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ABSTRACT

We model the task of interdomain routing—the task of connecting the networks that com-
pose the Internet—as an iterative, highly distributed, asynchronous game. Unlike previous
examinations of this game that assumed quasi-linear utilities, we assume that each node
has a quasi-bilinear utility depending not only on the route it believes it is assigned in the
outcome, but also on other nodes assigned to route through it. This more realistic model
captures out-of-band business relationships that may affect nodes’ behavior in the game and
the difficulty of monitoring traffic flows on the Internet. We show by example that condi-
tions that guarantee incentive compatibility when utility does not depend on signaling do
not provide this assurance in the model we study. We also extend the Stable Paths Problem
to decouple forwarding from signaling and show that this allows stable signaling solutions to
have forwarding loops, and we give a sufficient condition to prevent this. Finally, we provide
positive results about incentive compatibility when using utility functions that depend on
both forwarding and signaling; this relies on nodes having next-hop policies (so that their
forwarding preferences depend only on the next hops of available routes) and certain other
assumptions. In conjunction with these results, we provide examples of networks that violate
these conditions and in which nodes have incentive to lie about their chosen paths.
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1 Introduction

The Internet comprises many subnetworks, called Autonomous Systems (ASes), that are
administered by independent entities. Most Internet traffic is destined for an AS other than
the one in which it originates; because most ASes are not directly inter-connected, traffic
often traverses several subnetworks on its path from source to destination. The routes used
to forward traffic depend on a composition of decisions made throughout the Internet, which
depend on information exchanged among ASes. The task of determining these routes is
called interdomain routing, and the protocol currently used to exchange information for that
purpose is called the Border Gateway Protocol (BGP).

The process as prescribed by BGP is asynchronous and iterative: Each time an AS
learns new information about available routes, it recalculates its best option based on its
own preferences and alerts neighboring ASes of its choice. A stable route assignment is
reached if this process converges to a point at which each AS has chosen its best available
option, and no route changes are announced. Thus, interdomain routing can be modeled
naturally as a multi-round game [LSZ06] in which nodes make strategic choices about what
route to use to forward data and what routes, if any, to signal to neighbors for them to
use; a stable route assignment is a Nash equilibrium of the game. (A discussion of various
equilibria and related game-theoretic concepts is given in Appendix A.) While an AS’s
forwarding choice affects the path taken by traffic from that AS to the destination, an AS’s
signaling action affects the flow of traffic from other ASes because signaling announcements
are how other ASes learn about potential routes they can use.

Physical inter-AS connections related to long-term, out-of-band business relationships
that are often predicated on assumptions about traffic flow between ASes [Hus99]. An AS
may thus want traffic to flow in ways that match certain assumptions in order to benefit from
these relationships. An AS may also want to engage in ingress traffic engineering, distributing
incoming traffic among various connections for maintenance or cost reasons [YXW+05], or
it may want to maliciously snoop on other traffic in the network. In light of these factors,
utility functions in the interdomain routing game should consider incoming traffic in order
to most realistically model the real-world incentives of ASes. However, in previous game-
theoretic analyses of interdomain routing a node’s utility was defined to depend only the
route that its traffic takes (which might differ from the route that the node selects) and,
possibly, payments from a mechanism. Using that general approach, it has been shown that
following BGP as prescribed—choosing the best forwarding option based on one’s preferences
and signaling that route to others—is (1) incentive compatible in ex-post Nash and welfare-
maximizing with certain policy restrictions [FRS06] and (2) incentive compatible in ex-post
Nash if certain security assumptions hold [LSZ06]. We show here by example that these
conditions no longer guarantee incentive compatibility (in ex-post Nash) when our utility
functions, which also depend on incoming traffic, are used. Our utility functions also differ
from earlier work in that they depend on the route selected by a node and not the route
taken by data; we believe this more realistically captures nodes’ motivation.

From a networking perspective it is also realistic to decouple forwarding from signaling.
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Internet forwarding is destination-based, and once packets are sent to the next router along
their path to the destination, the packets become the next router’s responsibility. There is
no mechanism for the source of a traffic flow to have control over the actual path followed,
and it is difficult to detect the path actually taken [PS02]. Not only is it possible for the
route actually by data to differ from the route apparently taken (i.e., the route selected),
but this is actually seen in the Internet [MRWK03].

This motivates our work here, in which we examine the interdomain-routing game with
quasi-bilinear utilities that have separate components for forwarding and signaling. As
mentioned above, conditions that guarantee incentive compatibility when utility does not
depend on signaling do not provide this assurance in the model we study. In the rest of
this section, we first discuss related work and then provide a detailed summary of our work,
which includes positive results both for the static analysis of policies and for the interdomain-
routing game.

1.1 Related work

The interdomain-routing problem and BGP have been studied from both networking and
game-theoretic perspectives. A static model for the interdomain-routing problem, called the
Stable Paths Problem, was introduced by Griffin, Shepherd, and Wilfong [GSW02]. They
showed that determining whether or not a stable route assignment exists (i.e., whether or
not playing the interdomain-routing game by following BGP would converge to a stable
forwarding tree) is NP-complete. However, they gave a condition on nodes’ preferences
sufficient to guarantee that a unique, stable route assignment exists—akin to a Nash equilib-
rium for the interdomain-routing game. This condition involves the absence of a structure
called a dispute wheel that involves the relative preferences of various paths in the network.
Checking that an SPP instance is dispute-wheel free requires complete knowledge of nodes’
preferences, which is unrealistic in the Internet. Gao and Rexford [GR01] showed that if
nodes’ preferences were dictated by business relationships that underlie today’s commercial
Internet [Hus99], running BGP would guarantee reaching a stable route assignment. Follow-
up work showed that those assumptions on nodes’ preferences precluded the existence of a
dispute wheel [GGR01].

Feigenbaum et al. [FPSS05] introduced an efficient, distributed, strategyproof mechanism
for computing lowest-cost routes in which nodes’ private information is a per-packet transit
cost. This mechanism relies on using VCG payments to incentivize nodes. Without the
dispute-wheel freeness conditions on nodes’ preferences, generalizing the mechanism beyond
lowest-cost routing led mainly to negative results [FKMS05,FSS04], showing that obtaining
welfare maximization is hard. (In general, any metric-based preference implies that there
is no dispute wheel [FRS06].) Welfare maximization was also studied from a networking
perspective in [Sob03], in which routing-policy constraints were identified that permitted a
“globally optimal” route assignment.

The first positive result towards more general welfare-maximizing mechanisms for inter-
domain routing appeared in work of Feigenbaum et al. [FRS06], which combined the net-
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working and mechanism-design approaches. They showed that if three properties (including
no dispute wheel) hold on nodes’ preferences, following BGP leads to a welfare-maximizing
route allocation; in addition, following BGP is incentive compatible in ex-post Nash equi-
librium. Unlike the lowest-cost-route mechanism of [FPSS05], no payments are required
when nodes’ utilities are positive (i.e., when no node incurs a cost to participate). Levin
et al. [LSZ06] strengthened this result, showing that following BGP is incentive compatible
in ex-post Nash equilibrium when only the dispute-wheel-freeness condition holds on nodes’
preferences, as long as nodes are not able to announce routes that do not exist (a property
called route verification). These results assume that a node’s utility is based only on that
node’s forwarding route; in particular, signaling actions are assumed not to affect a node’s
utility unless it changes the forwarding route.

Earlier work in network security points out the difficulty of route verification and traf-
fic detection. Various work—e.g., [KLS00]—studies the threat of injecting false routes into
the interdomain-routing process and includes proposed protocol changes to prevent it; how-
ever, many of these proposals require deployment of a private-key infrastructure, something
that has been met with resistance. Padmanabhan and Simon [PS02] outline the threat of
thwarting traces to detect what route traffic actually follows; again, their tools require de-
ployment of a secure routing infrastructure. These difficulties motivate the examination of
an interdomain-routing model that includes the ability to take advantage of these threats in
a strategic way.

1.2 Our contributions

We start by extending the Stable Paths Problem (SPP) to a new framework, the Forward-
ing/Signaling-Stable Paths Problem (FS-SPP), in a way that decouples the forwarding and
signaling actions that are distinct in real-world routing. This allows for a static analysis
of policies in a way that better models the possible actions of ASes. We translate the
dispute-wheel-freeness condition to a natural analogue that guarantees signaling stability in
FS-SPP. Unlike the original SPP, our new model allows stable signaling solutions that still
have forwarding loops in which data is forwarded endlessly without reaching the destination
(this requires nodes to lie about their routes and thus cannot be modeled in SPP). We define
a condition, similar to dispute-wheel-freeness but without a direct analogue in SPP, that
precludes stable signaling solutions with forwarding loops.

We translate the Gao-Rexford constraints on SPP to our new framework by considering
the motivation that makes these constraints “natural” in today’s Internet. We show that
if the resulting constraints are satisfied by an FS-SPP instance, then any stable signaling
solution for that instance will not have forwarding loops; however, these natural constraints
are no longer enough to guarantee robust signaling. This provides additional motivation to
study the incentive compatibility of truthful signaling.

Motivated by this static analysis and the intrinsic interest of having a more realistic
economic model for network routing, we introduce utility functions in which forwarding and
signaling actions can be decoupled for benefit (which we call quasi-bilinear utilities). In
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this setting, we consider the incentive compatibility of BGP in the ex-post Nash solution
concept. We show that following BGP is not incentive-compatible with quasi-bilinear utilities
in networks missing any of the properties (e.g., dispute-wheel freeness) needed for the positive
results (with quasi-linear utilities) of [LSZ06,FRS06]. We give several examples of negative
results to demonstrate this.

We examine utility functions in which the contribution to an AS’s utility from signaling
actions is based on all nodes whose traffic is carried by the AS (not just neighbors). We
show that following BGP is always incentive compatible when nodes have next-hop policies, if
nodes do not arbitrarily exclude (filter) routes. However, we also show that following BGP is
not always incentive compatible, even with next-hop policies, if nodes are able to arbitrarily
exclude routes. We also examine utility functions in which the signaling contribution to
an AS’s utility depends only on the nodes that forward along routes on which the AS in
question is the next hop (not just appearing at some point on the path). We show that a
node can unilaterally act strategically to add a particular node to this set, but that if the
network does not have a dispute wheel then unilateral strategic action cannot increase the
size of this set (i.e., a strategic node may be able to affect which of its neighbors choose it
as their next hop, but the node cannot increase the total number of such neighbors).

Finally, this work illuminates additional nuances of the relationship between interdomain
routing and incentive compatibility. Decoupling forwarding from signaling leads to a more
precise treatment of filtering, which we study as non-strategic behavior (in keeping with real-
world networks). By looking at positive and negative results, we study the effects of different
policy conditions on incentive compatibility. Not only does our work consider forwarding
utility as only part of the overall utility, but we also shift the focus from the route followed
by data (which is unknown to an AS) to the route chosen by an AS (which we believe is
more closely tied to the ASes’ behavior).

In Sec. 2 we extend SPP to decouple forwarding from signaling and consider the prop-
erties of numerous examples; we also use the motivation for the Gao-Rexford conditions to
describe analogous natural conditions for this new model and describe consequences of these
conditions. In Sec. 3 we briefly review the interdomain-routing game. Sections 4 and 5
present our results for this model with our quasi-bilinear utility functions, the former section
focusing on negative results by example and the latter section focusing on positive results.

2 Extending SPP

2.1 Network model

The Internet topology is given as an undirected graph G = (V, E) in which nodes V corre-
spond to ASes and links E correspond to connections between ASes. Let N(v) be the set of
v’s neighbors, i.e., N(v) = {w ∈ V | (w, v) ∈ E}. Because routes to different destinations are
computed independently, we assume that V contains a predetermined destination node d.

Unless noted otherwise, we only consider simple routes, i.e., routes that are loop-free.
Let Sv represent the simple routes in G from source node v to the destination d, including ε,
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the null route; let S = ∪v∈V Sv be the set of all simple routes. We write routes as a sequence
of nodes from source to destination, e.g., R1 = v1v2 · · · vkd. The next hop of vi along R is
the node appearing after vi in the sequence R, e.g., vk’s next hop on R1 is d. Let next(R)
to be the source node’s next hop along R, e.g., next(R1) = v2. We write xR to denote the
route R extended to x (x to the source node of R, then R to the destination); in general,
QR represents the concatenation of routes Q and R.

The goal is to find a forwarding-route assignment π : V → S such that π(v) is a simple
route from v to d. These routes represent the routes used to send traffic from each AS to
d. Ideally, we want the assignment to be consistent: π should form a confluent tree to the
destination d. Unlike previous work in this area, we make a distinction between the routes
that nodes believe their traffic follows and the routes that nodes actually use to forward
traffic. As we discuss below, inconsistent information exchanged during the routing process
could lead to a perceived forwarding assignment that is a confluent tree, while the actual
forwarding routes form a digraph containing cycles. Because we are concerned about the
potential for data loss resulting from forwarding loops, our goal will be to assign actual
forwarding routes that form a tree.

We argue that without some sort of hardware authentication, a router cannot prove to one
of its neighbors that it is forwarding data along the particular route—i.e., along the physical
link to the next hop of the route—that it is advertising; this argument is based on the
disconnect between the physical data or forwarding plane and the way routes are advertised
in the control or signaling plane. This is compounded by the possibility of thwarting tools
to detect the actual paths of network flows, as outlined by Padmanabhan and Simon [PS02].
Furthermore, while after-the-fact detection of misrouting may be possible, it is not useful if
there is there is significant harm done or loss incurred by a short-term misroute/disruption.
These difficulties provide motivation for our study of when ASes have no incentive to lie
about how they are forwarding data.

2.2 A model for signaling/forwarding

Decoupling of signaling from forwarding cannot be captured by the original definition of the
Stable Paths Problem (SPP) [GSW02] that provides a formal model for analyzing policy in-
teractions in interdomain routing. We define a more general model, the Forwarding/Signaling
Stable Paths Problem (or FS-SPP) as follows.

Definition 2.1. An instance of the Forwarding/Signaling Stable Paths Problem (an FS-SPP
instance) is

• An undirected graph G = (V, E) with a distinguished vertex d.

• For each node v a set Pv of permitted paths to d, each of which starts at v, ends at d,
and does not contain any loops and such that if vuP ∈ Pv and u 6= d, then uP ∈ Pu.

• For each node v and each adjacent node w ∈ N(v), a signaling-preference function
σv,w : Pv → Z.
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• For each node v, a forwarding-preference function φv : Pv → Z.

We will write P for the union of all sets of permitted paths in an instance, Σ for the collection
of signaling-preference functions, and Φ for the collection of forwarding-preference functions;
we will then write (G,P, Σ, Φ) for the instance. Larger values of the various preference
functions indicate routes that are more preferred.

Note that σv,w(P ) is defined even if P is a route that goes through w. It appears that
this is necessary if we want FS-SPP to generalize SPP; in particular, we use it to realize the
SPP Disagree in Example 2.7.

Throughout this section, we use σ and φ for functions related to signaling and for-
warding, respectively; the existence and type of the subscripts determine which aspect of
signaling/forwarding is being considered in a particular context. When subscripted with a
vertex (e.g., φv) or pair of vertices (e.g., σv,u), the function is a preference function; these
are defined on paths and capture the local policies of v (with respect to its neighbor u in the
case of σv,u).

A function φ or σ without subscripts is typically an assignment function (Def. 2.2); this
determines the next-hop for forwarding (φ) or the path signaled by one vertex to another (σ)
and does not depend on the preference functions (although the stability of an assignment
does depend on preferences).

Finally, φσ (Def. 2.2) is a particular forwarding assignment that is induced by the signaling
assignment σ.

Definition 2.2 (Path assignments and solutions). Given an FS-SPP instance (G,P, Σ, Φ),
a signaling assignment for the instance is a partial function σ : V ×V ⇀ P such that σ(v, w)
is defined iff w ∈ N(v), and σ(v, w) ∈ Pv whenever it is defined. For a signaling assignment
σ, we define the set of known paths at v by Kv(σ) = {vσ(u, v)|u ∈ N(v), vσ(u, v) ∈ Pv}.
These are the paths that v learns from its neighbors (i.e., they are announce by v neighbors
and permitted at v). A forwarding assignment is a function φ : V \ {d} → V such that
φ(v) ∈ N(v) for every node v.

We say that a signaling assignment is a (stable) signaling solution if every node v an-
nounces to each of its neighbors w the most-preferred (according to its signaling-preference
function for announcements to w) path that it knows. More formally, σ is a stable signaling
solution if σ(v, w) ∈ Kv(σ) whenever σ(v, w) is defined and

∀Q ∈ Kv(σ), Q 6= σ(v, w) ⇒ σv,w(Q) < σv,w(σ(v, w)).

For a signaling assignment σ, the forwarding assignment induced by σ is obtained by
mapping each node v 6= d to the next hop on v’s most-preferred (according to its forwarding-
preference function) known route; we denote this function by φσ. More formally, for each
v ∈ V \ {d} we choose the route Pv ∈ Pv that satisfies Pv ∈ Kv(σ) and

∀Q ∈ Kv(σ), Q 6= Pv ⇒ φv(Q) < φv(Pv)
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and let φσ(v) = next(Pv). We say that a forwarding assignment φ is loop-free if the digraph on
V whose edges are {(v, φ(v))}v∈V is acyclic. (If φ = φσ, we call this digraph the forwarding
digraph induced by σ, and we denote it by Dσ.) Similarly, we will say that a signaling
assignment σ is (forwarding-)loop-free if φσ is loop-free, and we will say that σ is stable and
loop-free if σ is a signaling solution and φσ is loop-free.

Definition 2.3 (Forwarding and signaling agreement). Given a signaling solution σ, we
say that forwarding and signaling disagree in σ if there is some node that chooses a path
for forwarding but whose data is sent along a different path. More formally, we there is
disagreement in σ if there are two adjacent nodes v and w such that P = σ(v, w), φσ(w) = v,
and φσ(v) 6= next(P ). If there is not disagreement in σ, then we say that forwarding and
signaling agree in σ.

Considering the definitions above, we now consider examples of network instances that
have different combinations of these properties—the existence and multiplicity of signaling
solutions, the presence or absence of forwarding loops, and whether or not forwarding and
signaling agree. Table 1 summarizes the properties of the different examples described in
the remainder of this section.

Example Signaling solutions? Forwarding loops?
None Unique Multiple Yes No; F-S agree?

No Yes
2.4 X X
2.5 X
2.6 X X
2.7 X X
2.8 X X
2.9 X X
2.10 X X

Table 1: Solution characteristics of various FS-SPP examples. Possible characteristics are
whether an instance has no, exactly one, or multiple signaling solutions and, if it does have
one or more signaling solutions, whether the induced forwarding digraphs may have loops
or, if not, whether forwarding and signaling must agree in each signaling solution.

An FS-SPP instance may have a stable signaling solution that is not loop-free. For
example, we may modify the Bad Gadget example of [GSW02] to obtain the following
example, shown in Fig. 1

Example 2.4. d is the destination; the sets of permitted paths are Pd = {d}, P1 = {1d, 12d},
P2 = {2d, 23d}, and P3 = {3d, 31d}; the signaling-preference functions are: σd,v(d) = 1 for
every v 6= d, σ1,3(1d) = 1, σ2,1(2d) = 1, σ3,2(3d) = 1, and all other σu,v(P ) values are 0; and
the forwarding-preference functions are φ1(12d) = 1, φ1(1d) = 0, φ2(23d) = 1, φ2(2d) = 0,
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φ3(31d) = 1, and φ3(3d) = 0. Let σ be defined by σ(d, v) = 0 for all v 6= d, σ(1, 2) = 1d,
σ(2, 3) = 2d, σ(3, 1) = 3d, and σ(i, j) = ε otherwise. The resulting sets of known paths
are Kd(σ) = {d}, K1(σ) = {1d, 12d}, K2(σ) = {2d, 23d}, and K3(σ) = {3d, 31d}; it is easy
to verify that σ is a stable signaling solution. The forwarding assignment induced by σ is
φσ(1) = 2, φσ(2) = 3, and φσ(3) = 1; this produces the cycle 1 → 2 → 3 → 1 in the
forwarding digraph induced by σ.

d
23d
2d3d

31d

σ(2,1)=2d 

v2v3 σ(3,2)=3d

σ(1,3)=1d

v1 12d
1d

Figure 1: Network from Example 2.4

Viewed from a routing perspective, in Example 2.4 each of the non-destination nodes
announces its direct path to the destination (perhaps to gain traffic if there is a per-packet-
profit to be made) while in fact forwarding data through its ‘legal’ non-destination neighbor.
As a result, all traffic is forwarded around the cycle on the outside of the graph until it is
dropped, never reaching the destination.

In general, if for every v ∈ V , w ∈ N(v), and P ∈ Pv we have σv,w(P ) = φv(P ), then
the FS-SPP instance reduces to an SPP instance. As a result, we have that the problem of
deciding whether an FS-SPP instance has a solution is NP -complete: it is easy to verify the
stability of a candidate FS-SPP solution, while SPP is known to be NP -complete [GSW02].

Example 2.5. In Example 2.4, if we let σv,w(P ) = φv(P ) for all v 6= 0 and all permitted
paths P , then we obtain the original Bad Gadget (an instance of SPP) from [GSW02];
this shows that an FS-SPP instance need not have a stable solution.

Example 2.6. We may also modify Example 2.4 by changing the forwarding preferences
to agree with the signaling preferences (so that, e.g., φ1(10) = 1 and φ1(120) = 0). In
the resulting FS-SPP instance the signaling assignment σ defined above is again stable;
with the modified forwarding preferences, the forwarding assignment induced by σ becomes
φσ(1) = 10, φσ(2) = 20, and φσ(3) = 30.

In general, whether or not a signaling assignment is stable for an FS-SPP instance does
not depend on the forwarding-preference function of the instance. However, the forwarding
assignment induced by the signaling assignment does depend on the forwarding-preference
function.

Example 2.7. Figure 2 presents the SPP Disagree [GSW02] as an FS-SPP instance;
let P1 = {1d, 12d}, P2 = {2d, 21d}, σ1,2(12d) = σ2,1(21d) = 1, σ1,2(1d) = σ2,1(2d) = 0,
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φ1(12d) = φ2(21d) = 1, and φ1(2d) = φ2(2d) = 0. This instance has two signaling solutions
σ1 and σ2 defined by: σ1(d, 1) = σ1(d, 2) = d, σ1(1, 2) = 1d, and σ1(2, 1) = 21d; and
σ1(d, 1) = σ1(d, 2) = d, σ1(1, 2) = 12d, and σ1(2, 1) = 2d. For σ1, we have Kσ1(1) = {1d}
and Kσ1(2) = {2d, 21d}; for σ2, we have Kσ2(1) = {1d, 12d} and Kσ2(2) = {2d}. The edges
in the Dσ1 are (1, d) and (2, 1), while the edges in Dσ2 are (2, d) and (1, 2). For both σ1 and
σ2, the induced forwarding digraph is loop-free and each forwarding path (i.e., the paths in
the forwarding digraph) is known by each node along that path.

v1 v2

d

Figure 2: Network from Example 2.7

The following example shows that we may have an FS-SPP with a unique stable solution
and an acyclic induced forwarding digraph that disagrees with the signaled paths.

Example 2.8. Figure 3 shows a four-node network in which d is the destination. Because
1d is the only permitted path at 1, the only nontrivial signaling-preference function is σ2,3;
we take σ2,3(2d) = 0 and σ2,3(21d) = 1. There is then a unique signaling solution σ with:
σ(d, 1) = σ(d, 2) = d, σ(1, 2) = σ(1, 3) = 1d, σ(2, 3) = 21d, and the values of σ(2, 1), σ(3, 1),
and σ(3, 2) irrelevant (but uniquely determined by the signaling-preference functions σ2,1,
σ3,1, and σ3,2). The forwarding digraph induced by σ has edges (1, d), (2, d), and (3, 2);
this disagrees with the signaled paths because φσ(3) = 2, σ(2, 3) = 21d, but φσ(2) = d 6=
next(σ(2, 3)). Switching the values of 2’s signaling-preference function produces an instance
with a different unique solution and agreement.

21d 

1d

31d
321d 2d

d

1v

(2d)=0
2,3

σ
2,3

(21d)=1σ3v 2v

Figure 3: Network for Example 2.8
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If we exchange the values of σ2,3 so that σ2,3(21d) = 0 and σ2,3(2d) = 1, we obtain a
different FS-SPP instance with a unique signaling solution σ̂ that differs from σ in that
σ̂(2, 3) = 2d; we then have φσ̂(3) = 1, so forwarding and signaling agree in σ̂.

We could further modify Example 2.8 by also exchanging the values of φ2 so that φ2(2d) =
0 and φ2(21d) = 1; σ̂ remains the unique signaling solution, but in the forwarding digraph
induced by σ̂, 2 now forwards to 1 instead of to d. This illustrates that a node can lie
about its forwarding in a solution (here σ̂(2, 3) = 2d although φσ̂(2) = 1) but we can still
have forwarding and signaling agree in that solution (because the only node that lies about
forwarding is a leaf node in the forwarding tree).

Example 2.9. Consider the network shown in Fig. 4 with nodes d, 0, 1, 2, 3, where d is the
destination node, and edges {d, i} and {i, i+1} for 0 ≤ i ≤ 3 (with i+1 interpreted modulo
4). Let Pd = {d} and Pi = {id, i(i−1)d, i(i−1)(i−2)d} for 0 ≤ i ≤ 3; let σi,i+1(i(i−1)d) = 2,
σi,i+1(id) = 1, and σi,i+1(i(i − 1)(i − 2)d) = 0 (the other functions σi,v are irrelevant given
Pv as above); let φi(i(i− 1)d) = 1, φi(i(i− 1)(i− 2)d) = 1, and φi(id) = 0. (Note that the
tie doesn’t cause problems because the routes involved all have the same next hop.)

d
32d, 321d 

v2

v3 v1

v0

03d, 032d
0d

21d, 210d 
2d

1d
10d, 103d 

3d

Figure 4: Network for Example 2.9.

This FS-SPP instance has two solutions σe and σo (the superscripts indicate whether the
even or odd nodes are used to forward traffic directly to d). These are defined by σe(d, i) =
d, σe(0, 1) = 0d, σe(1, 2) = 10d, σe(2, 3) = 2d, and σe(3, 0) = 32d, with corresponding
knowledge sets Kσe(0) = {0d, 032d}, Kσe(1) = {1d, 10d}, Kσe(2) = {2d, 210d}, and Kσe(3) =
{3d, 32d}; and σo(d, i) = d, σo(0, 1) = 03d, σo(1, 2) = 1d, σo(2, 3) = 21d, σo(3, 0) = 3d with
corresponding knowledge sets Kσo(0) = {0d, 03d}, Kσo(1) = {1d, 103d}, Kσo(2) = {2d, 21d},
and Kσo(3) = {3d, 321d}.

For both solutions σe and σo, the induced forwarding digraph has exactly the edges
{(i, i− 1)}0≤i≤3; this gives a forwarding loop involving all of the non-destination edges.

We may generalize Example 2.9 to have 2k non-destination nodes (for k ≥ 2) by simply
letting i range over the integers in [0, 2k − 1]. For k ≥ 3, we may modify the forwarding-
preference functions to obtain an FS-SPP instance with multiple loop-free solutions in which
forwarding and signaling disagree as in the following example.
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Example 2.10. Consider the network on d, 0, . . . , 5, shown in Fig. 5, where d is the des-
tination node, and edges {d, i} and {i, i + 1} (interpreted modulo 6) for 0 ≤ i ≤ 5. The
sets of permitted paths and the signaling-preference functions are as in Example 2.9 (now
allowing the parameter i to range over 0 ≤ i ≤ 5). Also as before, we let φi(i(i − 1)d) = 1
and φi(i(i− 1)(i− 2)d) = 1 for 0 ≤ i ≤ 5 and φi(id) = 0 for i = 1, 2, 4, 5; now, however, we
let φ0(0d) = φ3(3d) = 2.

d

 

10d, 104d  

v0

v3 v23d
32d, 321d 21d, 210d 

2d

v1v4

3d
43d, 432d 

04d, 043d
0d

1d

Figure 5: Network for Example 2.10.

There are again two signaling solutions σe and σo. The corresponding knowledge sets
are Kσe(i) = {id, i(i − 1)(i − 2)d} for even i and Kσe(i) = {id, i(i − 1)d} for odd d, and
Kσo(i) = {id, i(i−1)d} for even i and Kσo(i) = {id, i(i−1)(i−2)d} for odd d, with 0 ≤ i ≤ 5
in each case. The edges in Dσe and Dσo are the same: {(0, d), (1, 0), (2, 0), (3, d), (4, 3), (5, 4)}.
This gives disagreement between forwarding and signaling: for σe, we have φσe(4) = 3,
σe(3, 4) = 32d, and φσe(3) = d; for σo, we have φσo(1) = 0, σo(0, 1) = 05d, and φσo(0) = d.

2.3 Basic results about the model

We may extend the basic notion of dispute wheels in SPP instances to account for the
possibility of announcing different routes to different neighbors in an FS-SPP instance.

Definition 2.11 (S-dispute wheel). A signaling-dispute wheel (S-dispute wheel) in an FS-
SPP instance consists of k nodes y0, . . . , yk−1 and k paths R0Q1, . . . , Rk−1Q0 such that:

• for each i, RiQi+1 ∈ Pyi
;

• for each i, Ri is a path from yi to yi+1 (so Qi+1 ∈ Pyi+1
); and

• for each i, if vi is the neighbor of yi on the path Ri−1, then σyi,vi
(RiQi+1) > σyi,vi

(Qi)
(i.e., yi prefers to announce the ‘indirect’ route RiQi+1 to its neighbor on Ri−1 instead
of the ‘direct’ route Qi).

In all of these conditions, we interpret the subscripts modulo k. Note that there is no
requirement that the paths be disjoint, although each permitted path is (by definition)
simple.
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S-dispute wheels in FS-SPP are essentially the same as dispute wheels [GSW02] in SPP—
allowing a node to signal different paths to different neighbors does not affect the preference
criteria that are part of the dispute wheel definition.

Theorem 2.12. If an FS-SPP instance does not contain any S-dispute wheels, then it has
a unique signaling solution.

The proof of Thm. 2.12 is essentially the same as for the analogous result in SPP.

Proof. This is virtually identical to the proof for dispute wheels in SPP [GSW02]—allowing
nodes to advertise different paths to different neighbors does not change the argument.
(Essentially, we start with a node whose announcements to a neighbor oscillates or differs
between two solutions—depending on whether we consider the no or multiple solution case—
and follow the route it prefers to announce until we reach the last node on that path that
oscillates or differs, depending on the case. This node is a pivot, and we iterate until we
close the wheel after some finite number of steps.)

Remark 2.13. We should be able to define signaling dispute digraphs, essentially the same
as dispute digraphs in SPP, whose acyclicity is equivalent to the absence of an S-dispute
wheel in the relevant FS-SPP instance. We do this explicitly below for our new wheel-like
structure in Def. 2.16 and Prop. 2.17.

Wheel-type structures play an additional role when signaling and forwarding are decou-
pled; we will also make use of the following definition, which incorporates both signaling-
preference and forwarding preference functions (in contrast to S-dispute wheels, which use
just the former).

Definition 2.14 (FS-dispute wheel). A forwarding/signaling-dispute wheel (FS-dispute wheel)
in an FS-SPP instance consists of:

• k nodes y0, . . . , yk−1 and

• k paths R0Q1, . . . , Rk−1Q0

such that

• for each i, RiQi+1 ∈ Pyi
;

• for each i, Ri is a path from yi to yi+1 (so Qi+1 ∈ Pyi+1
);

• for each i, φyi
(RiQi+1) > φyi

(Qi) (i.e., yi prefers to forward traffic along the ‘indirect’
route RiQi+1 instead of along the ‘direct’ route Qi); and

• for each i, if vi is the neighbor of yi on the path Ri−1, then σyi,vi
(Qi) > σyi,vi

(RiQi+1)
(i.e., yi prefers to announce the ‘direct’ route Qi to its neighbor on Ri−1 instead of the
‘direct’ route RiQi+1).
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In all of these conditions, we interpret the subscripts modulo k. Note that there is no
requirement that the paths be disjoint, although each permitted path is (by definition)
simple.

Theorem 2.15. If an FS-SPP instance is FS-dispute wheel-free, then every signaling solu-
tion for the instance induces an acyclic forwarding digraph.

Proof. If the instance has no stable signaling solutions then the theorem holds trivially.
Otherwise, let σ be a (not necessarily unique) signaling solution for the instance and assume
that it has a forwarding loop in which xi forwards traffic to xi+1 for 0 ≤ i ≤ m−1 (interpreting
the subscript in xj modulo m); all of these nodes forward traffic for d to another node, so
every xi 6= d. Because xi forwards traffic to xi+1, σ(xi+1, xi) must be a nonempty path and
xiσ(xi+1, xi) must be simple. There must be some i such that σ(xi, xi−1) 6= xiσ(xi+1, xi) (i.e.,
xi announces a route other than the one it thinks it is using for forwarding), otherwise each
node would have a nonsimple path; let i be one such value, and set y0 = xi, P0 = xiσ(xi+1, xi)
(the path that y0 thinks it is using for routing), and Q0 = σ(xi, xi−1) (the path that y0

announces to the node that sends traffic to y0 in the forwarding loop).
Having defined y0 and P0, let y1 be the first node (when moving from y0 to d) xj on P0 such

that σ(xj, xj−1) 6= xjσ(xj+1, xj). (This node must be part of the forwarding loop because
y0 forwards to a node on the forwarding loop, as does that node, etc., so the first node on
the announced route that lies about how it forwards must also be on the forwarding loop.)
Such a node must exist otherwise P0 would go through y0 again. Let P1 = xjσ(xj+1, xj),
R0 = P0[y0,y1], and Q1 = P0[y1,d].

Having defined yi and Pi, define yi+1, Pi+1, Ri, and Qi+1 in the same way that y1, P1,
R0, and Q0 were defined from y0 and P0. By our definition of y0 we must eventually define
yk = y0 for some k (after cycling through all of the nodes xi in the original forwarding loop,
although only those that do not truthfully signal their forwarding path are chosen as yi’s).

By construction, we have φσ(yi) = RiQi+1 and σ(yi, zi) = Qi, where zi is the next
node on Ri−1 moving from yi to yi−1. Because both RiQi+1 and Qi are in Kv(σ), we have
φyi

(RiQi+1) > φyi
(Qi) and σyi,zi

(Qi) > σyi,zi
(RiQi+1); thus, the FS-SPP instance contains

an FS-dispute wheel.

Definition 2.16 (FS-dispute digraph). Given an FS-SPP instance, its FS-dispute digraph
(FS-DDG) is the digraph on the set P of all permitted paths from the instance whose edges
are defined by the relations

P1 � P2 if P2 = vP1 for some v

i.e., if P2 extends P1 by an edge, and P1 	 wP2 if:

1. P1 and P2 are in Pv for some v;

2. σv,w(P2) > σv,w(P1); and

3. φv(P1) > φv(P2),
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i.e., if wP2 is received by w instead of wP1 (because of the signaling-preference function at
v) even though v prefers to forward data through P1.

Proposition 2.17. An FS-SPP instance is FS-dispute wheel-free iff its FS-dispute digraph
is acyclic.

Proof. If the instance contains an FS-DW with yi, vi, Ri, and Qi as in Definition 2.14, then
for every i, RiQi+1	viQi (recall that vi is the next node on Ri−1 when moving from yi toward
yi−1). We also have viQi �∗ Ri−1Qi, i.e., Ri−1Qi is a (not necessarily proper) superpath of
viQi. Iterating this argument, we obtain a cycle in the FS-DDG that contains one 	-edge
for each pivot in the FS-DW.

If the FS-DDG contains a cycle, then the cycle must contain at least one 	-edge (oth-
erwise a permitted path in the instance would be a proper subpath of itself). Assume this
is P1 	 w1Q1. We cannot have wQ1 �∗ P1 because both P1 and Q1 are permitted at some
v, so this would imply that v appears twice in P1 (as its endpoint as on the next hop of
the subpath wQ1), a permitted (and thus simple) path. Thus we have at least one more
	-edge; call this P2 	w2Q2, with w1Q1 �∗ P2 (so that this is the next 	 edge in the cycle).
In general, having defined wiQi, find the next 	 edge in the cycle in question and let this be
Pi+1 	 wi+1Qi+1, so that wiQi �∗ Pi+1; for each i, let vi be the node such that Pi, Qi ∈ Pvi

.
Eventually, we exhaust the cycle and return to P1.

Letting Ri+1 be the subpath of Pi+1 from vi+1 to vi (so that Pi+1 = Ri+1Qi) and inverting
the ordering of the subscripts, we see that the resulting structure satisfies Def. 2.14 and the
instance contains an FS-DW.

This result is useful because it allows us to easily verify FS-dispute-wheel-freeness of
FS-SPP instances.

FS-dispute-wheel-freeness and the existence of a unique solution does not imply agree-
ment between forwarding and signaling. (Example 2.26 illustrates this, motivated by a
slightly different context.) Also, the absence of an FS-dispute wheel in an FS-SPP instance
does not guarantee that there will be a unique stable solution.

2.4 Gao-Rexford constraints and FS-SPP

Gao and Rexford [GR01] identified conditions that guarantee inherent safety in BGP in-
stances in which nodes classify their neighbors as customers, providers, and peers; in fact,
these conditions imply that the SPP instance has no dispute wheel [GGR01]. Here we adapt
these conditions to reflect the motivation for the original conditions in the context of decou-
pled forwarding and signaling; this allows route advertisements that were not possible in the
original Gao-Rexford framework (e.g., announcing a non-customer route to a non-customer,
allowed here if a node is forwarding to a customer). Satisfaction of these adapted conditions
implies FS-DW-freeness, but not S-DW-freeness, for FS-SPP. These also do not imply agree-
ment between forwarding and signaling, which motivates our studies, later in this paper, of
the incentive compatibility of truthful signaling.
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The following definition implements the original motivation for the Gao-Rexford con-
straints in the FS-SPP framework.

Definition 2.18 (FS-GR constraints). A FS-SPP instance satisfies the Gao-Rexford con-
straints for FS-SPP (the FS-GR constraints) if the following conditions hold on the instance.

Classification of neighbors: Each node classifies every one of its neighbors as a cus-
tomer, provider, or peer. A node v classifies one of its neighbors w as a customer iff w
classifies v as a provider, and v classifies w as a peer iff w classifies v as a peer.

Signaling while forwarding to customers If a node is forwarding along a customer
route, then for each of its neighbors, the node may announce any route that it knows to that
neighbor. (This may be beneficial for the node, because it does not need to pay its customer
to carry the traffic.) Note that this does not actually constrain nodes’ behavior.

Signaling while forwarding to providers/peers If a node is forwarding along a non-
customer route, the it may announce routes only to its customers. The node thus does not
provide transit service to its providers or peers.

Preference for customer routes If a node has learned a route from one of its cus-
tomers, then it chooses one its customer routes for forwarding.

No customer-provider cycles The digraph on the set of ASes in which edges point
from customers to their providers is acyclic.

Remark 2.19. These conditions are trivially satisfied if nodes never advertise routes to their
providers and peers. However, this would mean that routes to the destination are advertised
by the originating AS to its providers and then by the AS and these providers only to some
subset (depending on filtering) of their direct and indirect customers; such a situation is
clearly unacceptable from a reachability perspective. Thus, if ASes are to satisfy the FS-GR
constraints, their signaling policies must depend on the currently selected forwarding route
(because of the decoupling between routing and signaling; this was not an issue in [GR01]
when these were coupled). In particular, ASes cannot expect to have rankings (or utilities)
for forwarding that depend only on the paths known and separate rankings (or utilities)
for signaling that depend only on the paths known (and perhaps the neighbor to whom an-
nouncements are being made) such that these may be changed independently and arbitrarily
without violating the FS-GR constraints.

The preceding remark shows that nontrivial policies that satisfy the FS-GR constraints
are not separable in the sense of the following definition.

Definition 2.20 (Policy separability). We say that a node’s routing and signaling policies
are separable if they may be configured independently and the signaling policy is independent
of the node to whom announcements are being made, and per-node-separable if they may
be configured independently and the signaling policy may depend on the node to whom
announcements are being made.

Unfortunately, the FS-GR constraints do not prevent S-dispute wheels or guarantee sig-
naling convergence. This is seen in the following example.
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Example 2.21. We may orient the edges of Bad Gadget so that d is a customer of all other
nodes, each node prefers to forward along the direct route to d, and the rim edges do not
form a cycle. Because each node is forwarding to a customer, the signaling preferences may
be assigned arbitrarily; in particular, we may use the Bad Gadget preferences. Figure 6
shows one way to do this; each node’s signaling preferences are shown in the left list at the
node and the node’s forwarding preferences are shown in the right list at the node.

2d 23d
2d

d

23* v2v3

v1 12d
1d

1d
12*

31d
3d

3d
31*

Figure 6: Network from Example 2.21

Remark 2.22. This is certainly resolved if we add the restriction that only customer paths
are announced to non-customers (as in the following theorem); whether or not a weaker
condition suffices remains unclear.

Theorem 2.23. If an instance of FS-SPP satisfies the FS-GR constraints and, addition-
ally, the only paths announced to non-customers are customer paths, then the instance is
S-dispute-wheel-free.

Proof. Assume the instance contains an S-dispute wheel with pivots yi, rim paths Ri, and
spoke paths Qi (0 ≤ i ≤ k−1) as in Def. 2.11. Some announcement on the rim must be from
a node to one of its non-customers, otherwise the rim would form a customer-provider cycle.
The node that does this must be announcing one of its customer paths (because it is being
announced to a non-customer); the customer from which the path was learned must, in turn,
be announcing one of its customer paths (for the same reason). Following this around the
rim, we obtain a customer-provider cycle.

Theorem 2.24. If an instance of FS-SPP satisfies the FS-GR constraints, then the for-
warding digraph induced by any stable solution is acyclic.

Proof. Once data is forwarded along a customer edge (i.e., from a provider to a customer),
every subsequent forwarding hop will be across a forwarding edge (because if x forwards to
its customer y, then y must advertise some route to its provider x; this means that y must
be forwarding along a customer edge, although the path it announces to x need not satisfy
this). Because there are no customer-provider cycles in the network, no forwarding loop may
have any customer edges in it.
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If data is forwarded from x to y along either a provider or peer edge (i.e., y is a provider or
peer, respectively, of x), then y must then forward that data along a customer edge; if y does
not forward data along a customer edge, it will not announce any route to its non-customer
x and so x will not be forwarding data to y.

Remark 2.25. The preceding example and theorems are of particular interest because they
refine our understanding of what is guaranteed by the very natural Gao-Rexford conditions.
In particular, Example 2.21 shows that, when modified for FS-SPP, these conditions do not
guarantee signaling stability as they do in SPP. However, Thm. 2.24 shows that if the network
does converge to a stable signaling solution (whether or not the FS-GRconstraints and the
additional requirement of Thm. 2.23 are satisfied), then the induced forwarding digraph is
acyclic.

Example 2.26. The FS-GR constraints do not guarantee that nodes will be truthful. In par-
ticular, we may modify Example 2.8 to obtain an instance that follows the FS-GR constraints
and which has a unique signaling solution, but in which the signaling solution disagrees with
the induced forwarding digraph. Figure 7 shows the resulting network; 12d is now permitted
at 1, with φ1(1d) > φ1(12d) (these are both customer routes for 1), and the extension of this
path is permitted at 3. σ1,3(1d) = 1 > σ1,3(12d) = 0, and φ3(321d) > φ3(31d) > φ3(312d)
(these are all provider paths for 3). Note that 3 only learns routes from providers, so it can
never forward to a customer and thus never announces any of its paths to its neighbors (both
providers for 3). Thus 2 does not learn any customer paths and is free to choose between
the paths it learns from 1 and d; φ2(2d) > φ2(21d).

21d 

1d

312d
31d
321d 2d

d

v2v3

v1

σ (21d)=1
2,3

σ
2,3

(2d)=0

Figure 7: Network for Example 2.26. Arrows go from customers to providers.

More generally, this example also shows that an FS-SPP instance with a unique solution
and no FS-DW need not have agreement between forwarding and signaling.
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3 The Interdomain-Routing Game

3.1 The motivation for game theory

The static analysis above shows that systems with unique solutions do not necessarily have
acyclic forwarding digraphs; even if the forwarding digraph is acyclic, the paths that are
signaled may disagree with the forwarding tree. While forwarding loops will only occur in a
stable signaling solution if some node is lying, dishonest signaling will not necessarily cause
a forwarding loop; as a result (e.g., if the natural FS-GR constraints are satisfied), if nodes
have an incentive to lie about their forwarding they may be able to do so without causing
obvious disruptions to the network. While detecting signaling dishonesty may be possible
after the fact, this may not prevent such behavior; it seems very difficult (if not impossible)
for a node to prove to one of its neighbors that it is forwarding data to a particular next
hop. In order to mitigate this risk, we thus turn to the problem of when truthful signaling
is incentive compatible when our more realistic utility functions are used.

Another motivation for studying the game-theoretic aspects of decoupling forwarding
from signaling is that game theory is a logical tool to use in studying the routing decisions
made by ASes; this is seen in the previous work in the area. It is thus natural to consider
the more realistic view of decoupling forwarding from signaling in these models in addition
to the static analysis studied above. In particular, we are interested in having components
of the utility that depend separately on forwarding and signaling.

3.2 Game dynamics and BGP

Interdomain-route calculation is distributed, asynchronous, and iterative, based on the au-
tonomous decisions of ASes throughout the Internet. We model this as a multi-round game
with an infinite number of rounds as in [LSZ06]. In each round of the game, some subset of
nodes is chosen to participate by a scheduler, but each node must participate in an infinite
number of rounds. When a node v participates, it may perform the following actions:

1. Receive update messages from its neighbors; each message from some w ∈ N(v) con-
tains a single route π′(w) ∈ Sw, possibly the empty route ε.

2. Choose a single outgoing edge (v, x) to some neighbor x ∈ N(v), representing the
choice of π(v) = vπ(x) as v’s forwarding route, or no edge at all, representing the null
route π(v) = ε.

3. Send update messages to any of its neighbors, containing a route in Sv (possibly ε).

The scheduler can determine when, if at all, update messages get delivered to neighbors,
although it cannot indefinitely drop messages between neighbors. The scheduler thus repre-
sents “fair but arbitrary network delays” (see [GSW02] for a formal model).

Remark 3.1. It is important to note that in this work we assume that if a node v sends an
update message containing the path vR 6= ε, then v received (earlier in the round in which
it sends the update) an update message containing R.
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A node’s strategy dictates its actions when chosen to participate. The standard protocol
for interdomain routing on the Internet, the Border Gateway Protocol (BGP), prescribes the
following strategy, referred to as best-reply dynamics in [LSZ06].

1. Receive the most current route updates from all neighbors.

2. Determine the forwarding-route choice π(v) based on configured parameters.

3. Signal the route choice π(v) to all neighbors (unless specifically configured to signal ε).

The role of “configured parameters” in step 2 can be modeled as preferences over for-
warding routes, just as in the standard abstract model of BGP, the Stable Paths Prob-
lem (SPP) [GSW02]. Formally, let each node v have a forwarding-preference function
φv : Sv → Z, such that φv(R1) > φv(R2) for routes R1, R2 ∈ Sv implies that v prefers
the choice of R1 over the choice of R2 as its forwarding route. Following BGP implies
choosing, in step 2, the most preferred route out of the options signaled by neighbors, and
signaling that choice, in step 3, to neighbors.

We are careful to include the possibility of filtering, which is excluding a route from
consideration. We assume that φv(ε) = 0, but we permit φv(R) < 0, i.e., there may be routes
that are less preferred than having no route at all. These routes are filtered on import ; for all
v ∈ V , let the set of permitted routes Pv = {R ∈ Sv | φv(R) ≥ 0} be the routes that are not
filtered on import. (Note that ε ∈ Pv.) Analogously, if node v chooses R as its forwarding
route in step 2 but signals ε to neighbor w, we say that R is filtered on export to w. We
note an important distinction between our model and the model in [LSZ06]: filtering is not
considered a deviation from the BGP strategy in our model, as the BGP specification (and
the SPP model of BGP) permits filtering as a standard part of routing policy. Therefore,
we will insist on explicitly stating any assumptions about filtering when discussing nodes’
behavior in the routing game.

The utility Uv for a node v is defined as follows. Let πS,t(v) be the path chosen by v in
round t when schedule S is used. If there is a value t0 such that πS,t(v) = R for all t ≥ t0,
then the forwarding component of v’s utility under the schedule S is φv(R). More generally,
we let

πS(v) =

{
limt→∞ πS,t(v) if the limit exists

ε otherwise

and then use φv(πS(v)) in defining v’s utility below.
Given a schedule S, let DS,t(v) be the part of the forwarding digraph induced by the path

assignment πS,t from which v is reachable. Let DS(v) be the limit inferior of the sequence
of diagraphs {DS,t(v)}t, i.e., if V (G) and E(G) are the vertex and edge sets of a graph G,
then we let

V (DS(v)) =
∞⋃

t0=0

∞⋂
t=t0

V (DS,t(v)) and E(DS(v)) =
∞⋃

t0=0

∞⋂
t=t0

E(DS,t(v)).
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In particular, a node is in DS(v) if and only if that node’s traffic is always forwarded through
v in every round after some round t0 (when schedule S is used); a directed edge (u, w) is
in DS(v) if an only if traffic from u (1) is forwarded directly to w and (2) eventually passes
through v in every round after some round t0 (when schedule S is used). As illustrated by
Example 3.2, DS(v) need not be connected.

Given a schedule S, the utility Uv(S) of node v is

Uv(S) = φv(πS(v)) + Σv(DS(v)),

where φv(ε) = 0 for every v and Σv assigns numerical values to digraphs. In particular, this
depends on the route that v eventually always chooses (which may or may not match the
route that v’s data takes) under the schedule S and the set of nodes/edges that eventually
always send data to v under the schedule S. As examples, the function Σv(G) might be
defined as the number of vertices in G (i.e., the number of nodes that always route through
v after some round) or the number of edges of the form (x, v) in G (i.e., the number of v’s
neighbors that always choose v as their next hop after some round of the game).

Example 3.2. Consider the network shown in Figure 8, where the forwarding preferences
for each node are listed next to the node. For the schedule

{0}, {1}, {3}, {2}, {4}, {0}, {1}, {3}, {2}, {4}, . . . ,

the induced forwarding digraph is always acyclic with the traffic from all non-destination
nodes being forwarded through 0, but the nodes 1, 2, and 3 that form the instance of Bad
Gadget never converge. As a result, DS(0) consists of the nodes 1, 2, 3, 4 and the directed
edge (4, 3), but it does not contain any other edges; in particular, the graph is disconnected.

0d

d

430d

v2

230d
20d

310d
30d

v3

v1

v0

120d
10d

v44310d

Figure 8: Network for Example 3.2.

In this schedule, if each node follows BGP and announces the route it uses for forwarding,
then node 4 does not gain any utility from forwarding because (like nodes 1, 2, and 3) it
never converges to a single route for forwarding. However, 3 could always announce 310d
(which is always available to 3) to 4, regardless of which route 3 is using for forwarding; in
this case, 4 would then gain some benefit from forwarding (even though the route taken by
4’s data would vary over time).
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Remark 3.3. The limiting aspect of the definition of the forwarding component of the utility
is in the same spirit as the utility in [LSZ07] (other than the difference between the route
taken by data and the route selected by v). The signaling aspect seems to be the correct
analogue for signaling, but other definitions may also be reasonable. For example, if v benefits
by eventually seeing some of the traffic from other nodes, but v doesn’t benefit additionally
from seeing all traffic instead of just some of it, then it might be more appropriate to consider
the limit superior of the sequence of digraphs, i.e., defining a digraph D′

S(v) by

V (D′
S(v)) =

∞⋂
t0=0

∞⋃
t=t0

V (DS,t(v)) and E(D′
S(v)) =

∞⋂
t0=0

∞⋃
t=t0

E(DS,t(v)).

and then taking the signaling component of utility to be Σv(D
′
S(v)).

Also, we may replace φv with a forwarding-utility function Φv, but this does not seem to
provide any advantage.

Informally, node utilities have a forwarding and signaling component. The forwarding
component is based on the valuation a node has for the route it chooses for forwarding traffic.
Because this choice depends on the routes signaled by the node’s neighbors, the forwarding
component of utility is based on the perceived, not actual, forwarding route. We again note
that, if nodes signal routes that are not actually used, detecting the inconsistency is nearly
impossible. The signaling component for v is based on the consequence of signaling the
route choice to others, namely, that others’ traffic may be sent through the v. Therefore, it
is defined as some function of the actual traffic flows through v induced by the route choices
elsewhere in the network. For example, if v wishes to snoop on others’ traffic, Σv may be a
positive function based on the number of nodes sending traffic through v.

Here we note another distinction between our model and previous models of interdomain
routing: The utility functions in [LSZ06,FRS06,FSS04,FKMS05] contained only a forwarding
component. Signaling behavior thus affected a node’s utility only when it changed the node’s
forwarding route. However, as we have discussed, a node may benefit from changing its
signaling behavior without changing its forwarding route. We informally say that a node
lies in signaling when a node signals a non-null route that is different than the route chosen
as its forwarding route.

3.3 Equilibrium and solution concept

BGP permits distributed, asynchronous computation of interdomain routes with limited (lo-
cal knowledge): Nodes choose routes autonomously, based on announcements from neighbors
and on individual routing policy. Knowledge of routes in the entire network is not required
to participate in the process, nor would it be possible to obtain in an efficient manner. How-
ever, we require that these uncoordinated decisions somehow form a consistent forwarding
tree to each destination. Luckily, if all nodes follow BGP, consistency is naturally enforced
through truthful signaling.

BGP is intended to converge to a stable route assignment ; i.e., it is assumed that, after a
finite number of rounds of the interdomain-routing game, π becomes constant for all nodes.
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This amounts to a Nash equilibrium in the multi-round game: Each node has chosen its best
available route given the signals from its neighbors, and no further update messages need
to be sent. However, it is known that certain combinations of node forwarding-preference
functions and filtering decisions can cause BGP to oscillate, which amounts to the lack
of a pure Nash equilibrium. Networking researchers have studied this problem from the
perspective of constraints on routing policy that may eliminate divergence. The broadest-
known constraint on policies is dispute-wheel freeness [GSW02]; we recall the definition of
the dispute wheel structure in Sec. 4.

Previous results have shown that, if the dispute-wheel-freeness condition and several
other assumptions hold [FRS06,FRS06, LSZ06], the strategy of following BGP is incentive
compatible in ex-post Nash equilibrium. The ex-post Nash equilibrium was argued to be the
most reasonable solution concept for Internet algorithms [SP04]. In ex-post Nash, we can
consider several forms of rational manipulation, given that the strategic agents themselves
are performing computations and reporting results, and address the question of specification
faithfulness. For the interdomain-routing game, this amounts to asking whether a node can
benefit by deviating from following BGP. In the remainder of this paper, we present the
results of analyzing this question with quasi-bilinear utilities.

4 Negative Results

Various restrictions have proved important in the study of quasi-linear utilities [FRS06,
LSZ06]; in this section, we show that a violation of any one of these four restrictions can
provide an incentive for a node to lie about its forwarding choice when quasi-bilinear utility
functions are used. These four conditions are:

Policy consistency φv(P ) > φv(Q) and wP, wQ ∈ Pw imply φw(wP ) > φw(wQ).
Consistent filtering φv(P ) > φv(Q) and wQ ∈ Pw together imply wP ∈ Pw if wP is a

simple path.
Route verification (in this context) ∀v, w ∈ N(v), σ, σ(v, w) ∈ Kv(σ)
Dispute-wheel freeness The network does not contain a dispute wheel as defined in

Def. 4.1.
Outside of the example noted in this section, we will assume that nodes do not advertise

routes that they have not learned (but they are not required to use the routes they advertise).
The notion of a dispute wheel is a key concept in the analysis of interdomain routing; it

was originally introduced in [GSW02].

Definition 4.1. A dispute wheel in a network consists of k nodes y0, . . . , yk−1 (the pivots)
and k paths R0Q1, . . . , Rk−1Q0 such that:

• for each i, RiQi+1 ∈ Pyi
;

• for each i, Ri is a path (a rim path) from yi to yi+1 (so Qi+1 ∈ Pyi+1
); and

• for each i, if vi is the neighbor of yi on the path Ri−1, then φyi
(RiQi+1) > φyi

(Qi) (i.e.,
yi prefers to use the route RiQi+1 instead of the spoke path Qi).
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In all of these conditions, we interpret the subscripts modulo k. Note that there is no
requirement that the paths be disjoint, although each permitted path is (by definition)
simple.

After seeing that violations of these conditions allow for instances in which nodes have
incentive to lie, we will see an example in the next section of a network in which all of
these conditions are satisfied but, because of the particular form of the quasi-bilinear utility
function, there is still an incentive to lie.

4.1 Policy consistency

Example 4.2. Figure 9 shows a network in which policy consistency is violated; as a result,
one node (node 3 here) may have an incentive to announce a route that is less preferred than
the one it is actually using for forwarding if that node benefits from carrying the traffic from
another node (node 4). The policies of 3 and 4 are inconsistent because φ3(31d) > φ3(32d)
but φ4(432d) > φ4(431d). Because there is a route—4d—on which φ4 takes a value between
those it takes on 432d and 431d, node 3 has an incentive to announce its less preferred route
to 4 if it will benefit from carrying 4’s traffic (instead of having 4 send it along 4d).

431d 

432d 
4d

2d

1d

d 32d
31d

4v3v

1v

2v

Figure 9: Network for Example 4.2.

4.2 Consistent filtering

Example 4.3. Figure 10 shows a network in which consistent filtering is violated (by filtering
the route 431d that appeared in the FS-SPP instance in Fig. 9) and a node has an incentive
to lie; here, node 3 may thus choose its more preferred route 31d while advertising its less
preferred route 32d to node 4. Node 4 thus forwards data through node 3 (choosing its more
preferred path 432d) instead of directly to d (4’s second choice route). Node 4’s traffic will,
however, be directed along the path 431d, a path that is not permitted at 4 (because it has
been filtered inconsistently).

More generally, if a there is an edge along which paths are filtered inconsistently and
both paths are simultaneously available to the announcing node v, then v might have an
incentive to lie by choosing its more-preferred path (which is filtered when announced to the
other node w) while announcing is less-preferred path (which is not filtered) to w. Whether
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432d 
4d

2d

1d

d 32d
31d

4v3v

1v

2v

Figure 10: Network for Example 4.3

or not w chooses this path will depend on the other routes available to it, but if w’s only
physical link to the destination is through v, v will definitely have an incentive to lie.

4.3 Route verification

An example of a network without route verification in which a node has an incentive to lie
is given in [LSZ06]

4.4 Dispute-wheel freeness

Example 4.4. Figure 11 shows the SPP instance Bad Gadget [GSW02], which is a dispute
wheel with three nodes on its rim and in which nodes have incentive to lie. If any of the rim
nodes i benefits by transiting extra traffic, it has an incentive to announce its less preferred
route (id) to its neighbor i−1 while forwarding traffic to its neighbor i+1. (If all three nodes
do this then a forwarding loop is formed.) Here, the list of paths next to each node shows
the relative values of the node’s forwarding-preference function with the most-preferred path
at the top of the list.

23d 
3d 2d
31d

d

1d
12d1v

3v 2v

Figure 11: Network for Example 4.4.

If a network contains a dispute wheel with only two pivots then the analogous action by
either pivot will produce a forwarding loop. For dispute wheels with three or more pivots,
the pivots will again have an incentive to lie, but no single lie will create a forwarding loop
(which might make the lie easier to detect).



– 25 –

5 Utilities, Policies, and Filtering

In this section we explore some of the subtle tradeoffs between different assumptions about
routing policies, filtering, and incentive compatibility. We start with an example that shows
that, for a certain type of quasi-bilinear utility function, satisfaction of all four of the con-
straints described in the previous section does not guarantee incentive compatibility.

Example 5.1. Consider the signaling utility defined by

Σnbr
v (D) = |{w ∈ N(v)|(w, v) ∈ D}| .

This might arise from out-of-band business relationships that v has with its neighbors; these
could reflect, e.g., whether or not each link carried any traffic during a specified period. The
example in Fig. 12 shows that v can increase its utility (even if the network is dispute-wheel
free, consistent filtering, policy consistency, and route verification) by announcing a route
that it is not using to forward or by filtering the route that it is using to forward and not
announcing any route. Note that nodes 5 and 6 do not have next-hop preferences.

d

1d

2d

431d 
432d 

6432d

v2

v1

v3

31d
32d

v4

v5

v6

5431d
531d
532d
5432d

6431d
631d
632d

Figure 12: Network for Example 5.1

In this example, if the routes 31d and 32d are always available to node 3, this node has
an incentive to announce its less-preferred route 32d (which it is not using for forwarding)
so that node 4 cannot announce the route 431d to nodes 5 and 6. When 3 lies in this way,
nodes 5 and 6 do not learn their most-preferred routes (through node 4) and thus choose
their second-choice routes, 531d and 631d, respectively; this increases the number of node
3’s neighbors that forward data to it. If 432d were not permitted at node 4 (or if 4 had
another path P with φ4(431d) > φ4(P ) > φ4(432d)) then 4 would not forward to 3, but this
would be offset by the gain of both 5 and 6 forwarding to 3.

Definition 5.2 (Next-hop preferences). We say that a node v in a network has next-hop
preferences if φv(P ) > φv(Q) > φv(R) and next(P ) = next(R) together imply next(Q) =
next(P ) = next(R). We may then give an ordering on neighbors to determine which path
is chosen by the node. We say that the network uses next-hop routing if every node in the
network has next-hop preferences.
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Unlike the previous example, the nodes in Example 5.3 all have next-hop preferences.
As in Example 5.1, we use let the signaling utility be Σnbr

v (which depends on the neighbors
of v that use v as their next hop), and nodes do not filter unless acting strategically. We
see that this instance is not incentive compatible. In contrast to this is Thm. 5.4 below, in
which the utility depends on the set of nodes whose data eventually flows through a node
(not necessarily as the next hop).

Example 5.3. Figure 13 shows a network in which nodes have next-hop preferences; here,
e.g., the 32∗ above the 31∗ indicates that 3 prefers routes through 2 to routes through 1. If
no node acts strategically, then 2 forwards data to 1 (who forwards data to d) while 3 and 4
both forward data to 2. If 1 filters all of its route announcements to 2, then 2 will forward
through one of 3 and 4, who forwards through 1, while the other one of these two nodes
will forward through 2. 1 could determine which of these solutions is chosen by additional
action; it might do this if its utility depended on which node(s) choose 1 as their next-hop
and not just which nodes send their data (eventually) through 1.

32*
31*

d

41*
v4

v3

v2

v1

1d
13*
14* 21*

24*
23* 

42*

Figure 13: Network for Example 5.3

Theorem 5.4. In a network instance in which every node has next-hop preferences and
filtering is not allowed (except as part of strategic actions), if a node v unilaterally acts
strategically in such a way that its forwarding path is unchanged but its signaling-utility
strictly increases because a node is added to DS(v), then the forwarding preferences induce
a dispute wheel with two pivots.

Proof. Let P be the path that v chooses for forwarding when no node acts strategically, and
let v act strategically in a way that P is still v’s most-preferred (available) path for forwarding
in the resulting scenario (in which no other node acts strategically). Assume that the traffic
from some node x is now eventually forwarded to v, but that traffic from x was not forwarded
through v before, and let xRvW0 be the path that x chooses for forwarding when v acts
strategically. (Traffic from x will be forwarded along xRvP0 because all nodes other than
v are not acting strategically, although P and W need not be distinct.) Let y be the node
closest to v on R that does not forward data through v when no node acts strategically,
and let T be the path that it chooses in this case; x is one such node, so y and T exist and
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are well-defined. Because w = next(y0Rv) does not forward data through y (by choice of y
and because y is not forwarding through v) and because nodes do not filter unless acting
strategically, w has another path Q (because it would prefer forwarding through y over not
having any path) that it announces to y. Because y still chooses T , it must prefer paths
through z = next(T ) to paths through w. Because y prefers routes whose next hop is z to
those whose next hop is w one of the latter routes when v acts strategically, y must not learn
any route from z in this case. Observe that 0 will always announce itself to its neighbor
on T ; moving along T away from 0, each node will announce its most-preferred forwarding
path to the next neighbor on T (on the side away from 0) because none of these nodes acts
strategically. If one of these announcements is filtered, e.g., from b to a (neighbors on T , with
b closer to 0 along T ) then it must be because the announced path would not be simple at a;
in that case, a has another path that it announces to its other neighbor along T (who might
filter it because it’s not a simple path, leading to another application of this argument).
Iterating this argument, we see that y does not receive a valid path from z because z has
chosen a path that eventually leads through y. If z prefers this path to its original subpath
of T , then we may construct a dispute wheel with y and z as the only pivots. If z does not,
then z would choose the path it gets from its (non-y) neighbor on T if it got a valid route
from that neighbor; that neighbor must thus be choosing a route that goes through z (and
which thus extends yRvW0, because that is the only route announced by y and extensions of
this will be announced non-strategically—only v can act strategically, but v will filter every
extension of this route as non-simple). We may iterate this argument until we reach a node
on T that prefers an extension of yRvW0 over its original subpath of T ; this process stops
before we reach 0. We may then use this node and y as pivots on a dispute wheel (involving
the forwarding preferences of nodes).

We note that in the preceding proof, forwarding preferences were considered, but we
produced a dispute wheel (defined in terms of signaling preferences). This is fine because
no node except for v acts strategically and everybody (except possibly v) uses next-hop
routing; we may replace the subpath P on a spoke of the (forwarding) dispute wheel with
W (as announced by v) in order to obtain a proper signaling dispute wheel.

Considering the proof of this theorem, we see that once the network is stably in the
first solution (when v does not act strategically), v will not be able to do anything (includ-
ing withdrawing all of its routes in a sort of ‘reboot’) to push the network into the other
forwarding solution. The following example, which has multiple solutions, illustrates this.

We may also consider utility functions where the signaling component of v’s utility de-
pends on the neighbors of v that choose routes for which v is the next hop. This might
reflect out-of-band business relationships that consider whether or not a link is used, but
not the level of use.

Example 5.5. Consider the network with next-hop preferences shown in Fig. 14, in which 1
prefers d over 2 and 2 prefers 1 over d. If d does not act strategically the resulting forwarding
tree is 2 −→ 1 −→ d, while if d filters its announcements to 1 (so that 1 does not learn the
direct route to d), then the resulting forwarding tree is 1 −→ 2 −→ d. We see that even if
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the first signaling/forwarding solution is chosen, d may act unilaterally to make a node (in
this case 2) choose a route with d as the next hop when that node was originally choosing a
route whose next hop was not d. Note that this does not contradict the observations above
because 2 was forwarding data to d in the non-strategic case, just not as the next hop on
2’s selected path.

d
1*

d

2*
d 2v1v

Figure 14: Network from Example 5.5

Example 5.6. In the network shown in Fig. 15, x can only forward through y; we have
φy(z∗) > φy(v∗) (i.e., y prefers routes through z to routes through v), φz(y∗) > φz(d∗), and
φv(d∗) > φv(y∗). There are two stable solutions: v forwards data directly to d and all other
nodes forward along their respective subpaths of xyzd; and x and z both forward data to y,
which forwards data to v, which forwards data to d. It may be that v derives greater utility
from the first solution (either because of something special about transiting traffic from x
and/or y, or simply because this leads to more nodes in DS(v)); by the argument given in the
proof of Thm. 5.4, v cannot unilaterally force a switch from the first solution to the second.
(Even if v ‘reboots’ or, equivalently, filters all of its outgoing routes and then re-announces
routes strategically.) Once the network settles into the first solution, y will always know a
path through z as long as z has a path; because the path in the first solution does not go
through v and because no routes are filtered, nothing v does can affect this.

d 

x z
y

v

Figure 15: Network for Example 5.6

Example 5.7. If a next-hop network allows arbitrary per-route filtering, then it is possible
for a node to benefit by acting strategically; one such example is shown in Fig. 16.

In this network, φv(b∗) > φv(c∗) (i.e., v prefers paths through b to paths through c) and
no other paths are permitted at v; a and u’s only permitted paths are through v; φw(u∗) >
φw(a∗) but wuvbd is not permitted at w (it is filtered between u and w); φy(w∗) > φy(z∗)
but ywavbd is not permitted at y; and the permitted paths at b, c, x, and z are exactly those
they receive from d, d, y, and d, respectively.
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Figure 16: Network for Example 5.7

With these conditions, the nodes in this network all use next-hop routing; some of them
filter specific routes (i.e., wuvbd and ywvbd). As a result, when v does not act strategically
(and thus announces vbd), w chooses wavbd; y must then choose the path through its second-
choice neighbor z. As a result, DS(v) contains exactly the vertices a, u, and w. If v’s
signaling utility would increase by having x route data through v, then v has an incentive
to announce vcd to u, which announces uvcd to w. Because this path is permitted at w and
φw(u∗) > φw(a∗), w now chooses the route wuvcd (even though its data is forwarded along
wuvbd) and announces this route to y; this route is permitted at y, so y now forwards data
to y. As a result, x and y are added to DS(v), increasing v’s utility.

Remark 5.8. Next-hop routing with no (non-strategic) filtering might seem unlikely in light
of the arbitrary filtering allowed by BGP (and SPP), but it is not merely an academic special
case. Next-hop routing with selective filtering of routes (the per-route filtering considered
above) is arguably less-likely; it involves disregarding the actual path, other than the next
hop, when considering which route to use for forwarding, but then relying on these details to
determine whether or not to filter each route to each neighbor. If, instead, the per-neighbor
approach to forwarding is also carried over to signaling/filtering so that each node decides
whether or not to announce routes to each of its neighbors (and then follows this without
consideration of the details of the routes), we may view this as removing (one direction of)
the filtered edges and then not filtering at all on the remaining (directed) edges.

Example 5.9 (Strategic actions force change in solutions). Figure 17 shows a network
(similar to Disagree) with next-hop preferences that contains a two-pivot dispute wheel
(with pivots x and z, no other rim nodes, and spokes xvd and zyvd); we assume that
no filtering takes place, other than the removal of simple paths, unless a node is acting
strategically. If no node acts strategically, then there are two solutions: one has forwarding
tree x −→ z −→ y −→ v −→ d and the other has forwarding tree y −→ v −→ d ∪ z −→
x −→ v −→. If the network is in one of these stable solutions, v may force it to go to the other
one by acting strategically. In particular, v may force a move from the first solution to the
second one by withdrawing its advertisement to y and then reannouncing a route to y once x
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and v have started forwarding data through v; if v does not reannounce the route to y, then
the network will converge to the forwarding tree y −→ z −→ x −→ v −→ d. Conversely, v
may force a move from the second solution to the first by withdrawing its announcement to
x (whether or not v reannounces a route to x after the network reconverges has no effect).

v
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x*
y*
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z*
v*

v*
z*

Figure 17: Network from Example 5.9

Of particular interest is the fact that, in forcing a switch from the first solution to the
second solution, v may unilaterally act strategically to add a node to the set of its neighbors
that choose routes whose next hop is v without any nodes being removed from this set as
a result of the strategic action. (As required by Thm. 5.4, the node added to this set was
previously forwarding through v, but not with v as the next hop on its chosen path.)

Theorem 5.10. In a network instance in which every node has next-hop preferences, filtering
is not allowed (except as part of strategic actions), and there is no dispute wheel, if a node v
unilaterally acts strategically in such a way that its forwarding path is unchanged but nodes
are added to the set of its neighbors that choose routes whose next hop is v, then some other
node(s) must be removed from this set as a result of the strategic action.

Proof. Let x be a neighbor of v that chooses to route directly through v when v acts strate-
gically but not when v acts non-strategically. Let P be the subpath from x to v of the path
that x chooses when v does not act strategically, let y be the last node before v on P , and
let z = next(P ) (not necessarily distinct from y). Note that x prefers routes from z to routes
from v (because a route from v must also be available when v does not act strategically and
x routes through z).

When v acts strategically, x routes through v, so x must not receive any valid route from
z; thus, if z has a route, it must go through x. Note that if z prefers this route over a route
that it learns from next(P[z,v]) then there is a dispute wheel with x and z as the two pivots.
Thus, if z has a route, it must not learn a valid route from its neighbor next(P[z,v]); repeating
the argument above, if this node chooses a route then it must go through z and x. As before,
this route must be less-preferred than any route through this node’s other neighbor on P ,
otherwise there would be a dispute wheel. Iterating this argument, we see that if y has any
route then it must go through the other nodes on P[x,y] in reverse order (possibly with extra
nodes—other than v—inserted). If this route is more preferred at y than the route directly
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from y to v, then we have a dispute wheel with y and x as the pivots; if not, then v must
not export any route to y (else y would choose that route), so when v acts strategically y no
longer routes directly through v.

In fact, this also proves the following.

Corollary 5.11. In a network instance in which every node has next-hop preferences, fil-
tering is not allowed (except as part of strategic actions), and there is no dispute wheel, if a
node v unilaterally acts strategically in such a way that its forwarding path is unchanged but
nodes are added to the set of its neighbors that choose routes whose next hop is v, then the
size of this set cannot strictly increase as a result of the strategic action.

Proof. If v acts strategically and, as a result, nodes {xi} route directly through v when the
did not do so when v did not act strategically, then for every i let yi be the last node (before
v) on the path that xi chooses when v does not act strategically. The argument above shows
that when v acts strategically, yi chooses a path whose last hop (before v) is xi. If yi = yj

for any i 6= j, then we must also have xi = xj.

6 Conclusions and Future Work

We introduce a more realistic setting in which to analyze the interdomain-routing problem,
that of quasi-bilinear utilities, where nodes receive benefit not only based on the route used
to forward traffic, but also based on the carriage of transit traffic. In this setting, we are able
to give both positive results—that certain assumptions on nodes’ preferences do remove the
incentive to lie in signaling—and negative results—that even when many previously studied
assumptions are satisfied, nodes may have an incentive to lie. The consequences of this
go beyond incentive compatibility. We extend the abstract model of interdomain routing
to permit the decoupling of signaling and forwarding actions, and show that inconsistency
between the two can lead to forwarding loops. Removing an incentive to lie about what
routes are used is one way to prevent these loops that could lead to data loss.

There are several open questions that naturally result from this work. First, there are
several examples of quasi-bilinear utilities not examined here that can be motivated by real-
world scenarios. Do these also require strong assumptions on nodes’ preferences to guarantee
incentive compatibility of BGP? Second, many of the positive results give sufficient conditions
for incentive compatibility that are not matched with necessary conditions. This mirrors
much of the previous work in interdomain-routing theory; is it possible to find necessary
conditions? (Our examples of incentive-incompatiblity are a step in this direction.) Finally,
can even more realistic utility functions and models of interdomain routing be developed to
further bridge the gap between the networking and game-theoretic perspectives?

Other problems of interest include a more exhaustive study of the effects of different
filtering restrictions.
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A Equilibrium Concepts

Here we provide a brief overview of different game-theoretic solution concepts. These are
drawn very closely from [TV07] (dominant strategy and Nash equilibrium) and [FSS07]
(ex-post Nash equilibrium); we include them here for the convenience of the reader.

We let Sv be the set of strategies that node v may play, and S = ×v∈V Sv to be the
resulting possible strategy vectors. We use Uv(~s) for v’s utility when the strategy vector ~s
is played (i.e., when each u plays su); ~s−v is the tuple obtained by dropping sv, and s′v, ~s−v

is the strategy vector obtained by replacing sv with s′v in ~s.

Definition A.1 (Dominant strategy). A strategy vector s is a dominant strategy if

∀v ∈ V, ∀~s′ ∈ S, Uv(sv, ~s
′
−v) ≥ Uv(~s

′),

i.e., for every agent v, regardless of the strategies ~s′−v chosen by the other nodes in the
network, v can do no better than playing the strategy sv.

A strictly weaker solution concept is that of Nash equilibrium, which is defined for pure
strategies as follows.

Definition A.2 (Pure strategy Nash equilibrium). A strategy vector s is a Nash equilibrium
if

∀v ∈ V, ∀s′v ∈ Sv, Uv(sv, ~s−v) ≥ Uv(s
′
v, ~s−v),

i.e., for every agent v, if the agents other than v choose the strategies in ~s−v, then v can do
no better than playing sv.

The ex-post Nash equilibrium has been argued [SP04] to be the most relevant notion of
equilibrium for distributed games; this is the notion of equilibrium used in Sec. 5

Definition A.3 (Ex-post Nash equilibrium). In this case each node v has a private type
tv; the behavior of v, and the outcome of the game, when v uses strategy sv depends on
tv. In this case the utility of an agent v may depend on its private type in addition to the
behavior of the various agents; we thus write Uv(~s(~t); tv) for v’s utility when its private type
is tv and agent u has private type tu and chooses strategy su (thus behaving in accordance
with su(tu)). Then a strategy vector ~s is an ex-post Nash equilibriumif

∀v ∈ V, ∀s′v ∈ Sv, ∀~t, Uv(~s(~t); tv) ≥ Uv(s
′
v(tv), ~s−v(~t−v); tv)
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i.e., for every agent v, regardless of the private types of the other agents and of v’s private
type, if the agents other than v choose the strategies in ~s−v, then v can do no better than
playing sv.

Thus the concept of ex-post Nash equilibrium falls between those of dominant strategy
and Nash equilibrium: In a dominant strategy, no knowledge of the other nodes is assumed
when asserting that v can do no better than playing sv; in a Nash equilibrium, this conclusion
holds if the strategies of the other agents are known (without holding information back in the
form of private types); while in an ex-post Nash equilibrium, this conclusion follows when
some information is known about the other agents (their strategies) while some is not (their
private types).

Finally, we recall the way in which “incentive compatible” is used in this (and earlier)
work on game theory and BGP.

Definition A.4 (Incentive compatibility in ex-post Nash). Following [LSZ06], we say that a
BGP is incentive compatible in ex-post Nash if the strategy vector for the interdomain-routing
game in which every agent’s strategy is to follow BGP is an ex-post Nash equilibrium.


