
DIMACS Technical Report 2008-07
October 2, 2008

Optimal Sequential Inspection Policies1

by

Noam Goldberg,2

RUTCOR, Rutgers University
640 Bartholomew Road

Piscataway NJ 08854-8003; ngoldberg@rutcor.rutgers.edu

Jonathan Word3

RUTCOR, Rutgers University
640 Bartholomew Road

Piscataway NJ 08854-8003; jword@rutcor.rutgers.edu

Endre Boros4

RUTCOR, Rutgers University
640 Bartholomew Road

Piscataway NJ 08854-8003; boros@rutcor.rutgers.edu

Paul Kantor5

SCILS, Rutgers University; kantor@scils.rutgers.edu



1Funding by the by the Domestic Nuclear Detection Office (DNDO), of the Department of Home-
land Security, through NSF Grants #CBET-0735910 and by Department of Homeland Security
Grant/Contract #2008-DN-077-ARI003-0, the Science and Technology Directorate, Office of Uni-
versity Programs, by the National Science Foundation #SES 0518543 3/3 and by Office of Naval
Research #DOD-DON-ONR-N00014-071-0150, #DOD-Don-ONR-N00014-07-1-0299 are all most
gratefully acknowledged. The authors would like to thank DIMACS, and members of the DyDAn
DHS Center of Excellence for stimulating discussions.

2Affiliated Graduate Student
3Affiliated Graduate Student
4Permanent Member
5Permanent Member

DIMACS is a collaborative project of Rutgers University, Princeton University, AT&T Labs–
Research, Bell Labs, NEC Laboratories America and Telcordia Technologies, as well as affil-
iate members Avaya Labs, HP Labs, IBM Research, Microsoft Research, Stevens Institute of
Technology, Georgia Institute of Technology and Rensselaer Polytechnic Institute. DIMACS
was founded as an NSF Science and Technology Center.

2



ABSTRACT

We consider the problem of combining a given set of diagnostic tests into an inspection
system that can classify items of interest (cases) with maximum accuracy subject to budget
constraints. One motivating application is sequencing diagnostic tests for container inspec-
tion problems, where the diagnostic tests may correspond to radiation sensors, documents
checks, or imaging systems. We consider mixtures of decision trees as inspection systems
following the work of Boros, Fedzorah, Kantor, Saeger and Stroud [4]. We establish some
properties of efficient inspection systems. Given an available set of elementary or compound
tests (all are called ”devices”), we characterize the optimal classification of cases, based on
the the various ”readings” or test scores given by the device. More generally, we consider
the problem of optimally assigning a set of cases to a set of possible actions, based on the
device “readings”, while satisfying a budget constraint. The measure of performance is the
fraction of all cases, in a specific class of interest, which are classified correctly. We find
that this problem is a special case of a known variant of the knapsack problem, known as
the Linear Multiple Choice Knapsack problem (LMCK). Exploiting the special features that
we establish, we propose an algorithm that solves our special variant more efficiently than
the existing LMCK algorithms. Finally, we propose a dynamic programming algorithm that
enumerates all of the efficient, undominated, inspection policies in a two dimensional cost-
detection space. Our inspection policies may sequence any arbitrary number of tests and
are not restricted in the branching factor (or number of channels). Our approach directly
solves the bi-criterion optimization problem of maximizing detection and minimizing cost,
and thus supports sensitivity analysis over different budget or detection requirements, and
the optimization of any monotone (possibly nonlinear) utility function over the efficient set.



1 Introduction

Inspection systems are mixtures of decision trees whose nodes are diagnostic tests and whose
leaves are nodes representing the classes to be labeled, or assignment to actions. Particularly
we are interested in assigning some items to the action of raising an alarm, when trying to
identify a (single) type of threat. With more than 2 classes, the associated alarms or actions
may correspond to different type of items or different severities. It is presumed that each
test has an operating cost. The classification decision and subsequent action may incur an
additional cost that is associated with rate of false positives (a.k.a. type I error).

The operating characteristics of tests can be expressed by a Receiver Operating Charac-
teristic (ROC) curve [6] and by the cost parameters. These completely characterize the test.
The ROC curve expresses the inspection system’s detection rate as a function of the rate of
false positives. From this curve, and the operating costs, and costs of false positives, we can
construct a cost-detection curve, which is a fundamental mathematical entity of interest in
our analysis.

A motivating application is the detection of nuclear and other potentially harmful ma-
terial that could be smuggled into the country. One can not afford to open and manually
inspect each and every container coming into the country, through ports and/or border
crossings. Imperfect information about the contents of every package, vehicle or container
are given by tests for the presence of nuclear material that range from different types of
radiation sensors to simple document checks.

The operating goal is to detect all hazardous material being smuggled into the country. In
practice, most sensors will not detect 100% of the radioactive material: physical equipment
may malfunction, personnel can be negligent and adversaries may learn new ways to conceal
nuclear material. Thus, policy makers face the difficult task of designing and deploying
the best possible (imperfect) security inspection systems. The decision maker’s problem
includes both deciding the budget for inspection, allocating the budget to specific inspection
policies, and implementing policies as physical inspection systems. The strategic decision of
allocating the budget may entail the subjective estimation of two important parameters that
are difficult to estimate: the prior probability of a dangerous item and the cost of failing to
detect a dangerous item.

We propose an algorithm that finds an entire efficient frontier of inspection policies,
thus displaying the optimal inspection strategy for each possible value of the budget. This
frontier will aid decision makers in performing sensitivity analysis and evaluating cost-benefit,
without restricting the analysis to any specific estimates of the prior probability and of the
cost of false negatives.

As we sketch below, each inspection system can be represented as a tree. The number
of branches at each node determines the complexity of the tree, and is determined by the
number of different “readings” that the corresponding test may give. The problem of finding
optimal inspection systems corresponding to binary decision trees has been considered by
Stroud [17], and Madigan, Mittal and Roberts [13]. Stroud [17] has shown the total number
TN of possible binary decision trees involving N tests is given by the recursive formula
TN = 2 + N(TN−1)2, where T0 = 2. Even for binary decision trees the total number of



trees becomes extremely large, so that, for example, T4 = 1, 079, 779, 602. For general
decision trees with branching factor k (but two terminal or final actions), the formula can
be generalized, yielding:

T
(k)
N = 2 +N(T

(k)
N−1)k (1)

The principal result of this paper is an efficient computation scheme that finds the optimal
decision tree mixtures for all possible budget values, while avoiding a complete enumeration
of all decision trees.

Boros, Fedzorah, Kantor, Saeger and Stroud [4] consider optimal decision tree inspection
systems, with an arbitrary branching factor, subject to specific budget and other performance
constraints. They present a large scale linear programming formulation. For N tests and
a fixed branching factor k, the number of variables in the LP formulation is O(N !), which
remains exponentially large, yet is substantially smaller than the number of decision trees.
The LP approach is effective for problems of sequencing as many as 5 sensors or tests for
container inspections. Future technologies being considered may require inspection systems
to use a larger number of sensors. More significantly, multi-channel sensors represent a large
number of conceptually distinct tests, as the readings can be matched to any of several
profiles of interest.

Finally let us note that our methodology is applicable to a wide range of problems
including screening for nuclear contraband, screening travelers at borders for drugs, screening
at public events for weapons, and testing the public for diseases.

In the next section we will describe the background for our contribution and required
definitions, and specifically the percise definitions of what we mean by inspection devices
and policies. We proceed to characterize optimal inspection policies, in Section 4, by proving
a monotonicity property of such policies. In Section 5 we model and propose an efficient
algorithm for the problem of constructing optimal policies from a given device. In Section
6 we make use of this algorithm as a sub-procedure in a dynamic algorithm algorithm for
enumerating all efficient policies. We find an upper bound for the number of efficient policies.
Finally, we conclude after discussing our computational experiments (Section 8), comparing
the performance of our algorithms with previous work by Boros et al. [4].

2 Background: Cases, Tests, Devices, Actions and Poli-

cies

Let us first introduce our basic terminology and notations. We consider a set U of cases
which require some “inspection”. In homeland security applications cases may be containers
arriving at entry ports from foreign countries, trucks arriving at border crossings, or foreign
visitors lining up for immigration at airports, etc. Each case belongs to a specific class and
we assume that each case in a certain class require a certain well-defined action. In this
study we assume that cases are divided into two classes, “good” or “bad”, i.e., U = G ∪ B,
and correspondingly, cases in class G should be released without further delays, while those
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in B should be subjected to a thorough manual inspection. We denote the corresponding set
of actions by A = {I, R}.

To be able to detect the class of case, we make use of a set of tests (or sensors), each of
which, when applied, provide (imperfect) indication of the class to which the case belongs.
The set of tests is denoted by T , their number by N = |T |, and we denote by c(t) the cost
of applying test t ∈ T to a case1. A test generates a label (also called a score or a reading),
which gives some indication about the likelihood that the case belongs to the class B.

Applications of tests, as well as incorrect applications are costly (e.g., inspecting manually
an “innocent” good case delays trade and ties up resources, while releasing a bad case may
have serious consequences later). Our main problem is to devise a plan to use the imperfect
and costly tests to help us to arrive to decisions about our actions so that the overall expenses
are minimized. To be able to formulate this problem precisely, we need to describe the
information that we have about tests and actions in more detail.

We shall view a test t ∈ T as a device, filtering an input stream of cases into several
channels (corresponding to the labels that it assigns). Formally, we associate to each test
t ∈ T , the set C = C(t) of its channels (i.e., the set of possible labels the application of t can
produce as a result). For each label i ∈ C we denote by bi ≥ 0 and gi ≥ 0 the fractions of
“bad” and “good” containers, respectively, that are expected to receive label i in the long
run. Note that index i here represents two pieces of information: the name of the test, and
a specific channel associated to that test. Since every test must provide a label (channel
assignment) for every case, we must have∑

i∈C

bi =
∑
i∈C

gi = 1. (2)

When there is any ambiguity, we will specify the test t ∈ T , and refer to these parameters
as C(t), bi(t) and gi(t), respectively.

Let us note that although a label could be an arbitrary description of a category, in
practice it will often be an integer score (for example the number of suspicious entries in a
shipping manifest), or a real number (such as in the case of radiation sensors). Accordingly
the set C(t) could be either finite and/or infinite for some of the tests t ∈ T . Though much
of the mathematical analysis we apply does not depend on the finiteness of the channel sets,
the resulting algorithms and specifically their termination does. Our approach for the case
of continuous labels is to discretize the labels having a continuous range into a finite set of
channels C. In what follows we assume that the set of channels is finite.

We will index channels in such a way that

b1

g1

≥ b2

g2

≥ · · · ≥ bM
gM

(3)

holds for all tests, where M = |C| is the number of channels. Given this sorting of the
channels, it is easy to associate to this test the sequence of cumulative values, which can be

1In order to capture fixed costs associated with test, the unit cost c(t) may be the long run average cost,
including the amortization of fixed costs.
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A: Test t with three channels,
C = {1,2,3}, characterized by
(b1, b2, b3) = (0.3, 0.5, 0.2) and
(g1, g2, g3) = (0.1, 0.5, 0.4).

0

0.5

1

0 0.5 1

B: The ROC describ-
ing the performance
of test t. We have
(f1, d1) = (0.1, 0.3),
(f2, d2) = (0.6, 0.8) and
(f3, d3) = (1, 1).

Figure 1: An example for an elementary test and its ROC.

represented as points in a two dimensional graph, (di, fi), i ∈ C, where

di =
∑
j≤i

bj and fi =
∑
j≤i

gj (4)

to completely (except for cost) represent the performance of this test. Adding the point
(d0, f0) = (0, 0), the piecewise linear function d(f), determined by the points {(di, fi)|i ∈ C ∪ {0}},
is known as the Receiver Operating Characteristic curve (or ROC) of the test . See Figure 1
for a simple example with three channels. Note that due to the sorting (3) and the equalities
(2), the function d(f) is concave, starting at (0, 0) and ending at (dM , fM) = (1, 1). When
we talk about several tests, we shall refer to the ROC of test t ∈ T by dt(f), and by di(t)
and fi(t) for all i ∈ C(t) to the corresponding parameters as defined in (4).

Let us note that typically the outcome of the application of a specific test is a random
variable. We assume in this study that the randomness of the test results comes essentially
from differences in exogenous properties of cases, and only to a negligible extent from the
measurement errors. Consequently, we assume that repeating the same test on the same
case will not result in a different labeling of the case. For example, if the test is ”checking
the shipping manifest”, then (except for some low level of human/computer error), we will
find the same suspicious or incorrect entries, no matter how many times we run the test
for the same container. Similarly, if a radiation detector is triggered by a container, it will
most likely be triggered on a second examination, too. For example, several containers
with exactly the same contraband my give different readings because of variations in other
(shielding) cargo, or debris left from a previous shipment. But for a given container, all of
these factors remain the same, no matter how many times we repeat the measurement.

Another important assumption in this study is the stochastic independence of the differ-
ent elementary tests. This is a less self-evident condition, but, in practice, most studies in
this area make this assumption (see e.g., [17, 13]). The technical meaning of this assumption
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is that if we apply two tests: t and t′ to all cases, then the fraction of e.g., “good” cases
receiving label i ∈ C(t) from test t and i′ ∈ C(t′) from test t′ is gi(t)gi′(t

′). This “product
rule” allows us to estimate the result of applying a sequence of tests, on the stream of cases,
regardless of the results of preceding tests. This assumption is important for achieving the
computational speedup that we report in this paper.

a

b

c

1 2

3 4

5 c

6 7

Figure 2: An exam-
ple of a complex sys-
tem that fuses multi-
ple tests. The channels
of each individual test
(as well as the chan-
nels of the complex de-
vice) are numbered, in
increasing order, from
left to right.

Generalizing the notion of elementary tests, we consider more
complex systems that fuse multiple tests, and together filter a
stream of cases into several channels. Figure 2 shows such a com-
plex system, combining three elementary tests T = {a, b, c}, where
a and b each have three channels, while c has only two. Such a
representation, which forms a tree, represents the process in which
we first apply test a, and, if test a labels the case by 3 then we
apply test c, etc. The resulting complex system has seven channels,
and e.g., the device will label a case with channel label 6, if test a
results in label 3, and the following test c assigns it to label 1.

We are now ready to give a formal representation of such com-
plex systems, which we shall call devices. The result of “applying
a device to a collection of U = G∪B ”cases”, of which G are good
and B are harmful or “bad” is that some fraction of each will be
assigned to each of the channels. The effect of the device (except for
issues of cost) is completely described by a collection of fractions,
corresponding to posterior probabilities of the classes, and subsets
of tests describing each channel. (See e.g., Figure 3.)

a

i1 i2 i3 ... iM

A: An example of a general
elementary test with M chan-
nels.

a

ab bc i6 ... iM

B: A compound device using the
M -channel test as the root.

Figure 3: An elementary test with M channels and a compound device using the test as the
root.

Definition 1 A device D is defined as a set of triplets

D = {(bi, gi, Ti) | i ∈ C}, (5)
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where C is the set of (output) channels of D, the sets Ti ⊆ T are the subsets of elementary
tests applied to cases that end up to be labeled by i, and bi ≥ 0 and gi ≥ 0 are respectively
the expected fractions of the “bad” and “good” cases that are labeled by i ∈ C.

When ambiguity could arise, we shall refer to these parameters of a device D explicitly as by
C(D), bi(D), gi(D), and Ti(D) for all i ∈ C(D), and we use M(D) = |C(D)| for the number
of channels of the device D.

Furthermore, due to our assumption of stochastic independence of elementary tests, equa-
tion (2) implies that every device satisfies the following relations:

bi(D) =
∏

t∈Ti(D)

bi(t)(t) and gi(D) =
∏

t∈Ti(D)

gi(t)(t) for all i ∈ C(D)

∑
i∈C(D)

bi(D) =
∑
i∈C(D)

gi(D) = 1.

(6)

Let us note that every channel i ∈ C(D) corresponds to a path in the corresponding decision
tree, and hence to a unique channel i(t) ∈ C(t) for each tests t ∈ Ti(D) along this path.

To complete the description of a device D we must add its expected (per unit) operating
cost, when applied to a given stream of cases. This can be expressed as

C(D, π) =
∑
i∈C

(πbi + (1− π)gi)c(Ti) (7)

where π denotes the a priori probability that a case is “bad”, and c(S) =
∑

s∈S c(s) for a
subset S ⊆ T of tests.

Finally we note that it is possible to use a random mixture of devices in the following
sense: Given two devices D1 = {(b1

i , g
1
i , T

1
i )|i ∈ C(D1)}, D2 = {(b2

i , g
2
i , T

2
i )|i ∈ C(D2)}, and

a (probability) 0 ≤ λ ≤ 1, we can define a new device D3 = {(b3
i , g

3
i , T

3
i )|i ∈ C(D3)} in

which, with probability λ we filter incoming cases using device D1 and with probability 1−λ
we filter them using device D2. Both the label probabilities and the cost are linear in this
parameter, and we have:

C(D3) = {(1, j)|j ∈ C(D1)} ∪ {(2, j)|j ∈ C(D2)} (8)

b3
i =

{
λb1

j if i = (1, j), j ∈ C(D1),
(1− λ)b2

j if i = (2, j), j ∈ C(D2),

g3
i =

{
λg1

j if i = (1, j), j ∈ C(D1),
(1− λ)g2

j if i = (2, j), j ∈ C(D2), and

T 3
i =

{
T 1
j if i = (1, j), j ∈ C(D1),
T 2
j if i = (2, j), j ∈ C(D2).

(9)
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We shall write D3 = λD1 + (1− λ)D2 for such mixed devices.

An inspection policy is a device together with an assignment of an action to each of
its channels. The cases which are assigned to a channel, will then be subjected to the
corresponding action. Let us note here that labels assigned to cases and channels of a device
(or test) are almost synonymous notions. The minor difference is that labels are assigned to
cases at at a certain underlying physical level (e.g., the readings of a physical sensor), while
channels of devices are defined at a logical level, where a channel may aggregate several
labels. This possibility however does not lead to better solutions, and will not appear in this
study. Therefore, we can think of labels and channels as synonyms in the sequel.

In this paper we concentrate on two terminal actions A = {R, I}. Action R (release)
corresponds to not doing any further checking. In the container inspection application, we
release a container when it is considered harmless. Action I (inspect), on the other hand, is
appropriate when we are “sufficiently” suspicious about the case, and execute a lengthy and
detailed manual inspection. To each terminal action α ∈ A we associate its cost C(α) and
its detection rate ∆(α). The cost is normalized to represent the unit operating expense of
executing the action. The detection rate of I is assumed to be 1, and thus the detection rate
of a policy, in general, will equal the fraction of bad cases that are assigned to the action I.
We assume that action R has no cost, while we take the cost of I as our unit of measurement.
Thus

C(R) = 0 C(I) = 1

∆(R) = 0 ∆(I) = 1
(10)

Since action I reveals all bad cases to which it is applied, no sensible policy can have a cost
higher than I. Otherwise we would always replace that policy with I, and achieve better
performance at a lower cost. Therefore we scale all of the operating cost coefficients so that
0 ≤ c(t) < 1 for all (sensible) tests t ∈ T .

Let us add that there could be more than these two terminal actions, and in some applica-
tions those may arise naturally. Our analysis and results generalize completely. Actually, we
use this fact to present, in a simple way, our recursion-based solution. Before that, however,
let us define formally what is meant by an inspection policy :

Definition 2 A policy P is a pair P = (D, x), where D is a device and x : C(D) → [0, 1]A

is a weighted mapping of the device’s channels into the set of actions. More precisely, for
every label i ∈ C(D) and action α ∈ A the value x(i, α), with 0 ≤ x(i, α) ≤ 1 is the fraction
of cases labeled by i that is assigned to be processed by action α. This mapping must satisfy∑

α∈A

x(i, α) = 1 for all i ∈ C(D). (11)

This definition allows for a choice of a random mixture of assignment into actions, such as
x(i, I) = γ and x(i, R) = 1− γ for some channel i ∈ C(D). For a budget that is insufficient
for applying I to all cases, it may be optimal to choose an assignment of a channel to actions,
that corresponds to such a random mixture. For example for a trivial device D = {(1, 1, ∅)},
and A = {I, R}, the assignment x(1, I) = x(1, R) = 1

2
achieves the highest possible detection
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rate for the budget of B = 1
2
. In general, under a budget constraint the assignment to a

mixture of actions provides a superior detection compared with a pure assignment that does
not allow mixtures. In real life applications the budget may simply not be large enough to
treat all cases with the action I.

Although we do not explicitly model our problem as a game, our approach recongizes
that in practice it may be difficult to do so when there is a very large space of possible
moves of the adversary, which are not fully known. With some partial information there
may be an underlying game in our problem. The mixed policies will correspond to mixed
strategies. The best possible payoff associated with a Nash equilibrium in mixed strategies
must be at least as good as the best possible payoff associated with a Nash equilibrium
(if it exists) in pure strategies. This is also evident in the optimization approach, i.e.,
applicable even if no information about player moves is available, where finding the optimal
deterministic policy is an integer programming problem, while finding a mixed policy is the
(linear) relaxation of that problem. Thus mixed policies may achieve a superior detection
rate for each budget value compared with deterministic (pure) policies. Intuitively, mixed
policies are also preferable because they are even more difficult to guess by an adversary.

Having defined what we mean by a policy, we must also specify the cost and performance
of the policy. For a policy P we can compute a unit cost C(P ), which is the expected cost
per case of applying policy P , and a the detection rate ∆(P ) which is the expected fraction
of the “bad” cases that will be identified (that is, assigned to action I) by policy P . In
most applications the total cost, of a policy, depends not only on the operating cost of its
associated tests, but also on an additional cost which results from false positives, i.e., the
collateral damage imposed by inspection of harmless cases. We denote by E this additional
expense. For example in the container inspection application, E is the expected cost of
delaying traffic, or impeding commerce. The actual costs included in E will vary according
to the definition of cases in a particular application. The impact of this cost will depend on
the fraction of cases that are “good” and that are assigned to action I (i.e., to be inspected).
With the (terminal) action set A = {R, I} and parameters defined as in (10), we can write
the cost and detection of the policy as:

C(P ) =
∑
i∈C(D)

πbi(D)[c(Ti(D)) + x(i, I)] + (1− π)gi(D)[c(Ti(D)) + x(i, I)(1 + E)]

= C(D) +
∑
i∈C(D)

πbi(D)x(i, I) + (1− π)gi(D)x(i, I)(1 + E)

∆(P ) =
∑
i∈C(D)

bi(D)x(i, I).

(12)

Next we note that, in fact, terminal actions can be viewed as special cases of policies,
where D is a device with one output channel and an empty set of tests. Similarly, policies
may be viewed as (non-terminal) actions, in the sense that they specify precisely what to
do with each of the cases, although it may involve some testing, followed by a terminal
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action. Thus, we can view Definition 2 as a recursive structure, where the set A may involve
some policies, as well as the terminal actions. Since we gain no additional information from
repeating a test, we require some restrictions to the feasible action mappings. Let us denote
by T (P ) the set of tests involved in policy P , where we define T (I) = T (R) = ∅.

We shall call a mapping x : C(D)→ [0, 1]A feasible in Definition 2 if it satisfies the further
condition

x(i, p) = 0 whenever Ti(D) ∩ T (p) 6= ∅ for all i ∈ C(D) and p ∈ A. (13)

Henceforth, we consider Definition 2 extended so that the set A of actions may contain
a finite set of (complex) policies as well as the terminal actions, and require that the corre-
sponding action mapping x satisfies the conditions (13). See Figure 4 for an example of a
general policy, composed of a top level device, and a set A involving both terminal actions
and other policies.

A: An example device.
The set of channels is C =
{i1, i2, ..., i9}. The set of tests
associated with each channel
is simply the set of test nodes
along the path, e.g., Ti1 =
{a, b, d}.

B: The corresponding pol-
icy. Triangles represent poli-
cies. Rectangles represent ter-
minal policies. Ellipses repre-
sent an assignment of a channel
that mixes two or more policies.

Figure 4: An example device and a corresponding policy.

2.1 Policy Mixing

Let us next note that random mixing of policies is a meaningful operation, just as in the
case of devices. Let us fix the action set for the moment. If P1 = (D1, x1) and P2 = (D2, x2)
are two policies and 0 ≤ λ ≤ 1 is a probability, then the policy P3 = λP1 + (1− λ)P2 can be
defined as a pair (D3, x3), where D3 = λD1 + (1− λ)D2 is defined as in (8)-(9) and where

x3(i, p) =

{
λx1(j, p) if i = (D1, j), j ∈ C(D1),
(1− λ)x2(j, p) if i = (D2, j), j ∈ C(D2)

9



for all policies p ∈ A and all i ∈ C(D3).
We can also note that for such random mixing of policies the costs and the detection

rates are simple linear combinations given by:

C(P3) = λC(P1) + (1− λ)C(P2),
∆(P3) = λ∆(P1) + (1− λ)∆(P2).

(14)

We say that a policy P = (D, x) is a deterministic policy, if for all i ∈ C(D) and all
p ∈ A we have x(i, p) ∈ {0, 1}, i.e., no channel has an assignment to a mixture of actions.
Although there are many possible policies, as long as the set of terminal actions is finite,
and the number of channels and tests for each device are finite, then all policies are random
mixtures of a finite number of deterministic policies.

Definition 3 Given a set of policies P, let us denote by MIX(P) the set of policies obtainable
from P by mixing, that is

MIX(P) =

{∑
P∈P

λPP

∣∣∣∣∣ λP ≥ 0 for all P ∈ P , and
∑
P∈P

λP = 1

}

2.2 Policy Domination

Another important basic notion in our analysis is the domination relation between policies.

Definition 4 Given two policies, P1 and P2, we say that P2 dominates P1, if T (P2) ⊆ T (P1),
C(P2) ≤ C(P1) and ∆(P2) ≥ ∆(P1). If any of these inequalities are strict then we say that
P2 strictly dominates P1.

In other words, if P1 is dominated by P2, then we never need to use P1. In any situation
where we would use P1 (even inside of a more complex policy), we can simply replace it by
P2, and this will not increase the expected cost of the total operation, will not violate the
no-repeat assumption (since we assume T (P2) ⊆ T (P1)), and may even increase the resulting
detection rate.

Let us observe a few more easy facts about mixtures of policies, and introduce some
additional useful notions.

Claim 1 Assume:

i Q =
∑q

j=1 λjSj is a mixture of policies S = {Sj | j = 1, ..., q}, such that λj > 0 for all
j = 1, 2, .., q, q ≥ 3 and

∑q
j=1 λj = 1

ii the convex hull of the policies in the two dimensional cost-detection space, K = conv{(C(S),∆(S)) |
S ∈ S}, has a nonempty interior.
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Then Q is (strictly) dominated by another mixture P ∈ MIX(S) of these policies.

Proof. Let us note that by the above definitions, for any point (X, Y ) ∈ K there exists a
policy P = P (X, Y ) ∈ MIX(S) such that X = C(P ) and Y = ∆(P ).

Since the point (C(Q),∆(Q)) ∈ K belongs to the interior of K, due to λj > 0 being
positive for j = 1, 2, ..., q, the point (C(Q) − ε,∆(Q) + ε) also belongs to K for a suitably
small ε > 0. Thus the policy P = P (C(Q)− ε,∆(Q) + ε) ∈ MIX(S) strictly dominates Q.�

Definition 5 Given a set P of policies, let us denote by U(P) ⊆ P subset of its un-
dominated policies. Let us further denote by U∗(P) ⊆ U(P) the unique minimal subset
of un-dominated policies for which we have

MIX(U∗(P)) = MIX(U(P)).

It is easy to see that P ∈ U∗(P) if and only if P ∈ P and it is not dominated (not necessarily
strictly) by any of MIX(P \ {P}).

Since random mixing of policies satisfy equations (14) and since no strictly dominated
policy can be the best choice for any budget value, it follows that for any finite set of policies
P the function

∆(B) = max{∆(P ) | P ∈ MIX(P), C(P ) ≤ B}

is a piecewise linear concave function with break points corresponding to U∗(P). Assuming
meaningful policies in P , this curve is defined for B ∈ [a, b] ⊆ [0, 1], where a = min{C(P ) |
P ∈ P} and b = max{C(P ) | P ∈ P}. We can also see that this curve is the two dimensional
cost-detection projection of the set U(MIX(U∗(P))), or in other words

{(B,∆(B)) | a ≤ B ≤ b} = {(C(P ),∆(P )) | P ∈ U(MIX(U∗(P)))}.

when ambiguity could arise, we shall denote this curve by ∆P(B), and will say that the set
U∗(P) and the curve ∆P(B) form the extremal frontier of the set P . Note that when the two
trivial policies (namely applying R and I, respectively) belong to P the extremal frontier is
necessarily a nondecreasing concave curve connecting (0, 0) to (1, 1).

Let us note next that if Pi, i = 1, 2 are two finite sets of policies, then we have

U∗(P1 ∪ P2) = U∗(U∗(P1) ∪ U∗(P2)), (15)

an easy fact, the verification of which we leave for the reader.

Let us close this section by observing that U∗(P) can efficiently be computed for any
finite set P .

Claim 2 Assume that P is a finite set of policies, given in sorted order of cost, and Q =
U∗(P). The subset Q ⊆ P can be determined in O (|P|) time.
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Algorithm 1 UpperHull(P)

1: Input: A set of policies P = {P1, ..., PM}.
2: Assumptions: W.l.o.g. we assume an increasing order of costs, C(P1) < ... < C(Pm)

(if the inequality is not strict, it is enough to keep the one with the largest detection
rate).

3: Initializations: Set i1 ← 1, i2 ← 2, q ← 2, t← 3.
4: Main Loop:
5: while t ≤M do

6: while λ(q + 1) = ∆(Pt)−∆(Qq)

C(Pt)−C(Qq)
≥ λ(q) =

{∆(Piq )−∆(Piq−1
)

C(Piq )−C(Piq−1
)

if q ≥ 2

∞ if q = 1
do

7: q ← q − 1
8: end while
9: q ← q + 1

10: iq ← t
11: t← t+ 1.
12: end while
13: Output: Q = U∗(P) = {Pi1 , Pi2 , ..., Piq}.

Proof. We claim that the following simple procedure computes U∗(P) in the claimed time.
Let us next note that we execute the the main loop O(M) times. Let us also observe that

we must have λ(1) > λ(2) =
∆(Pi2

)−∆(Pi1
)

C(Pi2
)−C(Pi1

)
> · · · > λ(q) =

∆(Piq )−∆(Piq−1
)

C(Pq)−C(Pq−1)
. This is because if

we had λ(ij) ≤ λ(ij+1), then we would delete ij before adding ij+1 in step 6 of the algorithm.
Thus the points in the output set Q indeed form a concave curve, hence not one of them is
dominated by a mixture of the others.

Finally, in every step that a policy Piq is removed in step 6, it is dominated by a mixture

of policies Pt and Pq−1. We compute a slope
∆(Pt)−∆(Piq )

C(Pt)−C(Piq )
at most twice for each element

Pt ∈ P . Once when adding a policy, by assigning t to iq, and possibly another time when
removing iq in step 6. If removing Piq = Pt we never access policy Pt again.

Thus we must have Q = U∗(P), and the total running time is O(M). �

3 The Inspection Problem

The decision maker’s problem is to find a policy, using the available tests and terminal ac-
tions, which provides a high level of safety (i.e., has high detection rate) and has the smallest
possible cost. Maximizing detection rate and minimizing cost are competing objectives, and
cannot be simultaneously optimized. One approach is to minimize a single unconstrained
objective function: Z = C(P ) + πK(1 −∆(P )), where K is the expected cost of missing a
“bad” case, and as before, π is the a priori probability of “bad” cases. Such a cost K may in-
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clude damage to infrastructure, the economy, and must quantify lives lost, for a catastrophic
event. However, both parameters: π and K, may be difficult to estimate in practice.

Let us observe that this objective consists of two parts of different nature: the term
πK(1−∆(P )) is an expense in the future, and estimates the total expected damage resulting
from the mistake of not detecting a “bad” case. Not only are we unable to reliably estimate
the product πK, in addition, we cannot influence this part of the product. What we can
influence with our choice of a policy is the factor (1 −∆(P )), and the higher the detection
rate we achieve with policy P , the smaller the expected future damage. In contrast, the
other part C(P ) represents a real operating cost together with the cost of false positives,
which we can estimate in the long run much more reliably, and which we can influence by
choosing the right policy P .

Therefore, we consider a natural reformulation of the problem:

max
P∈P
{∆(P ) | C(P ) ≤ B} (16)

where B is a given budget limit for the unit operating cost of the policy, and P is the set of
policies that can be constructed from a given set of elementary tests and terminal actions.
To increase the practical impact of the analysis, we would like to solve Problem (16) for
many different values of the budget B. This will permit a decision maker to evaluate the
marginal gain in safety from a particular budget increase, or determine the lowest budget
achieving a specified safety level, and so on.

Therefore, we view the maximum detection rate which solves Problem (16) as a function
∆(B) of the budget. We seek to determine this function for the entire range of budget values.

For the rest of this paper we assume that π is negligible in comparison with 1. 2. This
assumption further simplifies C(P ), and the analysis:

C(P ) =
∑
i∈C(D)

gi(D)[c(Ti(D)) + x(i, I)(1 + E)]. (17)

We note that this assumption is not necessary for our analysis, but the algebra of the
proofs becomes much simpler.

We are now ready to formulate our main problem and to state our main results.

The Discrete Inspection Problem

Input: Consider a set T of N elementary tests and the set A = {R, I} of terminal actions,
given as in Section 2, and denote by P the family of all non-repeating policies using
these test and terminal actions.

Task: Determine the function ∆(B), for B ∈ [0, 1], defined by the optimization problem (16).

2An alternative assumption, which may lead to a similar simplification, is that E is very large E >> 1.

13



Our main result is that, in fact ∆(B) is a piecewise linear function defined by a finite set
of deterministic policies P∗ = U∗(P). We provide an efficient algorithm to determine these
policies, and develop an upper bound on the size of P∗.

4 Monotonicity of Optimal Policies

Our plan to solve the Discrete Inspection Problem is to build iteratively more and more
complex devices from simpler ones, in an optimal way. The initial steps are the elementary
actions. In a general step, we have some already generated policies and we include all of
them in the set A of actions. We now want to prefix a given device D = {(bi, gi, Ti) | i ∈ C}
to a policy with these actions in an optimal way. Let us recall, by definition that a policy
P = (D, x) involves a device D and an assignment x : C(D) × A → [0, 1] of actions to its
channels.

To guide our reasoning, we first observe certain properties of optimal policies.

Lemma 1 (Monotonicity) Assume that x∗ : C(D) → [0, 1]A satisfies (13) (no-repeats)
and yields an optimal policy P = (D, x∗) that has the largest ∆(P ) among all policies of the
form P = (D, x) for which C(P ) ≤ B. Then, for any pair of channels i and j for which
bi/gi > bj/gj and pairs of policies p, q ∈ A for which (T (p) ∪ T (q)) ∩ (Ti ∪ Tj) = ∅ and
∆(p) < ∆(q), we must have either x∗(i, p) = 0 or x∗(j, q) = 0.

In other words, if two different actions (policies) could equally be assigned to any of two
channels, then in an optimal assignment we cannot assign the weaker detection rate action
to the channel with a higher b/g ratio, if we have assigned a stronger action to the channel
with the lower b/g ratio.
Proof. Note that the feasibility conditions give the relation, for any channel and policy, that
the fraction of the bad items detected by assigning policy r to channel k, is the product
bk∆(r), and thus we can write

∆(P ) =
∑
r∈P

∑
k∈C

x∗(k, r)bk∆(r).

Analogously, the cost of policy P can be written as

C(P ) = C(D) +
∑
r∈P

∑
k∈C

x∗(k, r)gkC(r).

Now, assume to the contrary our claim that both x∗(i, p) > 0 and x∗(j, q) > 0, and let
us now choose two, suitably small positive parameters ε and ε′ which satisfy

εgi = ε′gj. (18)

Let us next define a new policy P ′ by changing

x′(i, p) = x∗(i, p)−ε x′(i, q) = x∗(i, q)+ε x′(j, p) = x∗(j, p)+ε′ and x′(j, q) = x∗(j, q)−ε′,
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and letting x′(k, r) = x∗(k, r) for all other combinations of k ∈ C and r ∈ A. By our
assumption and by the choice of ε and ε′, these values are nonnegative, and hence they
define a new policy P ′. We have

C(P ′)−C(P ) = −εgiC(p)+εgiC(q)−ε′gjC(q)+ε′gjC(p) = (C(p)−C(q))(ε′gj−εgi) = 0

by (18). Furthermore we have

∆(P ′)−∆(P ) = −εbi∆(p) + εbi∆(q)− ε′bj∆(q) + ε′bj∆(p)

= (εgi)
bi
gi

(∆(q)−∆(p))− (ε′gj)
bj
gj

(∆(q)−∆(p))

= (εgi)
(
bi
gi
− bj

gj

)
(∆(q)−∆(p))

> 0.

Therefore, P ′ dominates P strictly and hence it could not have been optimal. This contra-
dicts the choice of x∗, and thus proves our claim. �

Corollary 1 Given a device D = {(bi, gi, Ti) | i ∈ C} and the terminal set of actions
A = {I, R}, the best detection ∆ policy that uses the channels of D, and whose cost does
not exceed a given budget B, has an action assignment x that can be determined greedily by
assigning I to channels in their decreasing order of bi/gi, until the budget is exhausted, and
assigning R to the rest.

Let us note that in this optimal action assignment x there is at most one channel i (the
one with the smallest value of bi/gi among those to which we assign action I with a positive
x(i, I) value) where both x(i, I) and x(i, R) may be nonnegative. For all other channels x is
a binary assignment. Let us introduce xα for α = 0, 1 by defining

xα(i, I) = α, xα(i, R) = 1−α, and xα(j, I) = x(j, I), xα(j, R) = x(j, R) for all other channels j 6= i.

Then the policies Pα = (D, xα) for α = 0, 1 are deterministic, assuming that D is determin-
istic, and we have

(D, x) = x(i, I)P1 + x(i, R)P0.

This proves the following corollary.

Corollary 2 Given a device D and a set of actions A, let us denote by P(D,A) the set of
possible policies, i.e.,

P(D,A) = {(D, x) | x : P × A −→ [0, 1]}.

Then for every deterministic device D and for A = {I, R} we have that U∗(P(D,A)) is finite
and consists of only deterministic policies.
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5 Fusion of Tests

Given a new device D (which maybe a single test s) and a set of available actions Ai ⊇ {I, R}
for each of its channels i ∈ C(D), we can create a new policy P by prefixing device D to
these subsets of the available policies. A required condition is (13), that is that Ti∩T (p) = ∅
for assignments x(i, p) > 0. In the following we assume that for all i ∈ C(D) and p ∈ Ai
we have Ti ∩ T (p) = ∅, and do not state it explicitly. Let us note that the sets of actions
may coincide, or have a substantial overlap. For instance, in the important case when D is
a single test s, we can assume without any loss of generality that Ai = A for all i ∈ C(s).
Introducing A = {Ai | i ∈ C(D)}, let us denote by P(D,A) the family of policies one can
create in this way, i.e.,

P(D,A) =

(D, x) | x : C(D)×

 ⋃
i∈C(D)

Ai

→ [0, 1],

satisfies (11) and x(i, p) = 0 for all i ∈ C(D), p 6∈ Ai }

For a specific budget B, the problem of finding the policy P ∈ P(D,A) for which
C(P ) ≤ B and ∆(P ) is the highest, can be stated as:

∆(P ) = max
∑

i∈C(D),p∈Ai

bi∆(p)x(i, p) (19)

Subject to: ∑
i∈C(D),p∈Ai

giC(p)x(i, p) ≤ B − C(D) (20)

∑
p∈Ai

x(i, p) = 1 for each i ∈ C(D) (21)

x(i, p) ≥ 0 for all i ∈ C(D) and p ∈ Ai (22)

We shall solve test fusion for the entire range of possible budget values C(D) ≤ B ≤ 1.
For this we consider policies P which could be built from device D by choosing a binary

assignment x : C(D)×
(⋃

i∈C(D) Ai

)
−→ {0, 1} satisfying (11) and (13). Note that all other

policies corresponding to some optimal non-binary assignment can be obtained by mixing
from the ones corresponding to binary assignments, due to Corollary 2. Then we drop from
this large set all those policies which are dominated by some other policies of this set, and
denote by Q∗ = U∗(P(D,A)) the remaining policies forming the extremal frontier of this
test fusion problem. We know that Q∗ defines a piecewise-linear concave ∆(B) function for
C(D) ≤ B ≤ 1. Let us note that the best policies we can build from policy sets Ai, i ∈ C(D)
and device D is the set P∗ = U∗(A ∪Q∗).

In the Algorithm 2 itself we generate the set of (C(P ),∆(P )) pairs for P ∈ P∗ as well
as the corresponding binary assignments x(i, p) ∈ {0, 1} for all i ∈ C(D) and p ∈ Ai, which
uniquely defines the corresponding policies.
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Algorithm 2 TestFusion(D,A)

Input: A device D = {(bi, gi, Ti) | i ∈ C(D)}, and a family A = {Ai | i ∈ C(D)} of policy
sets, where Ai = {Qi,0, Qi,1, ..., Qi,Mi

} for i ∈ C(D).
Initializations:

(I1) Q∗ ← ∅, k ← 0, δ0 ← 0, and γ0 ← C(D)

(I2) Ci,j ← C(Qi,j) and ∆i,j ← ∆(Qi,j) for all i ∈ C(D) and j = 0, ...,Mi

(I3) vi,j ← (gi(Ci,j − Ci,j−1), bi(∆i,j −∆i,j−1)) for all i ∈ C(D) and j = 1, ...,Mi

(I4) λij ← bi(∆i,j−∆i,j−1)

gi(Ci,j−Ci,j−1)
for all i ∈ C(D) and j = 1, ...,Mi

(I5) j(i)← 0 for all i ∈ C(D)

(I6) x(i, Qi,0)← 1, x(i, Qi,j)← 0 for all i ∈ C(D) and j = 1, ...,Mi, and set P0 ← (D, x)

Assumptions:

(A1) Ti ∩ T (Qi,j) = ∅ for all i ∈ C(D) and j = 0, ...,Mi

(A2) C(D) < 1, 0 = Ci,0 < Ci,1 < · · · < Ci,Mi
= 1, ∆i,0 = 0, and ∆i,Mi

= 1 for all
i ∈ C(D)

(A3) U∗(Ai) = Ai, that is the points {(Ci,j,∆i,j)|j = 0, ...,Mi} form a concave curve,
implying λi1 > λi2 > · · · > λiMi

for all i ∈ C(D)

Main Loop:
while ∃i ∈ C(D) such that j(i) < Mi do
Q∗ ← Q∗ ∪ {Pk}
k ← k + 1
(ik, jk)← argmax

i,j
{λij|i ∈ C(D) and j(i) < j ≤Mi}

(δk, γk)← (δk−1, γk−1) + vik,jk

x(ik, Qik,jk−1)← 0, x(ik, Qik,jk)← 1, and set j(ik) = jk
Pk ← (D, x) (the policy corresponding to the current solution),

end while
Output: The family of policies Q∗.
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To see the correctness of this procedure, that is to see thatQ∗ = U∗(P(D,A)), we provide
both an intuitive and a formal argument.

Our assumptions (A1), (A2), and (A3) make sure that any action p ∈ Ai is feasible to
assign to channel i ∈ C(D), that all action sets Ai, i ∈ C(D) contain the two terminal actions
R and I, and finally that these action sets are sorted in their natural order of increasing
costs and do not contain dominated actions (we note that this assumption is w.l.o.g. since,
by Claim 2, US(Ai) can be found in time O(|Ai|)). Due to these assumptions, we have

∑
i∈C(D)

Mi∑
j=1

vi,j = (1, 1) (23)

implying that the set Q∗ corresponds to a sequence from (C(D), 0) to (1 +C(D), 1). In the
algorithm we sum up the vectors vi,j-s in a decreasing order of slopes. Thus the main iteration
we can also interpret as choosing a channel i ∈ C(D), and then for that i we replace action
Qi,j(i) by Qi,j(i)+1. Thus, we have after every iteration k that j(ik) = jk, and action Qik,jk

is assigned to channel ik in policy Pk. This further implies that (γk, δk) = (C(Pk),∆(Pk))
holds for all iterations k. Furthermore, moving along vector vik,jk can also be interpreted as
considering a mixture of policies Pk−1 and Pk, such that for every ε increase in the total cost
value we get λik,jk extra detection. Since we choose λik,jk as the maximum of all possible
choices, intuitively it is clear that we do the best we can in the process, to get the highest
detection for a given budget.

We can also provide a formal proof for the correctness of the above procedure, by show-
ing that procedure TestFusion(D,A) provides us with an optimal solution to the linear
programming problem (19)–(22).

Claim 3 Assume that our budget is B = (1−α)γk−1 +αγk for some real 0 ≤ α ≤ 1. Let us
run the above algorithm, and stop in the kth iteration, and consider the assignment defined
by

x∗(i, Qi,j) =


0 if (i 6= ik and j 6= j(i)) or (i = ik and j < jk−1 or j > jk)
1 if i 6= ik and j = j(i)
1− α if i = ik and j = jk−1

α if i = ik and j = jk

Then x∗ is an optimal solution of the LP (19)–(22). In other words, the policy P ∗ = (D, x∗) =
(1− α)Pk−1 + αPk is optimal in the problem

max{∆(P ) | P ∈ P(D,A), C(P ) ≤ B}.

Let us note that any budget value C(D) ≤ B ≤ 1+C(D) is of the form claimed in the above
Claim for some iteration k and real 0 ≤ α ≤ 1, due to (23).
Proof. It is immediate to verify that x∗ is a feasible solution in the LP (19)–(22), and that it
defines the policy P ∗. Furthermore, due to the facts that C(Pk−1) = γk−1 and C(Pk) = γk, we
have equality in the budget constraint (20). According to the theory of linear programming,
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to prove that x∗ optimal, it is enough to show a dual feasible solution, which has the same
objective value. To this end, let us first consider the dual problem:

minW = y(B − C(D)) +
∑
i∈C(D)

zi (24)

Subject to:

ygiC(p) + zi ≥ bi∆(p) for all i ∈ C(D) and p ∈ Ai (25)

y ≥ 0 (26)

Let us now fix y∗ = λik,jk , and define

z∗i = max
p∈Ai

bi∆(p)− y∗giC(p).

It is immediate to see that this defines a feasible solution to the above dual LP.
Since we sum up the vi,j vectors in decreasing slope order, we have

z∗i =

{
bi∆i,j(i) − y∗giCi,j(i) if i 6= ik
bik∆ik,jk−1

− y∗gikCik,jk−1
= bik∆ik,jk − y∗gikCik,jk if i = ik.

(27)

Let us note that these (i, p) pairs appearing in the above formula are exactly those for which
x∗(i, p) > 0. Thus we can rewrite W ∗ = y∗(B − C(D)) +

∑
i∈C(D) z

∗
i as

= y∗(B − C(D)) +
∑

i∈C(D)
i 6=ik

z∗i + (1− α)z∗ik + αz∗ik

= y∗(B − C(D)) +
∑

i∈C(D)
i 6=ik

(
bi∆i,j(i) − y∗giCi,j(i)

)
+ (1− α)

(
bik∆ik,jk−1

− y∗gikCik,jk−1

)
+ α (bik∆ik,jk − y∗gikCik,jk)

= y∗(B − C(D)) +
∑

i∈C(D)
i 6=ik

x∗(i, Qi,j(i))
(
bi∆i,j(i) − y∗giCi,j(i)

)
+ x∗(ik, Qik,jk−1

)
(
bik∆ik,jk−1

− y∗gikCik,jk−1

)
+ x∗(ik, Qik,jk) (bik∆ik,jk − y∗gikCik,jk)

= y∗

B − C(D)−
∑

i∈C(D)
i 6=ik

x∗(i, Qi,j(i))giCi,j(i) − x∗(ik, Qik,jk−1
)gikCik,jk−1

− x∗(ik, Qik,jk)gikCik,jk


+

 ∑
i∈C(D)

i 6=ik

x∗(i, Qi,j(i))bi∆i,j(i) + x∗(ik, Qik,jk−1
)bik∆ik,jk−1

+ x∗(ik, Qik,jk)bik∆ik,jk


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Since all other components of x∗ are zero, and since x∗ is a solution satisfying the budget
constraint (20) with equality, we haveB − C(D)−

∑
i∈C(D)

i 6=ik

x∗(i, Qi,j(i))giCi,j(i) − x∗(ik, Qik,jk−1
)gikCik,jk−1

− x∗(ik, Qik,jk)gikCik,jk


= B − C(D)−

∑
i∈C(D)
p∈Ai

x∗(i, p)giC(i, p) = 0

Furthermore, using again that all other components of x∗ are zero we have ∑
i∈C(D)

i 6=ik

x∗(i, Qi,j(i))bi∆i,j(i) + x∗(ik, Qik,jk−1
)bik∆ik,jk−1

+ x∗(ik, Qik,jk)bik∆ik,jk


=
∑

i∈C(D)
p∈Ai

x∗(i, p)bi∆(i, p).

Thus we can conclude that
W ∗ =

∑
i∈C(D)
p∈Ai

x∗(i, p)bi∆(i, p),

showing the the dual solution (y∗, z∗) has the same objective function value as the primal
x∗, implying by LP duality that x∗ is optimal. �

Next we analyze the complexity of TestFusion(D,A).

Claim 4 The runtime complexity of algorithm TestFusion(D,A) is O(
∑

i∈C(D) |Ai| log |C(D)|)
if all sets Ai are given in sorted order.

Proof. Since by our assumption (A3) we have all the λi,j, j = 1, ...,Mi values sorted for all
i ∈ C(D), we need to merge these sorted lists in order to be able to run the Main Loop.
Merging |C(D)| ordered sets can be done in O(

∑
i∈C(D) |Ai| log |C(D)|) time, and this merging

has to be done only once, at the beginning. All initializations can be done in O(
∑

i∈C(D) |Ai|)
time. The main loop can be executed in O(1) time, and it is executed exactly

∑
i∈C(D) |Ai|

times. Thus the claim follows. �

The linear programming formulation (19)–(22) is a special case of the Linear Multiple
Choice Knapsack problem (LMCK) [16, 18]. In that problem, we are given a collection
of mutually disjoint sets of items, called multiple choice sets. A convex combination of
items must be selected from each set. Each item has a value and a cost. The objective
is to maximize the value of a selected set of items subject to a budget constraint. Sinha
and Zoltners [16] propose a greedy algorithm and characterize the undominated solution
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space of the LMCK. Although Sinha and Zoltners do not make a complexity claim the run
time complexity of their algorithm as stated is O(k2) where k is the total number of items.
Although the algorithm [16] is designed to solve the problem LMCK with a given budget
value, it may be used to find an entire efficient frontier of optimal policies for a range of
costs up to the given budget value. Other algorithms that can be used to generate the entire
frontier have been described in the literature in the context of solving relaxations of different
variants of the integer Multiple Choice Knapsack Problem. Ibaraki, Hasewaga, Teranaka
and Iwase [10] suggest a dual based algorithm for the problem when constraints (21) are
inequalities. Note that this is the case in our application when R ∈ Ai for all i ∈ C(D). The
complexity of their algorithm is O(k lg k). Glover and Klingman [9] also propose an O(k lg k)
algorithm that specializes the dual simplex method for the LMCK problem, and also results
in a greedy algorithm. Zemel [18] generalizes the LMCK problem, to allow knapsack items
that are contained in any multiple choice set, and improves on the algorithm’s complexity.
Zemel’s [18] algorithm involves a transformation of the LMCK instance into the Continuous
Knapsack Problem (CKP). The complexity of the LMCK algorithm [18] is O(k lg kmax) where
k is the total number of items, and kmax is the maximum number of items in a multiple choice
set, when using an O(k) time algorithm (Balas and Zemel) to solve the CKP problem. When
the multiple choice sets are already sorted the greedy algorithm [18] can be used to solve
LMCK in O(k). Zemel suggests using the O(k) algorithm for the CKP, for the sake of the
computational complexity of the LMCK problem for a specific budget value and thus does
not allow one to find the entire efficient frontier. Whether Zemel’s transformation [18] can
be used to find an entire efficient frontier of optimal policies depends on the CKP algorithm
used. We note that it can be used to find the entire frontier when using Dantzig’s greedy
algorithm [5] (see also Kellerer et al. []), with a run time complexity of O(k lg k). Finally,
Pisinger [15] describes a simple greedy algorithm, based on the the algorithms of Sinha and
Zoltner [16] and Zemel [18], with a complexity of O(k lg k).

Although a faster, O(k) algorithm has been found for the LMCK problem, independently
by Dyer and Zemel (see [12]), it does not find the entire curve ∆(C) for C ∈ [C(D), B], as
do the greedy LMCK algorithms [16, 15, 9, 10].

Note that we can view each set of actions Ai available to channel i ∈ C(D) as an LMCK
multiple choice set, and each pair (i, p), of a channel i ∈ C(D) and a policy p ∈ Ai, as a
knapsack item with value bi∆p and cost giC(p). Thus we can apply the greedy algorithm to
solve the above test fusion problem. In our case we have k =

∑
i∈C(D) |Ai| knapsack items.

Therefore, the greedy algorithms that implicitly enumerate the entire efficient frontier [15, 9,
10], or the transformation of Zemel [18] into the CKP when the latter is solved by Dantzig’s
greedy algorithm, all have a worst case complexity of O(

∑
i∈C(D) |Ai| lg

∑
i∈C(D) |Ai|).

Our Algorithm 2 differs from the greedy algorithms [18, 16, 9, 10], in that it explicitly
enumerates the entire curve of efficient policies. We concentrate on a special case of particular
interest in our application of fusing tests; when the sets of actions Ai are already in sorted
order. The algorithm makes use of the fact that our multiple choice sets are ordered by
cost. Of particular interest is the worst case complexity, which is O(

∑
i∈C(D) |Ai| log |C(D)|)

provided that the sets of available actions are sorted by their costs. This is a substantial
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improvement because, generally one finds that |C(D)| << |Ai| for all i ∈ C(D).

Let us make a few remarks in concluding this section. First, in the test fusion application,
when the device D consists only of a single test t, then the action sets will be identical, i.e.,
for all channels i ∈ C(D) Ai = A. When the sets Ai are not given in sorted order we are
able to gain an advantage in the runtime complexity compared with the straight forward
application of the LMCK algorithm; in this case we only need to sort a single multiple choice
set (i.e., when the entire set of actions is equal in size to a single multiple choice set). The
ordering of the LMCK multiple choice set elements will be identical for all Ai where i ∈ C(D).
Note that the cost coefficients of the knapsack items only differ by the scaling factor of gi, so
that we get an ordering for all of the remaining multiple choice sets for free in this case. The

runtime complexity would be O(|A| lg |A|) = O
(∑

i∈C(D) |Ai|
lg |C(D)|
|C(D)|

)
. Finally, when we look

for a ”best” policy in terms of a device D and set of actions A =
⋃
i∈C(D) Ai, then we need to

consider only the set U∗(Q∗ ∪ A). While we may have policies P ∈ Q∗ with C(P ) > 1 (this
is because we focused on proving that we get all optimal solutions to the LP, which makes
sense for budget values C(D) ≤ B ≤ 1 + C(D)), those will be dominated by U∗(Q∗ ∪ A).
As a consequence we can speed up TestFusion(D,A) somewhat by replacing the WHILE
condition in the Main Loop by ”WHILE γk < 1”. This change will not affect our worst case
time complexity, though.

6 A Dynamic Programming Algorithm

The TestFusion algorithm of the previous section essentially merges |C(D)| efficient frontiers,
one for each i ∈ C(D), into a single efficient frontier of policies that use device D as the root.
We are going to use now this procedure in a recursive scheme to build the frontier of policies
based on larger and larger subsets of the available tests. We will apply TestFusion(D,A)
for the case when D = t is a single test and when we have Ai = A for all i ∈ C(t), and we
denote this application as TestFusion(t, A).

For a subset T ⊆ T of the available tests let us denote by AT the set of un-dominated
deterministic policies that use only tests from the set T and use the two terminal actions I
and R. By definition, we have A∅ = {I, R}. Note that we have previously denoted the set of
tests involved in policy P as T (P ). Given a set of tests T in Algorithm 3, T (P ) = T for all
polices for which the set T is available. This is although, in general, for P ∈ AT and t ∈ AT ,
where P = (D,X), it may be that t /∈ Ti for all i ∈ C(D) s.t. bi > 0. I.e., the tests T are not
in fact used by all policies in AT . In other words, our domination Definition 4 pertains to
the set of tests T that are available to policy P , rather than to tests that are actually used
and contribute to its detection rate.

Due to Claim 3 and the fact that in each main iteration for a subset of size k the input is
the frontier for a subset of size k−1, which we have generated earlier, Frontier(T ) generates
the frontier of all policies that may be obtained from the given set tests T . For the running
time of this procedure we have the following estimate.
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Algorithm 3 Frontier(T )

1: Input: A family of tests T , and two terminal actions I and R.
2: Initializations: A∅ ← {I, R} and N = |T |
3: Main Loop:
4: for k = 1, ..., N do
5: for all subsets T ⊆ T of size |T | = k do
6: for all tests t ∈ T do
7: BT,t ← TestFusion

(
t, AT\{t}

)
8: end for

9: AT ← U∗

(⋃
t∈T

(BT,t ∪ AT\{t})

)
10: end for
11: end for
12: Output: AT .

Claim 5 Let M = maxt∈T |C(t)|, L = maxT⊆T |AT |, and N = |T | as before. Then Frontier(T )
runs in O(2NNM logML) time.

Proof. O(2NN) TestFusion problems are needed to be solved for the 2N possible subsets of
tests. The complexity of each of the TestFusion applications is bounded by O(LM logM),
since we maintain the action sets AT in sorted order. By Claim 2, the complexity of UpperHull

is bounded by O(V ) so that the complexity of both UpperHull and taking the union in
step 9 are dominated by the complexity of TestFusion and the total runtime complexity is
O(2NNM logML). �

It might be the case that the decision maker also needs to consider a constraint on the
number of tests that can be conducted in any sequence. For example this may be necessary
in order to control delay, or may be due to some physical layout limitations. The dynamic
programming algorithm can be easily extended to solve the inspection problem subject to a
height constraint, by simply stopping when |S| reaches the specified limit.

Let us finally add a some remarks about improving efficiency. Clearly, in the Main Loop
in iteration k we use results for subsets of size k − 1. Thus, in Iteration k we need only
these results, that is all sets of policies AS for |S| < k− 1 can be deleted. This substantially
reduces the memory requirement of the algorithm, though it does not change the worst case
time or space complexities.
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7 An Upper Bound on the Size of the Extremal Fron-

tier

There are simple bounds available for the number of binary decision trees (see e.g., Stroud
[17]), and those can easily be extended to higher branching factors (see (1) in Section 1). We
now proceed to derive a tighter upper bound on the size of the extremal frontier consisting
only of the efficient deterministic policies.

Theorem 1 Given a set of tests T and terminal actions A = {I, R}, there exists determin-
istic policies P0 = R, P1, ..., PL such that the extremal frontier of policies obtainable from
T and A is a piecewise linear concave functions defined by the breakpoints (C(Pj),∆(Pj)),
j = 0, 1, ..., L, and where

L ≤ (|T |!)
∏
t∈T

(1 + |C(t)|).

Proof. As we observed above, we start with a deterministic policy consisting only of a single
channel and no tests. Then for each TestFusion we create a sequence of deterministic policies.
Thus, after the finite set of tests is exhausted, AT must also consists only of deterministic
policies. In each step we have only finitely many, and thus the algorithm TestFusion produces
again finitely many, proving that AT is finite.

To prove the cardinality claim, we observe first that |A∅| = 2. Thus, in this first stage,
when computing fusion with single tests t, we will have at most 1 + |C(t)| many tests (which
are also policies) in B∅,t, and thus

|AS| ≤
∏
s∈S

(1 + |C(s)|) ≤ |S|!
∏
s∈S

(1 + |C(s)|) (28)

follows for all subsets S of tests having size |S| = 1. In a general step the root test t ∈ T
has |C(t)| channels and for each channels we have |AT\{t}| possible actions. Thus

|BT,t| ≤ 1 + |C(t)||AT\{t}| ≤ (1 + |C(t)|)|AT\{t}|

follows, and thus in the merging phase we get

|AT | ≤
∑
t∈T

(1 + |C(t)|)|AT\{t}| = |T |!
∏
t∈T

(1 + |C(t)|)

proving that (28) holds for all subsets T ⊆ T . �

Let us remark that in practice the number of policies on the extremal frontier is much
smaller than this upper bound, and thus the procedure terminates much faster than the
worst case bound established in Theorem 1.
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8 Computational Results

We demonstrate our computational results using randomly generated sensors and a set of
sensors suggested by Saeger and Stroud as described by Boros et al. [4]. We run all compu-
tational experiments on a machine with an Intel Xeon 3.0 GHZ CPU and 6 GB of RAM.

8.1 Randomly Generated Tests

Computational results for randomly generated sensors (tests) are shown in Table 8.1, Table
8.1 and Table 8.1, for two, four and ten channel configurations, respectively. The sensor
cost is selected uniformly at random from the interval [0, 0.15] while the complete inspection
cost is set at c(I) = 1. Each bi (similarly gi) is generated sequentially, and chosen uniformly
at random from the remaining interval [0, 1 −

∑
i∈C bi] (respectively [0, 1 −

∑
i∈C gi]). For

each configuration of sensor number and channel number, 20 fold experiments are run, using
different sets of randomly generated sensors.

Sensors Vertices Runtime

Max Avg S. Dev Max Avg S. Dev

2 5 3.85 .81 .72 .055 .16
3 9 6.10 .07 .13 .06 .02
4 15 7.55 3.14 .18 .16 .01
5 28 11.30 5.67 .53 .45 .04
6 43 16.20 9.25 1.46 1.18 0.13
7 73 25.55 15.99 4.11 3.12 0.39
8 212 48.35 44.19 15.43 9.23 1.99
9 323 53.25 68.55 39.91 20.99 6.23
15 1801 337.20 433.90 7807.71 3563.68 1522.28

Table 1: Computational results, including number of vertices of the efficient frontier and
running times (in seconds), for randomly generated sensors with 2 channels.

8.2 BKFSS Gaussian Distribution Sensors

Boros, Fedzorah, Kantor Saeger and Stroud demonstrate computational results for the linear
programming formulation using 4 sensors, characterized by different Gaussian distributions
of “good” and “bad” cases [4]. The sensors are described in more detail in Appendix A.

Boros et al. compute the minimum cost decision tree mixture that achieves a detection
rate of 81.5%. Boros et al. provide running times up to a branching factor (i.e., number of
channels) of 7. With 7 channels per sensor, they find that the LP solver running time exceeds
1975 secondes. They are able to run experiments with up to 8 channels and find that the
minimum cost policy with 8 channels, and overall in their experiments, has a cost of $12.06.
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Sensors Vertices Runtime

Max Avg S. Dev Max Avg S. Dev

2 16 11 2.94 .02 .02 .003
3 47 27.35 10.82 .10 .08 .01
4 177 91.00 47.62 .47 .34 .07
5 364 164.30 98.79 1.88 1.21 .34
6 1127 438.55 268.67 8.33 5.22 1.58
7 4848 1385.20 1330.73 67.33 26.27 16.49
8 16416 4098.6 4119.8 578.20 149.40 134.79
9 17178 9076.50 4793.70 2214.30 1139.70 621.33

Table 2: Computational results, including number of vertices of the efficient frontier and
running times (in seconds), for randomly generated sensors with 4 channels.

Sensors Vertices Runtime

Max Avg S. Dev Max Avg S. Dev

2 67 31.3 17.48 .07 .05 .01
3 609 230.00 158.94 .93 .49 .20
4 5704 1295.70 1353.35 37.35 10.22 8.44
5 9972 3322.9 2631.29 439.66 120.97 124.89
6 36910 10172.20 7897.17 8041.53 1727.36 2021.90

Table 3: Computational results, including number of vertices of the efficient frontier and
running times (in seconds), for randomly generated sensors with 10 channels.

With the same 7 channels per sensor we compute the entire efficient frontier consisting of
1747 deterministic policies (i.e., vertices) in 4.25 CPU seconds. With 8 channels per sensor
we are able to compute the entire efficient frontier, consisting of 2748 vertices, in 7.91 seconds.
The efficient frontier with 8 channels per sensor is shown in Figure 5.

We have also run experiments using a different discretization scheme of the continuous
ROC curve. We discretize the curve by choosing the break-points so that the maximum
relative error never exceeds a given error parameter ε. Following this scheme a different
number of channels may be used for each sensor. The resulting number of channels, number
of vertices on the efficient frontier and running time as measured by CPU seconds are shown
in Table 8.2. With an ε of .1% we find on the efficient frontier pure inspection policy with
a detection rate that exceeds 81.5% and cost of $11.87 which is lower than the least cost
(mixed) policy found by Boros et al.. This inspection policy is shown in Figure 6.
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Figure 5: The entire efficient frontier computed for the BKFSS sensors using the Frontier
dynamic programming algorithm (Algorithm 3, and the same set of seven thresholds (eight
channels) used by Boros et al. [4]. The minimum cost policy achieving detection of 81.5% cor-
responds to the point (.02, .815) on the curve. (Since the cost of inspection $60 is normalized
as the unit of measurement, the policy’s cost is, in fact $12.06.)

ε Number of channels Vertices Runtime

1.0% (8,14,6,3) 1567 8.10
.9% (8,14,6,3) 1589 8.26
.8% (8,15,6,3) 1683 8.97
.7% (9,16,6,3) 2004 11.11
.6% (9,17,7,3) 2341 15.53
.5% (10,19,7,3) 2811 22.05
.4% (11,21,8,4) 5635 55.09
.3% (13,24,9,4) 8710 118.10
.2% (15,29,11,4) 13905 311.66
.1% (21,40,15,6) 52477 3998.13

Table 4: Computational results, including number of vertices of the efficient frontier and
running times (seconds), for the BKFSS sensors.

9 Conclusions and Future Research

We have considered inspection systems as mixtures of decision trees, with no a priori con-
straint on branching factor, or number of channels the each test (or device) labels. We have
shown a monotonicity property of optimal inspection policies. We find that the monotonic-
ity property, Lemma 1, and more specifically Corollary 1, is constructive in finding optimal
inspection policies in the special case of assigning only terminal actions to a given device.

In general we find that optimally assigning actions to the channels of a device can be
modelled as a Linear Multiple Choice Knapsack problem. In the special case of interest we
are able to solve the corresponding variation of the knapsack problem faster than previous
algorithms that solve the more general problem. When the diagnostic tests (e.g. sensors)
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Figure 6: A pure inspection policy, using the BKFSS sensors, found using the selection
of thresholds corresponding to a maximum relative error of ε = .1% with respect to the
continuous curve. This pure inspection policy has a cost of $11.87 and a detection rate of
81.53%. The diagram shows a condensed representation of the decision tree; the decision
rules associated with each sensor and each branch may contain conditions with respect to
the previous sensor encountered along the path.

are stochastically independent, we can use a dynamic programming algorithm, which proves
to be very fast in practice for the numbers of sensors that are currently considered in the
container inspection problem.

The algorithm’s worst case complexity is the product of an exponential in the number of
sensors, and a polynomial in the number of vertices of the efficient frontier (over all subset
of sensors). We are able provide an upper bound for the number of vertices of the efficient
frontier in terms of the number of channels of all tests which is tighter than previous bounds
given for the total number of policies (in the case of binary decision trees) [17].

The algorithm’s running time in practice is significantly faster than that of the linear
programming approach [4]. This is while the algorithm provides an entire curve of efficient
policies and not just the best inspection policy for a specific budget. Generating an entire
efficient frontier of inspection policies supports sensitivity analysis, as well as the direct
computation of any linear or nonlinear function over the efficient set. Although the number of
points on the efficient frontier can grow exponentially large in the worst case, our experiments
find that the size of the frontier remains manageable in practice.
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A The BFKSS Sensors

Saeger and Stroud suggest probability distributions of sensor readings for the “good” and
“bad” type of shipping container populations, for four different hypothetical sensors. In
Figure 7 we show the key characteristics of these sensors, which are used in the calculations
reported in Section 8.2, and by Boros et al. [4]. Each sensors is described initially by two
conditional probability distributions in the “signal space”. We convert them (numerically)
to ROC curves, and then, using the specified cost, to cost-detection curves. In choosing the
breakpoints to replace these continuous curves by a finite number of linear components, we
consider the relative error of the piecewise linear approximation to the ROC Curve.
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Figure 7: The 4 sensors given in [4] described by the probability distributions in the signal
space, ROC curve and cost-detection curve. A discretization of the cost-detection curve is
given by a piecewise linear function approximating the curve, with maximum relative error
of 1%.
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B A Practical Speed-up of the Dynamic Programming

Algorithm

As mentioned in section 6 it is possible to gain a practical speed up by not taking the
union with the previous frontier at each iteration in each stage of the dynamic programming
Algorithm 3. We prove the sufficiency of taking the union with {(0, 0), (1, 1)} instead of
taking the union with the entire frontier AT\{t} in each iteration of the algorithm.

Claim 6 In step 9 of Algorithm 3, for all T ⊆ T ,

AT = U∗

(⋃
t∈T

BT,t ∪ AT\{t}

)
= U∗

(⋃
t∈T

BT,t ∪ {0, 1}

)
= A′T

where AT is the correct extremal frontier, using only tests in T , and which is computed by
Algorithm 3.

Proof. We prove AT = A′T by induction.

For |AT | = |A′T | = 1, the claim is trivially true since A∅ = {0, 1}.

In the inductive hypothesis we assume, AT\{t} = A′T\{t} for all t ∈ T .

Note that it is sufficient to prove AT ⊆ A′T ; AT is the true extremal frontier containing
all undominated policies, so that applying U∗(·) (UpperHull) ensures that AT 6⊂ A′T .

To prove AT ⊆ A′T , assume p ∈ AT but p /∈ A′T . p /∈ A′T implies p /∈ {(0, 0), (1, 1)}, so
|T (p)| ≥ 1 and we can write w.l.o.g. p = (a,X) where a is the root test. Further assume
w.l.o.g. that a is fused with policies p1, ..., pl ∈ A′T\{a}. Then by the inductive hypothesis
p1, ..., pl ∈ AT\{a}. In step 7 of the algorithm, a will be considered as the root test for
TestFusion with the set of actions A′T\{a}, and thus p ∈ BT,a. But p /∈ A′T implies that p is

dominated by another (mixed) policy q in step 9 of the algorithm. This is a contradiction
with the correctness of AT . �
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