is convenient to represent hypergraphs as bipartite graphs. and as their adjacency matrices.
A bigraph B = (X, Y,E) is defined as a bipartite graph on vertex-set V = X∪Y with a fixed
order (X, Y ) of its parts. Here X ∩ Y = ∅ and E ⊆ X × Y . To a bigraph B = (X, Y,E)
we can associate its X-Y -adjacency matrix A(B) = (aij) ∈ {0, 1}X×Y defined by aij = 1 if
and only if (i, j) ∈ E. Conversely, any 0 − 1 matrix A = (aij) can be viewed as the X-Y
adjacency matrix A = A(B) of a corresponding bigraph B = (X, Y,E), where X is the set
of row indices of A, Y is the set of column indices of A, and (i, j) ∈ E if and only if aij = 1,
see an example in Figure 1.

Now we consider similar representations of a dihypergraph H. Let us define a directed
bigraph B = (X, Y,A) as a bipartite digraph on vertex-set X ∪ Y with a fixed order (X, Y )
of its parts, i.e., where X ∩ Y = ∅ and A ⊆ (X × Y ) ∪ (Y ×X).
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B = (X, Y,E)

1 1 0 0

1 1 1 0

0 0 1 1

A(B)

Figure 1: A bigraph B = (X, Y,E) and its adjacency matrix A(B).

Definition 2. Given a dihypergraph H, we construct a directed bigraph BH as follows. For
every vertex v of H, we introduce a vertex in X, which is also called v. For every hyperarc
a = (a−, a+), we introduce a vertex a ∈ Y . Whenever v ∈ a−, there is the arc (v, a) in BH .
Whenever v ∈ a+, there is the arc (a, v) in BH .

As an example, consider the neighborhood dihypergraph H = (V,A) of the digraph D
shown in Figure 2: V = {u, v, w, x}, A = {au, av, aw, ax}, where
au = ({v}, ∅),
av = ({w}, {u,w}),
aw = ({v, x}, {v}), and
ax = (∅, {w}).

u

u u

u

-�
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��� A

A
A
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AAK

u

v w

x

Figure 2: A digraph D.

The directed bigraph BH of H is shown in Figure 3.

Consider a directed bigraphB = (X, Y,A) and an automorphism α : (X∪Y )→ (X∪Y ) of
the underlying bipartite digraph B, that is for which (i, j) ∈ A if and only if (α(i), α(j)) ∈ A.
The automorphism α involutory if α(i) = j implies α(j) = i, that is α2 is identity, and it
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Figure 3: The directed bigraph BH of H.

is called switching if α(X) = Y and α(Y ) = X. The Digraph Realization Problem for a
directed hypergraph H can be equivalently formulated in terms of BH : Does BH admit an
involutory switching automorphism α such that x and α(x) are non-adjacent for all x ∈ X?

To a directed bigraph B = (X, Y,A) we can associate its X-Y -adjacency matrix A(B)
= (aij) ∈ {0, 1,−1,±1}X×Y defined by

• aij = 0 if and only if i ∈ X, j ∈ Y , (i, j) 6∈ A and (j, i) 6∈ A,

• aij = 1 if and only if i ∈ X, j ∈ Y , (i, j) ∈ A and (j, i) 6∈ A,

• aij = −1 if and only if i ∈ X, j ∈ Y , (j, i) ∈ A and (i, j) 6∈ A,

• aij = ±1 if and only if i ∈ X, j ∈ Y , (i, j) ∈ A and (j, i) ∈ A.

We have

A(BH) =


0 −1 0 0
1 0 ±1 0
0 ±1 0 −1
0 0 1 0


for the directed bigraph BH of Figure 3.
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3 Orgraph realizations and skew symmetrization

An orgraph is an orientation of an undirected graph. In other words, an orgraph is a digraph
having no pairs of opposite arcs. Here we consider Decision Problem 1 for orgraphs – the
Orgraph Realization Problem.

Theorem 2. The Orgraph Realization Problem is NP-complete.

Proof. We construct a polynomial-time reduction from the Neighborhood Realization Prob-
lem, which is NP-complete by Theorem 1. Let H be an instance to the problem represented
as a bigraph B = (X, Y,E). In terms of B, the problem is to recognize whether B has an
involutory automorphism α (that is α2 is identical) which switches the parts (α(X) = Y ).
Without loss of generality, we may assume that all vertex degrees in B are at least three. To
satisfy this assumption we can add i ≤ 3 new vertices into each part, making them adjacent
to all vertices in the opposite part.

Now we transform B into a directed bigraph B′ = (X ′, Y ′, A) by replacing every edge
e = xy ∈ E, where x ∈ X and y ∈ Y , by a directed 6-cycle

Ce = (x = xe
1, y

e
1, x

e
2, y = ye

2, x
e
3, y

e
3), (1)

and put the vertices xe
i and ye

i into the parts X ′ and Y ′ of B′, respectively, see Figure 4 for
an illustration.
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Figure 4: The construction of a directed bigraph B′ = (X ′, Y ′, A).

The directed bigraph B′ represents a dihypergraph H ′ which is considered as an instance
to the Orgraph Realization Problem. In terms of B′, the problem is to recognize whether
B′ has an involutory automorphism α′ which switches the parts X and Y ′, and such that x′

and α′(x′) are always non-adjacent, where x′ ∈ X ′.
Suppose that B admits an involutory automorphism α that switches the parts X and Y .

If some vertices x ∈ X and y = α(x) ∈ Y are adjacent, let a = xy, then we define α′(x) = y,
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Figure 5: The edges e = xv and f = uy of B.

α′(xa
2) = ya

3 and α′(xa
3) = ya

1 , see the correspondence in Figure 4. Now consider two edges
e = xv and f = uy of B such that y = α(x) 6= v = α(u), as it is shown in Figure 5.

The vertices
x = xe

1, y
e
1, x

e
2, v = ye

2, x
e
3, y

e
3

of the directed cycle Ce will be mapped by α′ to the vertices

y = yf
2 , x

f
3 , y

f
3 , u = xf

1 , y
f
1 , x

f
2

of the directed cycle Cf , respectively, as it is shown in Figure 6. It is easy to see that α′ is an
involutory automorphism of B′ that switches X ′ and Y ′. Also, x′ and α′(x′) are non-adjacent
for all x′ ∈ X ′.

Conversely, let α′ be an involutory automorphism of B′ switching X ′ and Y ′, and such
that x′ and α′(x′) are non-adjacent for all x′ ∈ X ′. The degree assumption implies that α′

pairs the vertices of X with the vertices of Y . Thus, α′ induces an involutory bijection α
on B that switches X and Y . Finally,α is an automorphism of B. Indeed, let y = α(x) and
v = α(u) for some distinct vertices x, u ∈ X. Suppose that e = xv is an edge of B. It is
easy to see that the directed 6-cycle Ce can be mapped by α′ to another directed 6-cycle as
in Figure 6 only. It shows that u and y must be adjacent.

A square matrix A = (aij) is called skew if aij = −aji for all i and j. In other words,
A = −AT , where AT is the transpose of A. Clearly, all entries on the main diagonal must be
zeroes. A square matrix A is skew-symmetrizable if it is possible to obtains a skew matrix
permuting rows of A.

Decision Problem 2 (Skew-Symmetrization Problem).
Instance: A square {0, 1,−1} matrix A.
Question: Is A a skew-symmetrizable matrix?
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Figure 6: The automorphism α′.

The Orgraph Realization Problem is essentially the same as the Skew-Symmetrization
Problem. Let a dihypergraph H be an instance to the Orgraph Realization Problem. We
may assume that |V (H)| = |A(H)|. The directed bigraph B of H does not have pairs of
opposite arcs (otherwise H has no orgraph realizations). The {0, 1,−1} adjacency matrix of
B is skew-symmetrizable if and only if H = N (D) for some orgraph D.

Corollary 2. The Matrix Skew-Symmetrization Problem is NP-complete.

It is interesting to study the Matrix Skew-Symmetrization Problem within hereditary
classes of orgraphs, in particular for D-free orgraphs.

4 Skew transposability

We write A → B if a matrix A can be transformed to a matrix B with row and column
permutations. Here we consider the following problem which is related to skew symmetriz-
ability. A square matrix A is skew-transposable if A → −AT , where AT is the transpose of
A.

Decision Problem 3 (Skew Transposability Problem).
Instance: A square {0, 1,−1} matrix A.
Question: Is A a skew-transposable matrix?
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Here is a relation between the two problems.

Proposition 1. Every skew-symmetrizable matrix A is skew-transposable.

Proof. By the definition of skew-symmetrizability, there exists a permutation matrix P such
that PA is skew-symmetric, that is PA = −(PA)T = −ATP T . To show that A → −AT ,
we apply P to the columns of PA: PAP = −ATP TP = −AT , meaning that A skew-
transposable.

If we represent a square {0, 1,−1} matrix A as a directed bigraph B = (X, Y,A), then
the matrix −AT produces the reversed directed bigraph B′ = (Y,X,A). For example, let

A =

 1 0 −1
0 1 1
−1 0 0

 .

We have

−AT =

−1 0 1
0 −1 0
1 −1 0

 .

The corresponding directed bigraphs B and B′ are shown in Figure 7.
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Figure 7: The directed bigraphs B and B′.

Now we clarify the complexity of Decision Problem 3.

Proposition 2. The Skew Transposability Problem is polynomial-time equivalent to graph
isomorphism.

Proof. The Skew Transposability Problem is equivalent to checking whether B and B′ are
isomorphic, which a particular case of graph isomorphism. Conversely, suppose we want
to check isomorphism of graphs G and H. We represent G as a a directed bigraph BG =
(XG, YG, AG), where XG = V (G), YG = E(G), and every edge e = uv ∈ E(G) produces
two arcs (u, e) and (v, e) in B. A similar bigraph BH = (XH , YH , AH) is defined for H, and
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B′H = (Y ′H , X
′
H , A

′
H) is obtained by reversing of BH . Let B is disjoint union of BG and B′H .

Accordingly, B′ is disjoint union of B′G and BH . Assuming that both G and H do not have
isolated vertices, G and H are isomorphic if and only if B and B′ are.

5 Digraph realizations within hereditary classes

Fomin, Kratochv́ıl, Lokshtanov, Mancini, and Telle [15] studied the Open Neighborhood
Realization Problem within hereditary classes.

Definition 3. Let P be hereditary class of graphs. A P-realization of a hypergraph H is a
graph G ∈ P such that N (G) = H. If P is defined by a unique minimal forbidden induced
subgraph H, then a P-realization is called an H-free realization of H.

Definition 3 is extended to digraphs in a straightforward way.
A star-like graph consists of k ≥ 1 paths Qi = (u0, ui1, ui2, . . . , uidi

), i = 1, 2, . . . , k,
having a common vertex u0. Here di ≥ 0 for i = 1, 2, . . . , k. An example of a star-like graph
with k = 3, d1 = 3, d2 = 4, and d3 = 2 is shown in Figure 8.

u
u

u

u
u
u
u
u u u

�
�
�
�
�
�
�
�
�
PPPPPPPPP

Q1

Q2

Q3

u0

u11

u12

u13

u21

u22

u23

u24

u31

u31

Figure 8: An example of a star-like graph.

If every connected component of a graph G is star-like, then G is called an S-graph.
Fomin, Kratochv́ıl, Lokshtanov, Mancini, and Telle [15] proved the following result in the
complementary form (for closed neighborhood hypergraphs).

Theorem 3. If H is not an S-graph, then it is NP-hard to decide whether a given hypergraph
has an H-free realization.
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Theorem 3 can be easily extended to P-realizations, where P is a hereditary class with
a finite set Z(P) of minimal forbidden induced subgraphs.

Theorem 4. If Z(P) is a finite set and it does not contain an S-graph, then it is NP-hard
to decide whether a given hypergraph has a P-realization.

If H is an S-graph, then complexity of the H-free realization problem is unknown, except
the following polynomial-time solvable cases: H ∈ {P 1, P 2, P 3, P 4, C3, C4}, where Pk and
Ck are the path and the cycle with k vertices, and G is the complement of G, see Fomin,
Kratochv́ıl, Lokshtanov, Mancini, and Telle [15].

We are going to extend Theorem 3 and Theorem 4 to digraphs.
A star-like digraph of type 1 is obtained from a star-like graph G if we replace every edge

uv ∈ E(G) by the corresponding pair (u, v), (v, u) of opposite arcs. A star-like digraph of
type 2 consists of k ≥ 1 directed paths

Qi = (u0, ui1, ui2, . . . , uidi
),

i = 1, 2, . . . , k, having a common vertex u0, and of l ≥ 0 directed paths

Rj = (vj1, vj2, . . . , vjej
, u0),

j = 1, 2, . . . , l, having a common vertex u0. Here di ≥ 0 and ej ≥ 0 for all i and j. An
example of a star-like graph with k = 3, d1 = 3, d2 = 4, d3 = 2, l = 2, e1 = 3 and e2 = 2 is
shown in Figure 9.

If every weakly connected component of a digraph D is a star-like digraph of type i, then
D is called an Si-digraph, i = 1, 2.

Theorem 5. If a digraph D has at least one arc, then it is NP-hard to decide whether a
given dihypergraph H has a D-free realization.

Proof. First we apply Theorem 3 to a symmetric dihypergraph H, that is a− = a+ for every
hyperarc (a−, a+) of H.

Property 1. If D is not an S1-digraph, then it is NP-hard to decide whether a symmetric
dihypergraph H has a D-free realization.

Proof. A digraph is symmetric if (u, v) is an arc if and only if (v, u) is an arc. Essentially,
a symmetric digraph is an undirected graph. Clearly, every realization of a symmetric
dihypergraph is a symmetric digraph, and Theorem 3 implies the result, since D is not an
S1-digraph.

Now we consider S2-digraphs.
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Figure 9: An example of a star-like digraph of type 2.

Property 2. If D is not an S2-digraph, then it is NP-hard to decide whether a given directed
hypergraph has a D-free realization.

Proof. We modify the proof of Theorem 2 in the following way. Instead of a directed 6-cycle
Ce for an edge e = xy as in (1), we introduce a (4t+ 2)-cycle Ce

Ce = (x = xe
1, y

e
1, x

e
2, y

e
2, . . . , x

e
t , y = ye

t , . . . , x
e
2t+1, y

e
2t+1) (2)

for a fixed t ≥ 1. The resulting dihypergraph and directed bigraph are denoted by H ′ and
B′, respectively. We shall specify t so that every realization of H ′ does not contain the
forbidden induced subdigraph D. Let t1 be the minimum length of a cycle (not necessarily
directed) in D. If D is acyclic then t1 =∞. A knot vertex of D is a vertex u such that either

• |N−(u)|+ |N+(u)| ≥ 3, or

• |N−(u)| = 2, or

• |N+(u)| = 2.

Let t2 be the minimum length of a path (not necessarily directed) in D that connects two
knot vertices in D. If D does not have such paths, then t2 =∞. At least one of t1 and t2 is
finite, since D is not an S2-digraph. It is sufficient to take t = min{t1, t2}.
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Property 1 and Property 2 show that the problem is NP-hard unless D is both an S1-
digraph and an S2-digraph. But it is possible only if D does not have arcs.

Let On be an arcless digraph of order n.

Open Problem 1. How hard is to decide whether a given directed hypergraph has an On-free
realization, n ≥ 3?

For n ≤ 2, the problem is trivially polynomial-time solvable.

6 Matrix complementation

Here we consider another interesting problem related to 0− 1 matrices. Let A = (aij) be an
m× n matrix with aij ∈ {0, 1}, i = 1, 2, . . . ,m and j = 1, 2, . . . , n. The complement of A is
the matrix A = (aij) defined by: aij = −aij for all i and j. Recall that A → B means that
a matrix A can be transformed to a matrix B with row and column permutations.

Decision Problem 4 (Matrix Complementation Problem).
Instance: A 0− 1 matrix A.
Question: Does A→ A hold?

As an example, consider the matrix

A =

(
1 0 1
0 0 1

)
.

Permuting row 1 and row 2, we obtain (
0 0 1
1 0 1

)
.

Now, permutation of column 2 and column 3 gives(
0 1 0
1 1 0

)
= A,

therefore A→ A.
We show that the Matrix Complementation Problem is polynomial-time equivalent to

graph isomorphism. One can mention a related result of McCarthy and McKay [20] which
says that the problem A→ AT , where A is a square 0− 1 matrix A and AT is the transpose
of A, is also polynomial-time equivalent to graph isomorphism.



– 13 –

An obvious necessary condition for A→ A is that A0 = A1, where Ak denotes the total
number of entries aij = k in A. However, this condition is not sufficient. For example, it is
impossible to get A from the matrix

A =


1 0 0
1 0 0
1 1 0
0 1 1

 ,

where A0 = A1 = 6. Indeed, permuting columns of A, one can obtain the following six
matrices:

1 0 0
1 0 0
1 1 0
0 1 1

 ,


1 0 0
1 0 0
1 0 1
0 1 1

 ,


0 1 0
0 1 0
1 1 0
1 0 1

 ,


0 1 0
0 1 0
0 1 1
1 0 1

 ,


0 0 1
0 0 1
1 0 1
1 1 0

 ,


0 0 1
0 0 1
0 1 1
1 1 0

 ,

and, unlike A, no one of them has two rows (011). Thus, A→ A does not hold.

Theorem 6. The Matrix Complementation Problem and the Graph Isomorphism Problem
are polynomial-time equivalent.

Proof. First we represent A and A as bigraphs B = (X, Y,E) and B′ = (X ′, Y ′, E ′), re-
spectively. The bigraphs B and B′ are isomorphic if there are bijections α : X ↔ X ′

and β : Y ↔ Y ′ such that (i, j) ∈ E if and only if (α(i), β(j)) ∈ E ′. The corresponding
recognition problem is called Bigraph Isomorphism.

Fact 1. A→ A holds if and only if the bigraphs B and B′ are isomorphic.

Proof. Indeed, a permutation α of rows and a permutation β of columns is nothing but an
isomorphism of corresponding bigraphs.

The bi-complement of B is the bigraph B = (X, Y,E), where

E = {xy : x ∈ X, y ∈ Y, xy 6∈ E}.

Clearly, B′ is isomorphic to B. A bigraph is self-bi-complementary if B and B are isomorphic,
see Bhave and Raghunathan [6]. In this terminology, Fact 1 says that A→ A holds if and only
if B is a self-bi-complementary bigraph. Recognition of self-bi-complementary bigraphs is a
particular case of the Bigraph Isomorphism Problem, therefore the Matrix Complementation
Problem is not harder than graph isomorphism.

Fact 2. The Graph Isomorphism Problem is polynomial-time reducible to recognition of
self-bi-complementary bigraphs.
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Proof. Let G and H be an instance to the Graph Isomorphism Problem. Without loss of
generality, we may assume that |V (G)| = |V (H)| = n, |E(G)| = |E(H)| = m (otherwise G
and H are not isomorphic) and both G and H do not have isolated vertices (otherwise we
add a dominating vertex to each of them obtaining an equivalent instance).

We subdivide every edge of G and H with a new vertex, and denote the resulting graphs
by G′ and H ′, respectively. G′ can be considered as a bigraph having V (G) as its X-part
(old vertices) and the set of |E(G)| new vertices as its X-part. Similar situation takes place
for H ′. Now we use the graphs G′ and H ′ to construct a bigraph B = (X, Y,E) such that
G ∼= H if and only if B is self-bi-complementary. For that, we take disjoint copies of G′ and
H ′ [the bi-complement of H], and introduce all edges between the X-part of G′ and and the
Y -part of H ′. Figure 10 illustrates the construction.

G′

old vertices (n)

new vertices (m)

H ′

old vertices (n)

new vertices (m)
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@
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@
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Figure 10: The construction of B.

The bi-complement B of B is shown in Figure 11, where G′ and H ′ are the bi-complements
of G′ and H ′, respectively, and all edges between the X-part H ′ of and the Y -part of G′ are
included.

G′

old vertices (n)

new vertices (m)

H ′

old vertices (n)

new vertices (m)
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Figure 11: The bi-complement B of B.
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If we have an isomorphism φ : V (G) → V (H), then we can obviously extend φ to
isomorphisms of G′ and H ′, and H ′ and G′. In turn, they induce an isomorphism of the
bigraphs B and B.

Conversely, let α, β be an isomorphism of B and B. The assumptions imply that degBu ≥
m + 1 > degBv for all old vertices u, v of G′. It shows that α transforms the old vertices of
G′ to the old vertices of H ′. Similarly, degBu = 2 < n + 2 ≤ degBv for all new vertices u, v
of G′. Hence β transforms the new vertices of G′ to the new vertices of H ′. As a result, we
obtain an isomorphism of G′ and H ′ which induces an isomorphism of G and H.

Now the result follows from Fact 1 and Fact 2.

Fact 2 is similar to a known result of Colbourn and Colbourn [14, 12] that recognizing
whether a graph is self-complementary is polynomially equivalent to the graph isomorphism
problem. The Matrix Complementation Problem can be viewed as a particular case of the
following Matrix Negation Problem (if we replace 0 by −1): Given a matrix A over a set of
integers, whether A → −A. It is not hard to show that the Matrix Negation Problem is
polynomial-time equivalent to graph isomorphism.

7 Tournament realizations and anti-symmetrization

A tournament is an orientation of a complete undirected graph. Decision Problem 1 for
tournaments is trivial. However, Aigner and Triesch [2] proposed an interesting variant of the
problem. Given a digraph D = (V,A), define the (+)-neighborhood hypergraph, H = N+(D),
by V (H) = V and E(H) = {N+(u) : u ∈ V }.

Decision Problem 5 (Digraph (+)-Realization Problem).
Instance: A hypergraph H.
Question: Does H = N+(D) hold for some digraph D?

This problem is simple in general: Aigner and Triesch [2] noted that it is equivalent to
finding a perfect matching in a bipartite graph. But they were unable to solve Decision
Problem 5 for tournaments.

We represent a hypergraph H as an (undirected) bigraph B = (X, Y,E). The problem
is to find an involutory switching automorphism α such that x and α(x) are always non-
adjacent, and x ∈ X is adjacent to α(x′) ∈ Y if and only if the vertices x′ ∈ X and α(x) ∈ Y
are non-adjacent. Illustrations for the oriented triple and the transitive triple are given in
Figure 12 and Figure 13, respectively.

To a bigraph B = (X, Y,E) we can associate its X-Y -adjacency matrix A(B) = (aij) ∈
{0, 1}X×Y defined by aij = 1 if and only if (i, j) ∈ E. Conversely, any 0− 1 matrix A = (aij)
can be viewed as the X-Y adjacency matrix A = A(B) of a corresponding bigraph B =
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Figure 12: An illustration for the oriented triple.
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Figure 13: An illustration for the transitive triple.

(X, Y,E), where X is the set of row indices of A, Y is the set of column indices of A, and
(i, j) ∈ E if and only if aij = 1. Here are the adjacency matrices of the bigraphs of Figure 12
and Figure 13, respectively: 0 1 0

0 0 1
1 0 0

 and

0 1 1
0 0 1
0 0 0

 .

Now we reformulate the problem in terms of square 0− 1 matrices as follows. Does a given
0 − 1 square matrix A admits a permutation of rows such that the resulting matrix B has
the properties:

(all-0 diagonal) bii = 0 for all i, and

(anti-symmetry) bij 6= bji for all i 6= j?

It is called the Matrix Anti-Symmetrization Problem.

Conjecture 1. The Matrix Anti-Symmetrization Problem is NP-hard.
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[16] F. Lalonde, Le problème d’étoiles pour graphes bouclés est NP-complet, Reserch Report
No. 79-2 (Dept. of Mathematics and Statistics, University of Montreal, 1979) (in French)
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