DIMACS Technical Report 2008-12
November 2008

A Parallel LLL using POSIX Threads

by

Werner Backes Susanne Wetzel
Dept. of Computer Science Dept. of Computer Science
Stevens Institute of Technology Stevens Institute of Technology
Hoboken, New Jersey 07030 Hoboken, New Jersey 07030

Ipermanent Member

DIMACS is a collaborative project of Rutgers University,ireeton University, AT&T Labs—
Research, Bell Labs, NEC Laboratories America and Teleofdchnologies, as well as affiliate
members Avaya Labs, HP Labs, IBM Research, Microsoft Rebe&tevens Institute of Technol-
ogy, Georgia Institute of Technology and Rensselaer Pdytie Institute. DIMACS was founded
as an NSF Science and Technology Center.

ABSTRACT

In this paper we introduce a new parallel variant of the LLttit® basis reduction algorithm.
Lattice theory and in particular lattice basis reductiontawues to play an integral role in cryptog-
raphy. Not only does it provide effective cryptanalysislsdout it is also believed to bring about
new cryptographic primitives that exhibit strong secueten in the presence of quantum comput-
ers. In theory, many aspects of lattices are already welktstood. Yet, many practical aspects,
like the performance of lattice basis reduction algorithame still under investigation.

In this paper, we introduce a new parallel lattice basis ¢&dn algorithm that overcomes short-
comings of previously introduced algorithms. First andefapst, our new algorithm is based on
the Schnorr-Euchner algorithm and as such is the first—tbelseof our knowledge—to provide a
parallel implementation for the Schnorr-Euchner algonittSecond, using POSIX threads allows
us to make effective use of today’s multi-processor, nedtie computer architecture. Developing
in a shared memory setting allows us to replace time congyimiar-process communication with
synchronization points (barriers) and locks (mutexes). i@plementation of the parallel LLL is
optimized for reducing high dimensional lattice bases withentries that would require a multi-
precision floating-point arithmetic to approximate theit¢at basis if the original Schnorr-Euchner
algorithm was used for the reduction. The reduction of thasiee bases is of great interest, e.g.,
for cryptanalyzing RSA. In experiments with sparse and déasice bases, experiments with our
new parallel LLL show (compared to the non-parallel aldor) a speed-up factor of about7d

for the 2-thread and close to factor 3 for the 4-thread varsithe overhead of the parallel LLL
decreases with increasing dimension of the lattice badesgthan 10% for the 2-thread and less
than 15% for the 4-thread version.

1 Introduction

Lattice theory and in particular lattice basis reductionfigreat importance in cryptography. Not
only does it provide effective cryptanalysis tools but iaiso believed to bring about new crypto-
graphic primitives that exhibit strong security even in ginesence of quantum computers [24, 31].
In theory, many aspects of lattices are already well-uriddeds On the other hand many practical
aspects, like the performance of lattice basis reductigordhms, are still under investigation.

Lattice basis reduction algorithms try to findgaod basis, i.e., a basis representing the lattice
where the base vectors are not only as orthogonal as possibkch other, but also as short as
possible. The LLL algorithm introduced by Lenstra, Lensiral Lovasz in [20] was the first
algorithm to allow an efficient computation of a fairly we#duced lattice basis in theory but
suffered from stability and performance issues in practicg32], Schnorr and Euchner introduced
an efficient variant of the LLL algorithm, which could efficy be used in practice, e.g., in
cryptanalysis [32, 28, 29]. Since then, the main focus oéaesh has been on improving the
performance and stability of the algorithms (e.g., [11, 18, 25, 26]). However, little to no
progress has been made in the last few years with respectdbiebdattice basis reduction and
making effective use of parallelization in practice. Thare two main lines of previous work
on parallel lattice basis reduction. The first was mainlyellasn the original LLL algorithm
[35, 21, 15, 16, 36, 37]. Consequently, these solutionesfifbm similar shortcomings in terms
of stability and performance in practice as the original Lalgorithm. The second line of work
is focused on vector computers [14, 13, 12, 38], an architectvhich is quite different from
mainstream compute servers.

In this paper, we present a new parallel LLL algorithm thatroemes both of these shortcomings.
First and foremost, our new algorithm is based on the ScHiwachner algorithm and as such is the
first—to the best of our knowledge—to provide a parallel iempéntation for the Schnorr-Euchner
algorithm. Second, using POSIX threads [6, 34] allows us aereffective use of today’s multi-
processor, multi-core computer architecture. Developingshared memory setting allows us to
replace time consuming inter-process communication wjttclsronization points (barriers) and
locks (mutexes). Our implementation of the parallel LLL imized for reducing high dimen-
sional lattice bases with big entries that would require #irpuecision floating-point arithmetic to
approximate the lattice basis if the original Schnorr-Ehertalgorithm was used for the reduction.
The reduction of these lattice bases is of great interest,fer cryptanalyzing RSA [22, 23, 5, 4].
In experiments with sparse and dense lattice bases, exg@smwith our new parallel LLL show
(compared to the non-parallel algorithm) a speed-up faaftabout 175 for the 2-thread and close
to factor 3 for the 4-thread version. The overhead of thellghia L decreases with increasing
dimension of the lattice basis to less than 10% for the 2atthend less than 15% for the 4-thread
version.

Outline: Section 2 provides the definitions and notations used ingh@imder of the paper and

introduces the Schnorr-Euchner algorithm. The main coutions of this paper are in Section 3.
It describes our new algorithm, i.e., it shows in detail hbw Schnorr-Euchner algorithm can be
parallelized by using threads with locks and barriers. iSeet introduces knapsack and unimodu-

—_2_

lar lattice bases, discusses the parameters that congrphitallel LLL reduction, and provides an
analysis of our experiments. The paper closes with a dismuss directions for future work.

2 Preliminaries

A lattice L c R"is an additive discrete subgrouplf such that. = {3 ;x| € Z,1 <i <k}
with linear independent vectols, ...,b, € R" (k < n). B= (by,...,b) € R™K is thelattice
basisof L with dimensionk. A lattice may have an infinite number of bases. Differentelsas
B and B’ for the same latticd can be transformed into each other by means ahianodular
transformationi.e.,B’ = BU with U € Z"k and|detU | = 1. Typical unimodular transformations
are the exchange of two base vectors—referred to as swaphe-@dding of an integral multiple
of one base vector to another one—generally referred ta@aslation. TheleterminandetL) =

|de1(BTB)\% of a lattice is an invariant. The Hadamard inequality(dgt< <, ||| (where|. |
denotes the Euclidean length of a vector) gives an upperdfarthe determinant of the lattice.
Equality holds ifB is an orthogonal basis. Thmthogonalization B = (bj,...,by) of a lattice

basisB = (bq,...,by) € R"™K can be computed by means of the Gram-Schmidt methpék: b,

bf = b — 5\ jbj for 2 < i < k wherep j = % for 1< j<i<kand(.,.) defines the
=]

scalar product of two vectors. It is important to note thatddatticeL ¢ R" with basisB =
(by, ..., b) € R™Kavectory’ of the orthogonalizatioB* = (I, ..,b;) € R™Kis not necessarily
in L. Furthermore, computing the orthogonalizat®nof a lattice basis using the Gram-Schmidt
method strongly depends on the order of the basis vectoreofatiice basiB. The defectof

a lattice basi8 = (by,...,b,) € R"™K defined as dfB) = % allows one to compare the
quality of different bases. Generally, (% > 1 and dffB) = 1 for an orthogonal basis. The
goal of lattice basis reduction is to determine a basis wstBraall a defect as possible. That is,
for a latticeL R" with basesB andB' € R™K, B' is better reduced thaB if dft(B') < dft(B).
The most well-known and most-widely used lattice basis e¢édo method is the LLL reduction
method [20]:

Definition 1 For a lattice LC Z" with basis B= (by,...,b,) € Z™K, corresponding Gram-Schmidt
orthogonalization B= (bj,...,bg) € 7Z"Kand coefficientsiy (1< j <i <Kk), the basisBis LLL-
reduced if (1) j| < $with1 < j <i<kand (2)[|bf +W,i—10" 1]> > y||b 4|2 for 1< i <k.

The reduction parametgr may arbitrarily be chosen ir@%r,l). Condition (1) is generally re-
ferred to as size-reduction [7, 30]. The Schnorr-Euchngorghm [32, 2] allows for an ef-
ficient computation of an LLL-reduced lattice basis in pi@et By and large, Algorithm 1 is
the original Schnorr-Euchner algorithm. In order to make.lreduction practical, the Schnorr-
Euchner algorithm uses floating-point approximations @tees and the basis (APPROBASIS
and APPROXVECTOR) in Lines(1) and(23) . For stability reasons, this in turn requires that
the Schnorr-Euchner algorithm includes suitable measnitege form of correction steps (see [32]
for details). These corrections include either the compraf exact scalar products (Lir{€))

—-3-

as part of the Gram-Schmidt orthogonalization or a stefx-faae (29)) due to a largeyj used as
part of the size-reduction (Lin@8)). In order to prevent the corruption of the lattice, the Swinn
Euchner algorithm uses an exact data type is used to modifactual lattice basis (Lin@7)).
(In Algorithm 1, p denotes the bit precision of the data type used to approgithatlattice basis.)

A modification for computing the Gram-Schmidt coefficientasaintroduced in [26] which was
shown to allow for an increased accuracy of the orthogoatdin. As part of our work, we adapted
these modifications to the Schnorr-Euchner algorithm (Atgm 1, Lines(3) - (13)). A second
modification (originally introduced in [26]) is the checkinf Condition (2) (Definition 1) followed
by possibly swapping the respective lattice basis vectigofithm 1, Lines(34) - (46)). We
introduced both modifications to increase the overall peréce and stability of the original
Schnorr-Euchner algorithm.

Algorithm 1:
INPUT: Lattice basiB = (by,...,b,) € Z™K (24) if (F; = true) then
OuUTPUT: LLL-reduced lattice basiB (25) APPROXVECTOR(K, b))
(26) if (Fc =falseA F = true) then
(1) APPROXBASIS(B’,B) (27) RECOMPUTER;() !
(2) while (i <Kjdo (28) F =false
B Hi=1LRi=|bl, S =Ri (29) if (R, = true) then
(4) for(1<j<i)do (30) i = max(i —1,2)
(5) if (|0}, b})| < 2% f]| [l |)) then (31) F.=false
(6) Rj = APPROXVALUE ({b;,b;)) (32) else
(7) else (33) i =i
(8) Rij = <p{,t_3’j> (34) while ((i>1) A (YR_1j-1>S-1))do
(19) i = Ry §37§ SWA?B}’_}_lg
(11) Ri = Ri — Rij1ij 28 =0 1—"—'*1
(12) Si+1=Ri EBQ; Odl ==
(13) od o
(14) for (i>j>1)do gﬁ; if (|If7(é| '_)i*)“t?;en
(15) if (|,j| > 3) then his R_— b
(16) F — true (43) _ ilz_ (bl
a7 b =b — m:)jjbj §44§] i =
(18) if (Jij| > 22) then 45) else
(29) F. =true 46 i1
(20) for (L<m< j) do (47) . =i+
(21) Him = Him — [H4j] Hjm “7) o
(22) fi
(23) od

1RECOMPUTERij in Line (27) performs the same operations to recomiRjfeas shown in Line§3) - (13) .

—4—

3 Parallel LLL Reduction using POSIX Threads

On a single computer system, programs can be parallelizedibg multiple processes or threads
[6, 34]. Threads can be viewed as a kind of lightweight opged-down process. The operating
system can easily switch between multiple threads withinoggss because these threads share
the same address space. Processes, on the other hand, #@aneom&mory and therefore have
to communicate through shared files or communication cHanriéhus, only a limited amount
of sharing between processes is practical. These chasliciemake threads the optimal choice
for the parallelization of the LLL reduction algorithm due the amount of data that has to be
shared in the course of the reduction process. In the fatigwour work is based on the use of
POSIX threads as they offer a standardized applicationrpmagning interface (API) for many
different operating systems [6, 34]. We are using the twbnepesmutexandbarrier for the
synchronization of critical memory access in the threadsiAeX is a mutual-exclusion interface
that allows to ensure that only one thread at a time is acugssitical data by setting (locking)
the mutex on entering a critical code section and releasingp¢king) it upon completion. A
thread cannot acquire a mutex that is locked (i.e., owne@nmgher thread, but has to wait until
the owner of the mutex unlocks it. Barriers are used to entwea number of threads that
cooperate on a parallel computation wait for each other peaific point in the algorithm before
any of them is allowed to continue with further computatiombese constructs seem to allow to
parallelize arbitrary code as long as enough barriers artdxas are used. However, the excessive
use of barriers and mutexes has a negative effect on thellongraing time. This is due to the
fact that the higher the number of mutexes and barriers, itfieeh is the probability of threads
running into situations where they have to wait for each iotievait for a mutex to be unlocked.
Consequently, it is crucial to minimize the use of these tronts. This directly implies the need
to identify as many independent (concurrent) code seqeese@ossible in order to allow for an
efficient parallelization.

Using barriers and mutexes allows us to implement a newlpélattice basis reduction algorithm
which is well-suited for reducing bases of high dimensiond with large entries. This new par-
allel LLL is based on the Schnorr-Euchner algorithm (seeofithm 1). The performance and
limitations of the Schnorr-Euchner algorithm are depehderthe data type used for the approx-
imation of the lattice basis. In case of machine-type daktiee reduction algorithm performs
fairly well [32, 33, 37, 1, 2]. Previous experiments [2, 3}ealed a strong connection between
the number of exact scalar products, reduction steps, andutining time of the algorithm. The
reduction time is dominated by the operations using a loteger arithmetic. However, a major
drawback in using doubles for the approximation of thedatthasis is the limitation in terms of
dimension and bit length of lattice basis entries due to ttexlfsize of the double data type. One
can avoid these restrictions by using a less efficient npuécision floating point arithmetic. The
reduction of lattice bases in high dimensions and entriesigti bit length (which requires the
use of a multi-precision floating point arithmetic for thepagximation) are of interest in various
context, e.g., for certain attacks on RSA [22, 23, 5, 4]. gsimulti-precision floating-point arith-

2The word mutex is derived from mutually exclusive.

—-5—

metic to approximate the lattice basis changes the runimmg behavior of the Schnorr-Euchner
reduction algorithm dramatically. In this case, the operat on the approximate data type, e.g.,
in the Gram-Schmidt orthogonalization, are a major coantabto the overall running time of the
Schnorr-Euchner algorithm. Thus, the main challenge isatalfelize these computations despite
existing dependencies. Yet, operations on the exact dp&a(tgng integer arithmetic) are vector
operations that can be parallelize more easily [12, 15, 16332)].

In striving to parallelize the reduction process, the deleeicies within the Schnorr-Euchner algo-
rithm (Algorithm 1) force us to keep the main structure of #gorithm. That is, one iteration of
the main loop (Line$2) - (47)) will be performed at the time. Furthermore, the overalisture

of the main loop remains intact. It is possible to identifyethy main parts in the main loop, i.e, the
orthogonalization (Line§3) - (13)), the size-reduction (Lined4) - (23)), and the condition-
check part (Line$34) - (46)). The order of these parts and the computations in betweaamta
be modified, i.e., in every iteration of the main loop, the pomation of the orthogonalization has
to be completed before one can do to the size-reduction aalliyfthe checking of second LLL
condition (Definition 1) after the size-reduction is finisheOn the other hand, we show that the
computations within each part can be modified or rearrangeldeaentually can be parallelized
efficiently. The main contribution in this paper is in deyalty methods that allow to perform the
computations of each part in parallel. A major challengehts aipproach is to find means that
balance computations well among all threads for all pdrpHets in order to minimize the waiting
times at the barrier in between these parts. Itis crucialitomize the amount of computations that
cannot be parallelized, because they limit the maximumdspefactor of the parallel algorithm
according to Amdahl’s law [6].

In our implementation of the parallel LLL, we were able togdbelize the orthogonalization and the

size-reduction part. We are computing the scalar prodwgarately from the orthogonalization

to achieve a better overall balance. Unfortunately, thelitmm-check part cannot be parallelized.
However, this is not a major drawback due to the small amotinbmputations that have to be

performed in that part. In the following, we are detailing ttoncepts behind the parallelization of
each part including rearrangements and modifications afidimeparallel computations these parts
are based on.

3.1 Scalar Product Part

The computation of scalar products and exact scalar predud¢he course of the orthogonaliza-
tion (Algorithm 1, Lines(3) - (13)) does not depend on prior computations within an iteration
of the main loop. We therefore can divide the loop in Lif@s - (13) into two loops, one that
first computes the scalar products (Lin®8s - (8)) and a second that afterwards computes the
remainder of the orthogonalization (Lin€y - (12)). Thus, the computation of scalar products
can be parallelized separately from the remainder of thHeogdnalization. The major challenge
in balancing the computation of scalar products is the needdmputing exact scalar products
under certain conditions for stability reasons. This maaas assigning each thread a distinct,
equal-sized segment of the iterations of the loop for thepmdation of the scalar products does

—6—

not guarantee an equally distributed computation. Sineeetis no simple and efficient way to
find a suitable partitioning, we instead divide iteratiofsh® loop for the computation of scalar
products and exact scalar products into small, distinansegs of sizessp. Every thread requests
a new segment as soon as it finishes the computation of itfopgegsegment. This way, compu-
tationally intensive segments do not negatively impactowerall balance. We are using a shared
segment position countst that is protected by a mutex mechanism to assign every tlaekst
tinct segment. For each threaas part of our parallel LLL algorithm the computation of scal
products looks as follow3.

Scalar Product — Thread

(1) s=start,e=end
(2) while (s <i) do
(3) if (e>1i)then

4) e=I
(5) for(s<j<e)do
6) if (b, b)) < 2%||bf]| [l) then
@) Rj = APPROXVALUE ({b;,b;))
(8) else
9) Rj = (by,bj)

(10) od

(11) MUTEX _LOCK (l1)

(12) s =8l, sl=sl+ssp, e=sl
(13) MUTEX _UNLOCK (l1)
(14) od

The locking mechanismMUTEX _LOCK andMUTEX _UNLOCK)) is placed around the updates
for the segment position counter, which is always incredsesk, to ensure that no two threads
are processing the same segment and therefore are acceesHuyerlapping entries in thie-
matrix. The initial segment for a thread is givendtart andend, and the starting value fal is
determined by the maximum of tlead.

3.2 Orthogonalization Part

Given the parallel scalar product computation, Algorithral®ws the remaining part of the or-
thogonalization. To increase the visibility of the depemzieissues in the computation &;j,

we replaced the surﬁrln;l1 RimHjm of Line (9) in the Schnorr-Euchner algorithm with the appro-
priate loop that is used in practice. One can clearly seegi{tym 3, Lines(2) - (3)) that all
Rim (with 1 <m < j) are needed before one can compie It is important to note that afljm
(with 1 <m< j) have already been computed. As is, the orthogonalizatiddgorithm 3 is hard

3In outlining our multi-threaded programs, we distinguigitveen variables that are local for every thread and vasabl
that are shared among all threads. Local variables areipigad by the use of a different font (e.@igcal vs. shared.

Figure 1: Parallel (each shade of red represents one thaedd)on-parallel (blue) computations
for main and helper threads

to parallelize. But a parallelized computationRf is the key to successfully balance the work
among all threads. With Algorithm 4 we have developed a meatiton of Algorithm 3 that allows
to take advantage of the already computigel Algorithm 4 introduces an additional valugto

help with the computation dRjj. The final value ofrj is in factzr‘n_zl1 RimMjm known from the
Schnorr-Euchner algorithm, but the value is computed irfferéint, more parallel-friendly fash-
ion. Intuitively speaking, instead of computing the sumihanmtally like in the Schnorr-Euchner
algorithm, Algorithm 4 uses a vertical approach and updditesum irrj in phases, which even-
tually allows for a parallelization of the computationrgf

Algorithm 3: Algorithm 4:
(1) for (1< j<i)do (1) for (1< j<i)do
(2) for (1<m<j)do (2) for(j<Il<i)do
(€) Rij = Rj — RmMjm Q) n=n+Rj_1Hj1
@) Wi=gh 4) Rj=Rj-r
(5) Ri=Ri—RjH;j CYR] :RR|_ij
©) Si=Ri (6) Ri=Ri—Rju;
() Spa=Ri

In the following, we are now using Algorithm 4 as starting mdior describing our paralleliza-
tion of the orthogonalization. In particular, we detail suaw methods on how to compute the
(Algorithm 4, Lines(2) - (3)) using multiple threads. A straight-forward approach tcapelize
Algorithm 4 would be to put barriers around the computatibnj@nd splitting up the iterations of
the inner loop (Algorithm 4, Lineg) - (3)) in between to be computed by all threads. The bar-
riers allow one of the threads to compiRg, Rii, 1i; andSj1 correctly, while the others wait for
the next iteration of the outer loop (Algorithm 4, Lin@$ - (7)) in the orthogonalization. How-
ever, the excessive use of barriers is a major drawback whadkes this parallelization attempt
unusable in practice. Figure 1 shows the intuition for ouw g@proach for the parallelization
of the orthogonalization. A main (or control) thread congsuthe necessary non-parallelizable
computations (blue) first, and then distributes the pdretimputations (shades of red) among all
threads. Obviously, the size of the parallel part dependb@size of the non-parallel part, and it
is crucial to find an optimal balance the two. Increasing thre-parallel part decreases the number
of barriers. However, at a certain point this may also desa¢he workload per thread.

Orthogonalization — Thread; (main) (15) for (j <1 < splity) do
. (16) for (s <m< j)do

M) =0 (17) f =11 — Rmbim

(2) while (j <i)do (18) od

3) s=j,m=0

(4) while (m< A j<i)do Orthogonalization — Thread,

(5) for (s <1< j)do 1) 0

—r. Ry e =

(©) Rl (2) while (e < i) do

(7 Ru—E{J—rJ (3) s—e e—ois

®) Wi = Rj] 4) if (e > i) then

9) Ri = Ri — Rij Hj 5) o—i
(10 Su=Ri (6) BARRIER_WAIT (by)
(1) m=mntl j=j+1 (7) for (split, < 1 < split,, ;) do
(12) od _ (8) for (s <m < e)do
(13) COMPUTESPLIT_VALUES;(split)) f =1 — Rl
(14) BARRIER WAIT (by) (10) od mem

In every iteration of the loop in Line®) - (12) , the main thread computes only a small segment
of sizes, of the orthogonalization. The size of this segment deteesiitme number of barriers
(functionBARRIER _WAIT) and the amount of work that can be computed in parallel @dire
Lines(15) -(17) and Thread Lines(7) -(9)) in each iteration. Further details on the parameter
choices and their effect on the computational balance aa®udsed in Section 4.2. Compared to
the straight-forward parallelization idea, our new apploaow uses one instead of two barriers
for each iteration of the outer loops (Threadines(2) - (18) and Thread Lines(2) - (10)).
Computing small segments of the orthogonalization siggnifity reduces the number of iterations
of the outer loops and number of barriers needed for the gathalization. It is important to note
that although not explicitly mentioned here in this paperiifiprove readability), we have imple-
mented measures to ensure that variables are not unintalyi@verwritten by the subsequent
loop iterations. The function COMPUTEPLIT_-VALUES; computes theplit; values that are re-
sponsible for balancing the parallel computatiomcimong all threads. In addition, the splitting
has to ensure that the main thread computes the neces$aryhe next iteration of its outer loop.
The splitting among all threads is not necessarily even.

3.3 Size-Reduction Part

In the non-parallel version of the Schnorr-Euchner al@omit the size-reduction (Algorithm 5)
also contains a part that updates {lreoefficients. Due to the fact that the actual operations
on the exact and approximate lattice basis are simple tdi@lae, our parallelization computes
the p-update separately. Consequently, Algorithm 6 has twospdine p-update (Lineq1) -

(8)) and lattice basis update (Lin€% - (13)). Our solution furthermore introduces an addi-
tional array f to store they;; values that are necessary for the update of the lattice.b&sis

—9-—

the first part of Algorithm 6, we adopt a similar strategy te thne used for the orthogonal-
ization (Section 3.2). In contrast to the orthogonalizatiwe do not need to modify the loop
(Algorithm 6, Lines(7) - (8)) that updates th@-coefficients in order to parallelize it. The
dedicated main thread, like in the orthogonalization papates only small segments of size
s, of the yim. In addition, it performs the computations that cannot beedm parallel (Algo-
rithm 6, Lines(2) - (6)) and distributes the computation among all threads for #ralfel parts
(Thread, Lines(21) - (25) and Thread Lines(4) - (8)).

Algorithm 5: Algorithm 6:

(1) for (i>j>1)do (1) for (i>j>1)do
(2) if (Ju,j| > 3) then (2 fj=u;
() F = true () if (uj| > 3) then
(4) bi = b — [|bj 4) F = true
(5) if (|u;| > 2%) then (5) if (Ju;| > 22) then
(6) F. =true (6) Fc = true
7) for 1<m< j)do (7) for 1 <m< j)do
(8) Him = Him — [Hj | Hjm (8) Him = Him — [Hj | Hjm
(9) if (R =true) then (9) for (i>j>1)do

(10) APPROXVECTOR(HY,b;) (10) if (|fj| > 3) then

(11) bi=b—[fj]b;
(12) if (K =true) then
(13) APPROXVECTOR(K,b;)

p-Update — Thread (main) (19) COMPUTESPLIT.VALUES,(split)
@) §=i-1 =0 (20) BARRIER _WAIT (by)
J= "~ hle= (21) je=splitr
g; Whj"e_(lj 2m1)_d(§> 22) for (js>m> j)do
STl T e (23) if (fm# 0) then
E:_g Wr}g‘: f_“ W J_)Z djg) do (24) for (splity < 1 < splitr.1) do
© w T (25) i = [fo b
(7 it (W] > 1) then (26) od
Eg; lf:i - tp;b . u-Update — Thread
(10) if (|u;| > 22) then 1) j=i-1
(11) F. = true (2) while (j > 1)do
(12) i = by — 1) (3 BARRIER_WAIT (b)
(13) m=m+1 4 J=ic
(14) else (5) for (js>m> jc)do
(15) fi=0 (6) if (fm £ 0) then
(16) j=j—1 (7) for (split, <1 < split,, ;) do
(17) od (8) M = M — [fm] Hmi

(18) je=1 (9) od

—-10-

The difference in computations for the main and helper thezanpared to the orthogonalization
might require a different splitting. We therefore use thection COMPUTESPLIT_VALUES>

to compute the split values. The check figy # O (Thread, Line (23) and Thread Line (6))
ensures, that thg coefficients are only updated if the correspondipg| > % The second part
of Algorithm 6 (Lines(9) - (13)), namely the actual size-reduction step or the update of the
exact and approximate lattice basis, can easily be compuigarallel. We only need to split up
every vector operation into equal sized parts. This way weaseid dependencies that would
require the use of barriers or mutexes. In contrast to thieuspeoduct part (Section 3.1) we do
not have to deal with a phenomenon like the unpredictablebehof exact scalar products that
would suggest splitting up the vector operations into senaégments. FAF being the number of
threads and the dimension of a lattice basis vector, the implementdtoithread of the parallel
size-reduction for our parallel LLL looks as follows:

Size Reduction — Thread

(1) if (R =true) then

@) s=["), e=[P
(3) for(i—1>j>1)do

4) if (If;] > %) then

(5) for s <1<e)do

(6) by = by —[f;]bj

(7) for(s<1<e)do

(8) b} = APPROXVALUE (b)
(9) F =false

4 Experiments

4.1 Lattice Bases

The experiments in this paper were performed using spamdelanse lattice bases in order to
show that our parallel (i.e., multi-threaded) LLL reductialgorithm performs and scales well on
different types of lattice bases. We have chosen a type gidack lattice [19, 9, 8, 27, 10] as
an example for sparse bases and unimodular lattices asegpagves for dense bases. Previous
experiments [37, 2] showed that unimodular lattice basesare difficult to reduce than knapsack
lattices given the same dimension and maximum length of élseskentries.

We are using lower and upper triangular matrices with deteant of 1 to generate unimodular
lattice bases. The entries in the diagonal are set to 1 wieltver (respectively upper part) of the
matrix is selected uniformly at random. Given a lower trialag matrixU and an upper triangular
matrixV, we generate the unimodular lattice bases for our tesiB asV -U. This construction
method has been chosen based on earlier experiments [Buofal testing of unimodular lattice

—-11 -

bases in higher dimensions in a reasonable time frame. Wargex 100 unimodular lattice bases
for each dimensiom € [50,750 in steps of 50 and maximum bit length= 1000. The entries
within the lower and upper triangular matrix have been ch@sordingly.

Knapsack lattices have been developed in the context oirgpdubset sum problems (see Defini-
tion 2 in the Appendix) [19, 9, 8, 27]. A typical knapsack iked¢tbasis looks as follows:

2 o - 0 0 1
0 2 .- 0 0 1
By — 0 o - 2 0 1
0 o - 0 2 1
awWw aWwW -+ a-iW aW SW
0 o - 0 0o -1
w w ... wW W gW

For our experiments we have defindl= [,/n| +1. The weights,...,a, have been chosen,
uniformly at randorfi from the interval(1, Zb]. We refer tob as the maximum bit length of the
lattice basis entries. The suShas been computed by adding up half of the weights that we
have selected at random. We generated and tested 100 kkagisizes for each dimensiome
[50,1000Q in steps of 50 and maximum bit lengbhe {100Q 2500}.

4.2 Parameters

In this section, we discuss the parameters introduced itidde8 that are responsible for balanc-
ing computations among all threads. As discussed befoszy gart of the multi-threaded LLL
(Section 3) has to be balanced in order to minimize the waitime at the barriers in between
two parallel parts. The number of iterations of the main laophe multi-threaded LLL algo-
rithm would multiply these waiting times and therefore gverajor imbalance would decrease the
maximum speed-up factor.

The scalar product part (Section 3.1) introduces the paeswart andend to minimize the
amount of mutexes by assigning each thread a fixed first sagrhsralar products to be computed.
The most important parameter is the sigof the subsequent segment. Bigger segments would
decrease the number and therefore the overhead causeckby &maller segments, on the other
hand, minimize the time needed for a single segment anditirertie waiting time which leads to a
more balanced computation. In the orthogonalization pamiges, for the size of a segment in the
computation oR;j. For smaller values o, the increased number of barriers (i.e., synchronization
points) would impact the overall running time significantly experiments we also observed an
increase in the overall system time. Larger values, on therdtand, result in a bigger part of the
computation being computed by the main thread only whichahasgative impact on the scaling
or speed-up factor. The split values computed by COMPISHEIT_VALUES; play an important

4The weights have been chosen independent of the densitg obtinesponding subset sum problem

- 12 —

role in the overall balancing of the computation. A slighbialance in the partitioning could give
the main thread the extra time to already perform the additioomputations for the next iteration
of the main loop. We take measures to ensure that the spliesalf the current iteration are not
overwritten in next iteration of the main thread. For fhepdate within the size-reduction part the
situation is similar to the orthogonalization part. Theegzof a segment ofi;; to be updated has
the same effect as the sigghas on the orthogonalization. Nevertheless, the optimakvar s,
might be different from the one fa&, due to the different amount of computations within the main
thread. The same argument applies to the split values cetpytCOMPUTESPLIT_VALUES,.

We have determined suitable parameter choices by perfgramrall-scale tests with the 2-thread
and the 4-thread version of our new parallel LLL algorithmolr experiments, we usg, =S, =

s, = 16. For the split values (COMPUTEPLIT_.VALUES; and COMPUTESPLIT_-VALUES,)

we confirmed that a slight imbalance is indeed beneficial. tRer2-thread case, the split-up is
47.5% for the main thread and %26 for the other thread. In the 4-thread version, we modified
the split-up to 22% for the main thread and 26% for each of theradhreads.

4.3 Results

The experiments in this paper were performed on Sun X220@&ewith two dual core AMD
Opteron processors .2GHz) and 4 GB of main memory using the Sun Solaris 10 OS. We com
piled all programs with GCC 4.1.2 [39] using the same optatian flags. For our implementation
of the parallel and non-parallel LLL algorithm we used GMR.2.[40] with the AMD64 patch
[41] as long integer arithmetic and MPRF 2.3.1 [42] as mpitgeision floating-point arithmetic for
the approximation of the lattice basis. The experimentewerformed using MPFR with 128 bit
of precision. Based on our setup we conducted experimettiding non-parallel Schnorr-Euchner
algorithm (Algorithm 1) and the 2-thread and 4-thread \@rgSection 3) of our newly developed
implementation of the parallel LLL algorithm.

We usedgettimeofday to measure the actual time (real time) that the LLL algorghmeeded

for the reduction. The functiogetrusage is used to determine how much processor time (user
time) and system time was necessary. For non-parallel fgtesthreaded) applications, real time
is, depending on the system load, roughly the sum of userystdra time. But in case of multi-
threaded applicationgetrusage returns the sum of user and system time for all threads. We
therefore use real time for the single and multi-threadet algorithm to determine the scaling
or speed-up factor for our new multi-threaded implemeatatiComparing the sum of user and
system time for the single and multi-threaded LLL allows asdmpute the necessary overhead
for the multi-threaded version.

Figure 2 shows the average running time (real time) per deenfor the non-parallel, the 2-
thread and 4-thread version of the LLL algorithm. We limited experiments for the unimodular
lattice bases to bases up to dimension 750 due to time caoristrd can be seen, that the threaded
versions of the algorithm lead to a significant decreasermdeof reduction time. The 4-thread
version is significantly faster than the 2-thread versiagufe 3 shows the average speed-up factor

—-13-—

—— knapsack - 1000 bit - LLL. —— knapsack - 2500 bit - LLL.

—— unimodular - 1000 bit - LLL
- = = knapsack - 1000 bit - LLL (2 threads) - = = knapsack - 2500 bit - LLL (2 threads) --- - 1000 bit - LLL (2 threads)
= unimodular — 1000 bit — LLL (4 threads)

== knapsack — 1000 bit - LLL (4 threads) == knapsack — 2500 bit - LLL (4 threads)

mi

running time

-1 == "
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700
dimension dimension dimension

Figure 2: Reduction time (in minutes) for knapsack and umintar lattice bases

per dimension for the new multi-threaded LLL compared tortbe-parallel variant. The speed-up
(i.e., scaling factor) is the quotient of the real time of ttus-parallel version and the real time of
the multi-threaded version. The speed-up factor increaghghe dimension up to around7b for
the 2-thread and close to factor 3 for the 4-thread versiauohew parallel LLL algorithm. It is
interesting to note that for the selected parameters thexdspp factor for unimodular lattice bases
increase faster than for knapsack lattices, and eventtialy reach a similar maximum, as one
can clearly observe in the 2-thread case. The 2-threadoverss expected, reaches its maximum
earlier than the 4-thread version. Figure 4 shows the aeepagrhead per dimension caused

35 T T T T T T T T T 18

LI} T T T T
[knapsack — 1000 bit - 2 threads
LI} knapsack — 2500 bit - 2 threads
3L - 17 LR unimodular - 1000 bit - 2 threads
s o = = = knapsack - 1000 bit - 4 threads
"‘\ ' - = = knapsack — 2500 bit - 4 threads
251 1.6 FRS " = = = unimodular - 1000 bit - 4 threads[]
5 5%
g o E
£ T 14
< £
& 15F 5
& 3
131
i -
7 knapsack - 1000 bit - 2 threads 124
knapsack - 2500 bit - 2 threads
’ unimodular - 1000 bit - 2 threads
0.5f = = = knapsack - 1000 bit - 4 threads [] 11-
= = = knapsack — 2500 bit - 4 threads
= = = unimodular - 1000 bit - 4 threads
0 i i i i n T T T T 1 i i i i i i i i i
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000

dimension dimension

Figure 3: Speed-up for multi-threaded LLL ~ Figure 4: Overhead for multi-threaded LLL

by the new parallel LLL algorithm compared to the non-pa&leichnorr-Euchner algorithm. We
define the overhead as the quotient of the sum of user andsyiste of all threads to the sum of
user and system time for the non-parallel version. The @aattof the new parallel LLL decreases
with increasing dimension of the lattice basis to less tHa#b for the 2-thread and less than 15%
for the 4-thread version.

14—

5 Conclusion and Future Work

In this paper we introduced a new parallel LLL reduction aidpon based on the Schnorr-Euchner
algorithm. We used POSIX threads to parallelize the redundth a shared memory setting. In
our experiments we show that our new variant scales well ahtkzes a considerable decrease
in the running time of the LLL reduction by taking advantagdamlay’s computers multi-core,
multi-processor capabilities.

Future work includes finding heuristics for the selectiothefparameters that control the balancing
among all threads. In addition, we plan to explore the pdggilbo parallelize the LLL Gram
using buffered transformations [3]. The structure and tguired updates of the Gram matrix
pose the main challenge in parallelizing this algorithm. &k also looking into the possibility of
developing a parallel LLL for the GPU of graphics cards.

6 Acknowledgments

This work was partially supported by the Sun Microsystemademic Excellence Grant Program.

References

[1] W. Backes and S. Wetzel. New Results on Lattice Basis Boluin Practice. IrAlgorithmic
Number Theory (ANTS-00)olume 1838 of.NCS pages 135-152. Springer, 2000.

[2] W. Backes and S. Wetzel. Heuristics on Lattice Basis R#&dn in Practice. ACM Journal
on Experimental Algorithmg, 2002.

[3] W. Backes and S. Wetzel. An Efficient LLL Gram Using Buffdr Transformations. In
Proceedings of CASC 200vVolume 4770 oLecture Notes in Computer Scienpages 31—
44. Springer, 2007.

[4] D. Bleichenbacher and A. May. New Attacks on RSA with Shacret CRT-Exponents. In
Public Key Cryptography (PKC) 2006olume 3958 oL NCS pages 1-13. Springer, 2006.

[5] J. Blomer and A. May. A Tool Kit for Finding Small Roots @&ivariate Polynomials over
the Integers. Inn Advances in Cryptology (Eurocrypt 200%plume 3494 oL.NCS pages
251-267. Springer, 2005.

[6] D. R. Butenhof. Programming with POSIX threadsAddison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1997.

[7] H. Cohen. A Course in Computational Algebraic Number Theoldndergraduate Texts in
Mathematics. Springer, 1993.

—15—

[8] M. Coster, A. Joux, B. LaMacchia, A. Odlyzko, C. Schnand J. Stern. Improved Low-
Density Subset Sum Algorithndournal of Computational Complexjt2:111-128, 1992.

[9] M. Coster, B. LaMacchia, A. Odlyzko, and C. Schnorr. Anplimaved Low-Density Subset
Sum Algorithm. InProceedings EUROCRYPT 199lume 547 ofLNCS pages 54-67.
Springer, 1991.

[10] I. Damgard. A Design Principle for Hash Functions. Rmoceedings of CRYPTO 1989
volume 435 ofLNCS pages 416-427. Springer, 1989.

[11] B. Filipovic. Implementierung der Gitterbasenredaktin Segmenten. Master’s thesis, Uni-
versity of Frankfurt am Main, 2002.

[12] C. Heckler. Automatische Parallelisierung und parallele Gitterbastuktion PhD thesis,
Universitat des Saarlandes, Saarbriicken, 1995.

[13] C. Heckler and L. Thiele. Parallel complexitiy of lati basis reduction and a floating-point
parallel algorithm. InProceedings of the 5th International PARLE Conference oralPa
lel Architectures and Languages Europe (PARLE,)ges 744-747, London, UK, 1993.
Springer-Verlag.

[14] C. Heckler and L. Thiele. A parallel lattice basis retioi for mesh-connected processor
arrays and parallel complexity. Proceedings of the Fifth IEEE Symposium on Parallel and
Distributed Processing (SPDP 93)ages 400-407, Dallas, 1993.

[15] A. Joux. A Fast Parallel Lattice Basis Reduction Alglom. In Proceedings of the Second
Gauss Symposiurpages 1-15, 1993.

[16] A. Joux. La Reduction des Bseaux en Cryptographie PhD thesis, Labaratoire
d’Informatique de L'Ecole Normale Superieure LIENS, Pafsance, 1993.

[17] H. Koy and C. Schnorr. Segment LLL-Reduction of LattiBases. InCryptography and
lattices volume 2146 o£ NCS pages 67 — 80. CaLC 2001, Springer, 2001.

[18] H. Koy and C. Schnorr. Segment LLL-Reduction with FlagtPoint Orthogonalization. In
Cryptography and Latticesvolume 2146 ofLNCS pages 81 — 96. CaLC 2001, Springer,
2001.

[19] C. Lagarias and A. Odlyzko. Solving Low-Density SubSeim ProblemsJACM, 32:229—
246, 1985.

[20] A. Lenstra, H. Lenstra, and L. Lovasz. Factoring Polyrials with Rational Coefficients.
Math. Ann, 261:515-534, 1982.

[21] J.-L. Louis Roch and G. Villard. Parallel gcd and lagtioasis reduction. ICGONPAR '92/
VAPP V: Proceedings of the Second Joint International Cemiege on Vector and Parallel
Processingpages 557-564, London, UK, 1992. Springer-Verlag.

— 16—

[22] A. May. New RSA Vulnerabilities Using Lattice Reduction MethdelsD thesis, University
of Paderborn, 2003.

[23] A. May. Secret Exponent Attacks on RSA-type Schemehk Wibduli n=ptq. InPublic Key
Cryptography, PKC 2004vo0lume 2947 o NCS pages 218-230. Springer, 2004.

[24] D. Micciancio and S. Goldwasse€Ccomplexity of Lattice Problems—A Cryptographic Per-
spective Kluwer Academic Publishers, 2002.

[25] P. Nguyen and D. Stehlé. Low-Dimensional Lattice Ba&®eduction Revisited. IRroceed-
ings of the 6th Algorithmic Number Theory Symposium (ANA)Svdlume 3076 oLLNCS
pages 338—-357. Springer, 2004.

[26] P. Nguyen and D. Stehlé. Floating-Point LLL Revisitéd Proceedings of Eurocrypt 2005
volume 3494 oL.NCS pages 215-233. Springer, 2005.

[27] P. Nguyen and J. Stern. Adapting Density Attacks to \eight Knapsacks. IAdvances
in Cryptology (Asiacrypt 2005L.NCS, pages 41-58. Springer, 2005.

[28] P. Q. Nguyen. Cryptanalysis of the Goldreich-Goldveaddalevi Cryptosystem from Crypto
'97. In Advances in Cryptology (CRYPTO 199%9lume 1666 oLLNCS pages 288 — 304.
Springer, 1999.

[29] P. Q. Nguyen and J. Stern. Lattice Reduction in CrymgioAn Update. InAlgorithmic
Number Theory (ANTS-00yolume 1838 ofLNCS pages 85 — 112. Algorithmic Number
Theory Symposium 4, 2000, Leiden ANTS-00, Springer, 2000.

[30] M. E. Pohst and H. Zassenhaudgorithmic Algebraic Number ThearfCambridge Univer-
sity Press, 1989.

[31] O. Regev. Lattice-based CryptographyAdvances in Cryptology (CRYPTO 200&)lume
4117 ofLNCS pages 131-141. Springer, 2006.

[32] C. Schnorr and M. Euchner. Lattice Basis Reduction: rimapd Practical Algorithms and
Solving Subset Sum Problems. Pnoceedings of Fundamentals of Computation Theory '91
volume 529 ofLNCS pages 68-85. Springer, 1991.

[33] C. Schnorr and M. Euchner. Lattice Basis Reduction: rimapd Practical Algorithms and
Solving Subset Sum Problems. Technical report, UnivatrEitankfurt, 1993.

[34] R. W. Stevens and S. A. Ragé&dvanced Programming in the UNIX(R) Environment (2nd
Edition). Addison-Wesley Professional, 2005.

[35] G. Villard. Parallel lattice basis reduction. IBSAC '92: Papers from the international
symposium on Symbolic and algebraic computatmages 269-277, New York, NY, USA,
1992. ACM.

- 17 -
[36] S. Wetzel. An Efficient Parallel Block-Reduction Algim. In Algorithmic number theory
(ANTS-98)volume 1423 of. NCS pages 323 — 337. Springer, 1998.

[37] S. WetzellLattice Basis Reduction Algorithms and their ApplicatidPsD thesis, Universitat
des Saarlandes, 1998.

[38] K. Wiese. Parallelisierung von lll-algorithmen zuttgrbasisreduktion. eine implementierung
auf dem intel ipsc/860 hypercube. Master’s thesis, Unit@rdes Saarlandes, Saarbriicken,
1994.

[39] GCC - Homepage, November 2008tp://gcc.gnu.org
[40] GMP - Homepagehttp://gmplib.org/

[41] AMDG64 patch for GMP 4.2, November 2008.
http://www.loria.fr/"gaudry/mpn _AMD64/index.htm|

[42] MPFR - Homepage, November 2008tp://www.mpfr.org/

Appendix

Definition 2 (Subset Sum Problem) For given weighis.a ,a, € N and the sum & N find coef-
ficients X,...X, € {0,1} such that S= 5 ; Xa;.

Definition 3 The density of the subset sum problem is definedas d.,a,) = Iog(max{gl =7

Remark 4. In [9, 8] an (n+ 1) dimensional lattice [By) c Z"*2 is used to solve subset sum
problems with density(@y, ...,an) < 0.9408

