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ABSTRACT

In this paper we introduce a new parallel variant of the LLL lattice basis reduction algorithm.
Lattice theory and in particular lattice basis reduction continues to play an integral role in cryptog-
raphy. Not only does it provide effective cryptanalysis tools but it is also believed to bring about
new cryptographic primitives that exhibit strong securityeven in the presence of quantum comput-
ers. In theory, many aspects of lattices are already well-understood. Yet, many practical aspects,
like the performance of lattice basis reduction algorithms, are still under investigation.

In this paper, we introduce a new parallel lattice basis reduction algorithm that overcomes short-
comings of previously introduced algorithms. First and foremost, our new algorithm is based on
the Schnorr-Euchner algorithm and as such is the first—to thebest of our knowledge—to provide a
parallel implementation for the Schnorr-Euchner algorithm. Second, using POSIX threads allows
us to make effective use of today’s multi-processor, multi-core computer architecture. Developing
in a shared memory setting allows us to replace time consuming inter-process communication with
synchronization points (barriers) and locks (mutexes). Our implementation of the parallel LLL is
optimized for reducing high dimensional lattice bases withbig entries that would require a multi-
precision floating-point arithmetic to approximate the lattice basis if the original Schnorr-Euchner
algorithm was used for the reduction. The reduction of theselattice bases is of great interest, e.g.,
for cryptanalyzing RSA. In experiments with sparse and dense lattice bases, experiments with our
new parallel LLL show (compared to the non-parallel algorithm) a speed-up factor of about 1.75
for the 2-thread and close to factor 3 for the 4-thread version. The overhead of the parallel LLL
decreases with increasing dimension of the lattice basis toless than 10% for the 2-thread and less
than 15% for the 4-thread version.



1 Introduction

Lattice theory and in particular lattice basis reduction isof great importance in cryptography. Not
only does it provide effective cryptanalysis tools but it isalso believed to bring about new crypto-
graphic primitives that exhibit strong security even in thepresence of quantum computers [24, 31].
In theory, many aspects of lattices are already well-understood. On the other hand many practical
aspects, like the performance of lattice basis reduction algorithms, are still under investigation.

Lattice basis reduction algorithms try to find agoodbasis, i.e., a basis representing the lattice
where the base vectors are not only as orthogonal as possibleto each other, but also as short as
possible. The LLL algorithm introduced by Lenstra, Lenstraand Lovász in [20] was the first
algorithm to allow an efficient computation of a fairly well-reduced lattice basis in theory but
suffered from stability and performance issues in practice. In [32], Schnorr and Euchner introduced
an efficient variant of the LLL algorithm, which could efficiently be used in practice, e.g., in
cryptanalysis [32, 28, 29]. Since then, the main focus of research has been on improving the
performance and stability of the algorithms (e.g., [11, 17,18, 25, 26]). However, little to no
progress has been made in the last few years with respect to parallel lattice basis reduction and
making effective use of parallelization in practice. Thereare two main lines of previous work
on parallel lattice basis reduction. The first was mainly based on the original LLL algorithm
[35, 21, 15, 16, 36, 37]. Consequently, these solutions suffer from similar shortcomings in terms
of stability and performance in practice as the original LLLalgorithm. The second line of work
is focused on vector computers [14, 13, 12, 38], an architecture which is quite different from
mainstream compute servers.

In this paper, we present a new parallel LLL algorithm that overcomes both of these shortcomings.
First and foremost, our new algorithm is based on the Schnorr-Euchner algorithm and as such is the
first—to the best of our knowledge—to provide a parallel implementation for the Schnorr-Euchner
algorithm. Second, using POSIX threads [6, 34] allows us to make effective use of today’s multi-
processor, multi-core computer architecture. Developingin a shared memory setting allows us to
replace time consuming inter-process communication with synchronization points (barriers) and
locks (mutexes). Our implementation of the parallel LLL is optimized for reducing high dimen-
sional lattice bases with big entries that would require a multi-precision floating-point arithmetic to
approximate the lattice basis if the original Schnorr-Euchner algorithm was used for the reduction.
The reduction of these lattice bases is of great interest, e.g., for cryptanalyzing RSA [22, 23, 5, 4].
In experiments with sparse and dense lattice bases, experiments with our new parallel LLL show
(compared to the non-parallel algorithm) a speed-up factorof about 1.75 for the 2-thread and close
to factor 3 for the 4-thread version. The overhead of the parallel LLL decreases with increasing
dimension of the lattice basis to less than 10% for the 2-thread and less than 15% for the 4-thread
version.

Outline: Section 2 provides the definitions and notations used in the remainder of the paper and
introduces the Schnorr-Euchner algorithm. The main contributions of this paper are in Section 3.
It describes our new algorithm, i.e., it shows in detail how the Schnorr-Euchner algorithm can be
parallelized by using threads with locks and barriers. Section 4 introduces knapsack and unimodu-
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lar lattice bases, discusses the parameters that control the parallel LLL reduction, and provides an
analysis of our experiments. The paper closes with a discussion on directions for future work.

2 Preliminaries

A lattice L⊂ R
n is an additive discrete subgroup ofR

n such thatL =
{

∑k
i=1xibi |xi ∈ Z,1≤ i ≤ k

}

with linear independent vectorsb1, . . . ,bk ∈ R
n (k ≤ n). B = (b1, . . . ,bk) ∈ R

n×k is the lattice
basisof L with dimensionk. A lattice may have an infinite number of bases. Different bases
B and B′ for the same latticeL can be transformed into each other by means of aunimodular
transformation, i.e.,B′ = BU with U ∈ Z

n×k and|detU | = 1. Typical unimodular transformations
are the exchange of two base vectors—referred to as swap—or the adding of an integral multiple
of one base vector to another one—generally referred to as translation. Thedeterminantdet(L) =

|det(BTB)| 1
2 of a lattice is an invariant. The Hadamard inequality det(L) ≤ ∏k

i=1‖bi‖ (where‖.‖
denotes the Euclidean length of a vector) gives an upper bound for the determinant of the lattice.
Equality holds ifB is an orthogonal basis. Theorthogonalization B∗ = (b∗1, . . . ,b

∗
k) of a lattice

basisB = (b1, . . . ,bk) ∈ R
n×k can be computed by means of the Gram-Schmidt method:b∗1 = b1,

b∗i = bi −∑i−1
j=1µi, jb

∗
j for 2 ≤ i ≤ k whereµi, j =

〈bi ,b
∗
j 〉

‖b∗j‖
for 1 ≤ j < i ≤ k and 〈., .〉 defines the

scalar product of two vectors. It is important to note that for a latticeL ⊂ R
n with basisB =

(b1, . . . ,bk)∈ R
n×k a vectorb∗i of the orthogonalizationB∗ = (b∗1, . . . ,b

∗
k) ∈R

n×k is not necessarily
in L. Furthermore, computing the orthogonalizationB∗ of a lattice basis using the Gram-Schmidt
method strongly depends on the order of the basis vector of the lattice basisB. The defectof

a lattice basisB = (b1, . . . ,bk) ∈ R
n×k defined as dft(B) = ∏n

i=1‖bi‖
det(L) allows one to compare the

quality of different bases. Generally, dft(B) ≥ 1 and dft(B) = 1 for an orthogonal basis. The
goal of lattice basis reduction is to determine a basis with as small a defect as possible. That is,
for a latticeL ⊂ R

n with basesB andB′ ∈ R
n×k, B′ is better reduced thanB if dft(B′) < dft(B).

The most well-known and most-widely used lattice basis reduction method is the LLL reduction
method [20]:

Definition 1 For a lattice L⊆Z
n with basis B= (b1, . . . ,bk)∈Z

n×k, corresponding Gram-Schmidt
orthogonalization B∗ = (b∗1, . . . ,b

∗
k)∈Z

n×k and coefficients µi, j (1≤ j < i ≤ k), the basis B is LLL-
reduced if (1)|µi, j | ≤ 1

2 with 1≤ j < i ≤ k and (2)‖b∗i +µi,i−1b∗i−1‖2 ≥ y‖b∗i−1‖2 for 1 < i ≤ k.

The reduction parametery may arbitrarily be chosen in
(1

4,1
)

. Condition (1) is generally re-
ferred to as size-reduction [7, 30]. The Schnorr-Euchner algorithm [32, 2] allows for an ef-
ficient computation of an LLL-reduced lattice basis in practice. By and large, Algorithm 1 is
the original Schnorr-Euchner algorithm. In order to make LLL reduction practical, the Schnorr-
Euchner algorithm uses floating-point approximations of vectors and the basis (APPROXBASIS
and APPROXVECTOR) in Lines(1) and (23) . For stability reasons, this in turn requires that
the Schnorr-Euchner algorithm includes suitable measuresin the form of correction steps (see [32]
for details). These corrections include either the computation of exact scalar products (Line(6) )
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as part of the Gram-Schmidt orthogonalization or a step-back (Line (29) ) due to a largeµi j used as
part of the size-reduction (Line(18) ). In order to prevent the corruption of the lattice, the Schnorr-
Euchner algorithm uses an exact data type is used to modify the actual lattice basis (Line(17) ).
(In Algorithm 1, p denotes the bit precision of the data type used to approximate the lattice basis.)

A modification for computing the Gram-Schmidt coefficients was introduced in [26] which was
shown to allow for an increased accuracy of the orthogonalization. As part of our work, we adapted
these modifications to the Schnorr-Euchner algorithm (Algorithm 1, Lines(3) - (13) ). A second
modification (originally introduced in [26]) is the checking of Condition (2) (Definition 1) followed
by possibly swapping the respective lattice basis vectors (Algorithm 1, Lines(34) - (46) ). We
introduced both modifications to increase the overall performance and stability of the original
Schnorr-Euchner algorithm.

Algorithm 1:

INPUT: Lattice basisB = (b1, . . . ,bk) ∈ Z
n×k

OUTPUT: LLL-reduced lattice basisB

(1) APPROXBASIS(B′,B)
(2) while (i ≤ k) do
(3) µii = 1, Rii = ‖b′i‖, S1 = Rii

(4) for (1≤ j < i) do
(5) if (|〈b′i ,b′j〉| < 2

p
2‖b′i‖‖b′j‖) then

(6) Ri j = APPROXVALUE(〈bi,b j〉)
(7) else
(8) Ri j = 〈b′i,b′j〉
(9) Ri j = Ri j −∑ j−1

m=1Rimµjm

(10) µi j =
Ri j

R j j

(11) Rii = Rii −Ri j µi j

(12) Sj+1 = Rii

(13) od
(14) for (i > j ≥ 1) do
(15) if (|µi, j | > 1

2) then
(16) Fr = true
(17) bi = bi −⌈µi j ⌋b j

(18) if (|µi j | > 2
p
2 ) then

(19) Fc = true
(20) for (1≤ m≤ j) do
(21) µim = µim−⌈µi j ⌋µjm

(22) fi
(23) od

(24) if (Fr = true) then
(25) APPROXVECTOR(b′i,bi)
(26) if (Fc = false∧ Fr = true) then
(27) RECOMPUTERij ()

1

(28) Fr = false
(29) if (Fc = true) then
(30) i = max(i −1,2)
(31) Fc = false
(32) else
(33) i′ = i
(34) while ((i > 1) ∧ (yRi−1,i−1 > Si−1)) do
(35) bi ↔ bi−1

(36) SWAP(bi ,bi−1)
(37) SWAP(b′i ,b

′
i−1)

(38) i = i −1
(39) od
(40) if (i 6= i′) then
(41) if (i = 1) then
(42) R11 = ‖b′1‖
(43) i = 2
(44) fi
(45) else
(46) i = i +1
(47) od

1RECOMPUTERij in Line (27) performs the same operations to recomputeRi j as shown in Lines(3) - (13) .
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3 Parallel LLL Reduction using POSIX Threads

On a single computer system, programs can be parallelized byusing multiple processes or threads
[6, 34]. Threads can be viewed as a kind of lightweight or stripped-down process. The operating
system can easily switch between multiple threads within a process because these threads share
the same address space. Processes, on the other hand, do not share memory and therefore have
to communicate through shared files or communication channels. Thus, only a limited amount
of sharing between processes is practical. These characteristics make threads the optimal choice
for the parallelization of the LLL reduction algorithm due to the amount of data that has to be
shared in the course of the reduction process. In the following, our work is based on the use of
POSIX threads as they offer a standardized application programming interface (API) for many
different operating systems [6, 34]. We are using the two techniquesmutexandbarrier for the
synchronization of critical memory access in the threads. Amutex2 is a mutual-exclusion interface
that allows to ensure that only one thread at a time is accessing critical data by setting (locking)
the mutex on entering a critical code section and releasing (unlocking) it upon completion. A
thread cannot acquire a mutex that is locked (i.e., owned) byanother thread, but has to wait until
the owner of the mutex unlocks it. Barriers are used to ensurethat a number of threads that
cooperate on a parallel computation wait for each other at a specific point in the algorithm before
any of them is allowed to continue with further computations. These constructs seem to allow to
parallelize arbitrary code as long as enough barriers and mutexes are used. However, the excessive
use of barriers and mutexes has a negative effect on the overall running time. This is due to the
fact that the higher the number of mutexes and barriers, the higher is the probability of threads
running into situations where they have to wait for each other or wait for a mutex to be unlocked.
Consequently, it is crucial to minimize the use of these constructs. This directly implies the need
to identify as many independent (concurrent) code sequences as possible in order to allow for an
efficient parallelization.

Using barriers and mutexes allows us to implement a new parallel lattice basis reduction algorithm
which is well-suited for reducing bases of high dimensions and with large entries. This new par-
allel LLL is based on the Schnorr-Euchner algorithm (see Algorithm 1). The performance and
limitations of the Schnorr-Euchner algorithm are dependent on the data type used for the approx-
imation of the lattice basis. In case of machine-type doubles, the reduction algorithm performs
fairly well [32, 33, 37, 1, 2]. Previous experiments [2, 3] revealed a strong connection between
the number of exact scalar products, reduction steps, and the running time of the algorithm. The
reduction time is dominated by the operations using a long integer arithmetic. However, a major
drawback in using doubles for the approximation of the lattice basis is the limitation in terms of
dimension and bit length of lattice basis entries due to the fixed size of the double data type. One
can avoid these restrictions by using a less efficient multi-precision floating point arithmetic. The
reduction of lattice bases in high dimensions and entries ofhigh bit length (which requires the
use of a multi-precision floating point arithmetic for the approximation) are of interest in various
context, e.g., for certain attacks on RSA [22, 23, 5, 4]. Using a multi-precision floating-point arith-

2The word mutex is derived from mutually exclusive.
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metic to approximate the lattice basis changes the running time behavior of the Schnorr-Euchner
reduction algorithm dramatically. In this case, the operations on the approximate data type, e.g.,
in the Gram-Schmidt orthogonalization, are a major contributor to the overall running time of the
Schnorr-Euchner algorithm. Thus, the main challenge is to parallelize these computations despite
existing dependencies. Yet, operations on the exact data type (long integer arithmetic) are vector
operations that can be parallelize more easily [12, 15, 16, 21, 35].

In striving to parallelize the reduction process, the dependencies within the Schnorr-Euchner algo-
rithm (Algorithm 1) force us to keep the main structure of thealgorithm. That is, one iteration of
the main loop (Lines(2) - (47) ) will be performed at the time. Furthermore, the overall structure
of the main loop remains intact. It is possible to identify three main parts in the main loop, i.e, the
orthogonalization (Lines(3) - (13) ), the size-reduction (Lines(14) - (23) ), and the condition-
check part (Lines(34) - (46) ). The order of these parts and the computations in between cannot
be modified, i.e., in every iteration of the main loop, the computation of the orthogonalization has
to be completed before one can do to the size-reduction and finally the checking of second LLL
condition (Definition 1) after the size-reduction is finished. On the other hand, we show that the
computations within each part can be modified or rearranged and eventually can be parallelized
efficiently. The main contribution in this paper is in developing methods that allow to perform the
computations of each part in parallel. A major challenge of this approach is to find means that
balance computations well among all threads for all parallel parts in order to minimize the waiting
times at the barrier in between these parts. It is crucial to minimize the amount of computations that
cannot be parallelized, because they limit the maximum speed-up factor of the parallel algorithm
according to Amdahl’s law [6].

In our implementation of the parallel LLL, we were able to parallelize the orthogonalization and the
size-reduction part. We are computing the scalar products separately from the orthogonalization
to achieve a better overall balance. Unfortunately, the condition-check part cannot be parallelized.
However, this is not a major drawback due to the small amount of computations that have to be
performed in that part. In the following, we are detailing the concepts behind the parallelization of
each part including rearrangements and modifications of thenon-parallel computations these parts
are based on.

3.1 Scalar Product Part

The computation of scalar products and exact scalar products in the course of the orthogonaliza-
tion (Algorithm 1, Lines(3) - (13) ) does not depend on prior computations within an iteration
of the main loop. We therefore can divide the loop in Lines(4) - (13) into two loops, one that
first computes the scalar products (Lines(5) - (8) ) and a second that afterwards computes the
remainder of the orthogonalization (Lines(9) - (12) ). Thus, the computation of scalar products
can be parallelized separately from the remainder of the orthogonalization. The major challenge
in balancing the computation of scalar products is the need for computing exact scalar products
under certain conditions for stability reasons. This meansthat assigning each thread a distinct,
equal-sized segment of the iterations of the loop for the computation of the scalar products does
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not guarantee an equally distributed computation. Since there is no simple and efficient way to
find a suitable partitioning, we instead divide iterations of the loop for the computation of scalar
products and exact scalar products into small, distinct segments of sizessp. Every thread requests
a new segment as soon as it finishes the computation of its previous segment. This way, compu-
tationally intensive segments do not negatively impact theoverall balance. We are using a shared
segment position countersl that is protected by a mutex mechanism to assign every threada dis-
tinct segment. For each threadt as part of our parallel LLL algorithm the computation of scalar
products looks as follows.3

Scalar Product – Threadt

(1) s = startt , e = endt

(2) while (s≤ i) do
(3) if (e > i) then
(4) e = i
(5) for (s≤ j < e) do
(6) if (|〈b′i ,b′j〉| < 2

p
2‖b′i‖‖b′j‖) then

(7) Ri j = APPROXVALUE(〈bi ,b j〉)
(8) else
(9) Ri j = 〈bi′ ,b

′
j〉

(10) od
(11) MUTEX LOCK (l1)
(12) s = sl, sl = sl+ssp, e = sl
(13) MUTEX UNLOCK (l1)
(14) od

The locking mechanism (MUTEX LOCK andMUTEX UNLOCK ) is placed around the updates
for the segment position counter, which is always increasedby ssp to ensure that no two threads
are processing the same segment and therefore are accessingnon-overlapping entries in theR-
matrix. The initial segment for a thread is given bystartt andendt, and the starting value forsl is
determined by the maximum of theendt.

3.2 Orthogonalization Part

Given the parallel scalar product computation, Algorithm 3shows the remaining part of the or-
thogonalization. To increase the visibility of the dependency issues in the computation ofRi j ,

we replaced the sum∑ j−1
m=1Rimµjm of Line (9) in the Schnorr-Euchner algorithm with the appro-

priate loop that is used in practice. One can clearly see (Algorithm 3, Lines(2) - (3) ) that all
Rim (with 1≤ m< j) are needed before one can computeRi j . It is important to note that allµjm

(with 1≤ m< j) have already been computed. As is, the orthogonalization in Algorithm 3 is hard

3In outlining our multi-threaded programs, we distinguish between variables that are local for every thread and variables
that are shared among all threads. Local variables are highlighted by the use of a different font (e.g.,local vs. shared).
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Figure 1: Parallel (each shade of red represents one thread)and non-parallel (blue) computations
for main and helper threads

to parallelize. But a parallelized computation ofRi j is the key to successfully balance the work
among all threads. With Algorithm 4 we have developed a modification of Algorithm 3 that allows
to take advantage of the already computedµjm. Algorithm 4 introduces an additional valuer j to

help with the computation ofRi j . The final value ofr j is in fact ∑ j−1
m=1Rimµjm known from the

Schnorr-Euchner algorithm, but the value is computed in a different, more parallel-friendly fash-
ion. Intuitively speaking, instead of computing the sum horizontally like in the Schnorr-Euchner
algorithm, Algorithm 4 uses a vertical approach and updatesthe sum inr j in phases, which even-
tually allows for a parallelization of the computation ofr j .

Algorithm 3:

(1) for (1≤ j < i) do
(2) for (1≤ m< j) do
(3) Ri j = Ri j −Rimµjm

(4) µi j =
Ri j

R j j

(5) Rii = Rii −Ri j µi j

(6) Sj+1 = Rii

Algorithm 4:

(1) for (1≤ j < i) do
(2) for ( j ≤ l < i) do
(3) r l = r l +Ri, j−1µl , j−1

(4) Ri j = Ri j − r j

(5) µi j =
Ri j

R j j

(6) Rii = Rii −Ri j µi j

(7) Sj+1 = Rii

In the following, we are now using Algorithm 4 as starting point for describing our paralleliza-
tion of the orthogonalization. In particular, we detail ournew methods on how to compute ther j

(Algorithm 4, Lines(2) - (3) ) using multiple threads. A straight-forward approach to parallelize
Algorithm 4 would be to put barriers around the computation of r j and splitting up the iterations of
the inner loop (Algorithm 4, Lines(2) - (3) ) in between to be computed by all threads. The bar-
riers allow one of the threads to computeRi j , Rii , µi j andSj+1 correctly, while the others wait for
the next iteration of the outer loop (Algorithm 4, Lines(1) - (7) ) in the orthogonalization. How-
ever, the excessive use of barriers is a major drawback whichmakes this parallelization attempt
unusable in practice. Figure 1 shows the intuition for our new approach for the parallelization
of the orthogonalization. A main (or control) thread computes the necessary non-parallelizable
computations (blue) first, and then distributes the parallel computations (shades of red) among all
threads. Obviously, the size of the parallel part depends onthe size of the non-parallel part, and it
is crucial to find an optimal balance the two. Increasing the non-parallel part decreases the number
of barriers. However, at a certain point this may also decrease the workload per thread.
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Orthogonalization – Thread1 (main)

(1) j = 0
(2) while (j < i) do
(3) s = j, m = 0
(4) while (m < so∧ j < i) do
(5) for (s≤ l < j) do
(6) r j = r j −Ril µjl

(7) Ri j = Ri j − r j

(8) µi j =
Ri j

R j j

(9) Rii = Rii −Ri j µi j

(10) Sj+1 = Rii

(11) m = m+1, j = j+1
(12) od
(13) COMPUTESPLIT VALUES1(split)
(14) BARRIER WAIT (b1)

(15) for (j≤ l< split1) do
(16) for (s ≤ m < j) do
(17) r l = r l −Rimµlm

(18) od

Orthogonalization – Threadt

(1) e = 0
(2) while (e < i) do
(3) s = e, e = e+so

(4) if (e > i) then
(5) e = i
(6) BARRIER WAIT (b1)
(7) for (splitt ≤ l< splitt+1) do
(8) for (s ≤ m < e) do
(9) r l = r l −Rimµlm

(10) od

In every iteration of the loop in Lines(4) - (12) , the main thread computes only a small segment
of sizeso of the orthogonalization. The size of this segment determines the number of barriers
(functionBARRIER WAIT ) and the amount of work that can be computed in parallel (Thread1,
Lines(15) - (17) and Threadt , Lines(7) - (9) ) in each iteration. Further details on the parameter
choices and their effect on the computational balance are discussed in Section 4.2. Compared to
the straight-forward parallelization idea, our new approach now uses one instead of two barriers
for each iteration of the outer loops (Thread1, Lines (2) - (18) and Threadt , Lines (2) - (10) ).
Computing small segments of the orthogonalization significantly reduces the number of iterations
of the outer loops and number of barriers needed for the orthogonalization. It is important to note
that although not explicitly mentioned here in this paper (to improve readability), we have imple-
mented measures to ensure that variables are not unintentionally overwritten by the subsequent
loop iterations. The function COMPUTESPLIT VALUES1 computes thesplitt values that are re-
sponsible for balancing the parallel computation ofr l among all threads. In addition, the splitting
has to ensure that the main thread computes the necessaryr l for the next iteration of its outer loop.
The splitting among all threads is not necessarily even.

3.3 Size-Reduction Part

In the non-parallel version of the Schnorr-Euchner algorithm, the size-reduction (Algorithm 5)
also contains a part that updates theµ-coefficients. Due to the fact that the actual operations
on the exact and approximate lattice basis are simple to parallelize, our parallelization computes
the µ-update separately. Consequently, Algorithm 6 has two parts, theµ-update (Lines(1) -
(8) ) and lattice basis update (Lines(9) - (13) ). Our solution furthermore introduces an addi-
tional array f to store theµi j values that are necessary for the update of the lattice basis. For
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the first part of Algorithm 6, we adopt a similar strategy to the one used for the orthogonal-
ization (Section 3.2). In contrast to the orthogonalization, we do not need to modify the loop
(Algorithm 6, Lines (7) - (8) ) that updates theµ-coefficients in order to parallelize it. The
dedicated main thread, like in the orthogonalization part,updates only small segments of size
sµ of the µim. In addition, it performs the computations that cannot be done in parallel (Algo-
rithm 6, Lines(2) - (6) ) and distributes the computation among all threads for the parallel parts
(Thread1, Lines(21) - (25) and Threadt , Lines(4) - (8) ).

Algorithm 5:

(1) for (i > j ≥ 1) do
(2) if (|µi, j | > 1

2) then
(3) Fr = true
(4) bi = bi −⌈µi j ⌋b j

(5) if (|µi j | > 2
p
2 ) then

(6) Fc = true
(7) for (1≤ m≤ j) do
(8) µim = µim−⌈µi j ⌋µjm

(9) if (Fr = true) then
(10) APPROXVECTOR(b′i ,bi)

Algorithm 6:

(1) for (i > j ≥ 1) do
(2) f j = µi j

(3) if (|µi j | > 1
2) then

(4) Fr = true
(5) if (|µi j | > 2

p
2 ) then

(6) Fc = true
(7) for (1≤ m≤ j) do
(8) µim = µim−⌈µi j ⌋µjm

(9) for (i > j ≥ 1) do
(10) if (| f j | > 1

2) then
(11) bi = bi −⌈ f j⌋b j

(12) if (Fr = true) then
(13) APPROXVECTOR(b′i,bi)

µ-Update – Thread1 (main)

(1) j = i −1, je = 0
(2) while ( j ≥ 1) do
(3) js = j, m = 0
(4) while (m < sµ∧ j≥ je) do
(5) for ( js ≥ l > j) do
(6) µi j = µi j −⌈ fl⌋µl j

(7) if (|µi j | > 1
2) then

(8) f j = µi j

(9) Fr = true
(10) if (|µi j | > 2

p
2 ) then

(11) Fc = true
(12) µi j = µi j −⌈µi j ⌋
(13) m= m+1
(14) else
(15) f j = 0
(16) j = j−1
(17) od
(18) jc = j

(19) COMPUTESPLIT VALUES2(split)
(20) BARRIER WAIT (b2)
(21) je = splitT
(22) for ( js ≥ m > j) do
(23) if ( fm 6= 0) then
(24) for (splitT ≤ l < splitT+1) do
(25) µil = µil −⌈ fm⌋µml

(26) od

µ-Update – Threadt

(1) j = i −1
(2) while (j≥ 1) do
(3) BARRIER WAIT (b2)
(4) j = jc
(5) for ( js ≥ m > jc) do
(6) if ( fm 6= 0) then
(7) for (splitt ≤ l < splitt+1) do
(8) µil = µil −⌈ fm⌋µml

(9) od
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The difference in computations for the main and helper thread compared to the orthogonalization
might require a different splitting. We therefore use the function COMPUTESPLIT VALUES2

to compute the split values. The check forfm 6= 0 (Thread1, Line (23) and Threadt , Line (6) )
ensures, that theµ coefficients are only updated if the corresponding|µi j | >

1
2. The second part

of Algorithm 6 (Lines (9) - (13) ), namely the actual size-reduction step or the update of the
exact and approximate lattice basis, can easily be computedin parallel. We only need to split up
every vector operation into equal sized parts. This way we can avoid dependencies that would
require the use of barriers or mutexes. In contrast to the scalar product part (Section 3.1) we do
not have to deal with a phenomenon like the unpredictable behavior of exact scalar products that
would suggest splitting up the vector operations into smaller segments. ForT being the number of
threads andn the dimension of a lattice basis vector, the implementationfor Threadt of the parallel
size-reduction for our parallel LLL looks as follows:

Size Reduction – Threadt

(1) if (Fr = true) then
(2) s = ⌈ (t−1)n

T ⌋, e = ⌈ tn
T ⌋

(3) for (i −1≥ j ≥ 1) do
(4) if (| f j | > 1

2) then
(5) for (s≤ l≤ e) do
(6) bil = bil −⌈ f j⌋b jl

(7) for (s≤ l≤ e) do
(8) b′il = APPROXVALUE(bil )
(9) Fr = false

4 Experiments

4.1 Lattice Bases

The experiments in this paper were performed using sparse and dense lattice bases in order to
show that our parallel (i.e., multi-threaded) LLL reduction algorithm performs and scales well on
different types of lattice bases. We have chosen a type of knapsack lattice [19, 9, 8, 27, 10] as
an example for sparse bases and unimodular lattices as representatives for dense bases. Previous
experiments [37, 2] showed that unimodular lattice bases are more difficult to reduce than knapsack
lattices given the same dimension and maximum length of the basis entries.

We are using lower and upper triangular matrices with determinant of 1 to generate unimodular
lattice bases. The entries in the diagonal are set to 1 while the lower (respectively upper part) of the
matrix is selected uniformly at random. Given a lower triangular matrixU and an upper triangular
matrixV, we generate the unimodular lattice bases for our tests asBu = V ·U . This construction
method has been chosen based on earlier experiments [2] to allow for testing of unimodular lattice
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bases in higher dimensions in a reasonable time frame. We generated 100 unimodular lattice bases
for each dimensionn ∈ [50,750] in steps of 50 and maximum bit lengthb = 1000. The entries
within the lower and upper triangular matrix have been chosen accordingly.

Knapsack lattices have been developed in the context of solving subset sum problems (see Defini-
tion 2 in the Appendix) [19, 9, 8, 27]. A typical knapsack lattice basis looks as follows:

Bk =

























2 0 · · · 0 0 1
0 2 · · · 0 0 1
...

...
. ..

...
...

...
0 0 · · · 2 0 1
0 0 · · · 0 2 1

a1W a2W · · · an−1W anW SW
0 0 · · · 0 0 −1
W W · · · W W n

2W

























For our experiments we have definedW = ⌈√n⌉+ 1. The weightsa1, . . . ,an have been chosen,
uniformly at random4 from the interval(1,2b]. We refer tob as the maximum bit length of the
lattice basis entries. The sumS has been computed by adding up half of the weights that we
have selected at random. We generated and tested 100 knapsack lattices for each dimensionn ∈
[50,1000] in steps of 50 and maximum bit lengthb∈ {1000,2500}.

4.2 Parameters

In this section, we discuss the parameters introduced in Section 3 that are responsible for balanc-
ing computations among all threads. As discussed before, every part of the multi-threaded LLL
(Section 3) has to be balanced in order to minimize the waiting time at the barriers in between
two parallel parts. The number of iterations of the main loopin the multi-threaded LLL algo-
rithm would multiply these waiting times and therefore every major imbalance would decrease the
maximum speed-up factor.

The scalar product part (Section 3.1) introduces the parametersstartt andendt to minimize the
amount of mutexes by assigning each thread a fixed first segment of scalar products to be computed.
The most important parameter is the sizessp of the subsequent segment. Bigger segments would
decrease the number and therefore the overhead caused by locks. Smaller segments, on the other
hand, minimize the time needed for a single segment and therefore the waiting time which leads to a
more balanced computation. In the orthogonalization part we useso for the size of a segment in the
computation ofRi j . For smaller values ofso the increased number of barriers (i.e., synchronization
points) would impact the overall running time significantly. In experiments we also observed an
increase in the overall system time. Larger values, on the other hand, result in a bigger part of the
computation being computed by the main thread only which hasa negative impact on the scaling
or speed-up factor. The split values computed by COMPUTESPLIT VALUES1 play an important

4The weights have been chosen independent of the density of the corresponding subset sum problem
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role in the overall balancing of the computation. A slight imbalance in the partitioning could give
the main thread the extra time to already perform the additional computations for the next iteration
of the main loop. We take measures to ensure that the split values of the current iteration are not
overwritten in next iteration of the main thread. For theµ-update within the size-reduction part the
situation is similar to the orthogonalization part. The sizesµ of a segment ofµi j to be updated has
the same effect as the sizeso has on the orthogonalization. Nevertheless, the optimal value for sµ

might be different from the one forso due to the different amount of computations within the main
thread. The same argument applies to the split values computed by COMPUTESPLIT VALUES2.

We have determined suitable parameter choices by performing small-scale tests with the 2-thread
and the 4-thread version of our new parallel LLL algorithm. In our experiments, we usessp= so =
sµ = 16. For the split values (COMPUTESPLIT VALUES1 and COMPUTESPLIT VALUES2)
we confirmed that a slight imbalance is indeed beneficial. Forthe 2-thread case, the split-up is
47.5% for the main thread and 52.5% for the other thread. In the 4-thread version, we modified
the split-up to 22% for the main thread and 26% for each of the other threads.

4.3 Results

The experiments in this paper were performed on Sun X2200 servers with two dual core AMD
Opteron processors (2.2 GHz) and 4 GB of main memory using the Sun Solaris 10 OS. We com-
piled all programs with GCC 4.1.2 [39] using the same optimization flags. For our implementation
of the parallel and non-parallel LLL algorithm we used GMP 4.2.2 [40] with the AMD64 patch
[41] as long integer arithmetic and MPRF 2.3.1 [42] as multi-precision floating-point arithmetic for
the approximation of the lattice basis. The experiments were performed using MPFR with 128 bit
of precision. Based on our setup we conducted experiments with the non-parallel Schnorr-Euchner
algorithm (Algorithm 1) and the 2-thread and 4-thread version (Section 3) of our newly developed
implementation of the parallel LLL algorithm.

We usedgettimeofday to measure the actual time (real time) that the LLL algorithms needed
for the reduction. The functiongetrusage is used to determine how much processor time (user
time) and system time was necessary. For non-parallel (or single-threaded) applications, real time
is, depending on the system load, roughly the sum of user and system time. But in case of multi-
threaded applications,getrusage returns the sum of user and system time for all threads. We
therefore use real time for the single and multi-threaded LLL algorithm to determine the scaling
or speed-up factor for our new multi-threaded implementation. Comparing the sum of user and
system time for the single and multi-threaded LLL allows us to compute the necessary overhead
for the multi-threaded version.

Figure 2 shows the average running time (real time) per dimension for the non-parallel, the 2-
thread and 4-thread version of the LLL algorithm. We limitedour experiments for the unimodular
lattice bases to bases up to dimension 750 due to time constraints. It can be seen, that the threaded
versions of the algorithm lead to a significant decrease in terms of reduction time. The 4-thread
version is significantly faster than the 2-thread version. Figure 3 shows the average speed-up factor
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Figure 2: Reduction time (in minutes) for knapsack and unimodular lattice bases

per dimension for the new multi-threaded LLL compared to thenon-parallel variant. The speed-up
(i.e., scaling factor) is the quotient of the real time of thenon-parallel version and the real time of
the multi-threaded version. The speed-up factor increaseswith the dimension up to around 1.75 for
the 2-thread and close to factor 3 for the 4-thread version ofour new parallel LLL algorithm. It is
interesting to note that for the selected parameters the speed-up factor for unimodular lattice bases
increase faster than for knapsack lattices, and eventuallythey reach a similar maximum, as one
can clearly observe in the 2-thread case. The 2-thread version, as expected, reaches its maximum
earlier than the 4-thread version. Figure 4 shows the average overhead per dimension caused
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0 100 200 300 400 500 600 700 800 900 1000
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

dimension

ov
er

he
ad

 fa
ct

or

 

 
knapsack − 1000 bit − 2 threads
knapsack − 2500 bit − 2 threads
unimodular − 1000 bit − 2 threads
knapsack − 1000 bit − 4 threads
knapsack − 2500 bit − 4 threads
unimodular − 1000 bit − 4 threads

Figure 4: Overhead for multi-threaded LLL

by the new parallel LLL algorithm compared to the non-parallel Schnorr-Euchner algorithm. We
define the overhead as the quotient of the sum of user and system time of all threads to the sum of
user and system time for the non-parallel version. The overhead of the new parallel LLL decreases
with increasing dimension of the lattice basis to less than 10% for the 2-thread and less than 15%
for the 4-thread version.
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5 Conclusion and Future Work

In this paper we introduced a new parallel LLL reduction algorithm based on the Schnorr-Euchner
algorithm. We used POSIX threads to parallelize the reduction in a shared memory setting. In
our experiments we show that our new variant scales well and achieves a considerable decrease
in the running time of the LLL reduction by taking advantage of today’s computers multi-core,
multi-processor capabilities.

Future work includes finding heuristics for the selection ofthe parameters that control the balancing
among all threads. In addition, we plan to explore the possibility to parallelize the LLL Gram
using buffered transformations [3]. The structure and the required updates of the Gram matrix
pose the main challenge in parallelizing this algorithm. Weare also looking into the possibility of
developing a parallel LLL for the GPU of graphics cards.
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Appendix

Definition 2 (Subset Sum Problem) For given weights a1, . . . ,an ∈ N and the sum S∈ N find coef-
ficients x1, . . .xn ∈ {0,1} such that S= ∑n

i=1xiai.

Definition 3 The density of the subset sum problem is defined as d(a1, . . . ,an) = n
log(max{a1,...,an}) .

Remark 4. In [9, 8] an (n+ 1) dimensional lattice L(Bk) ⊂ Z
n+3 is used to solve subset sum

problems with density d(a1, . . . ,an) < 0.9408.


