
DIMACS Technical Report 2007-21
December 2007

Approximation Algorithms for Constrained Generalized
Tree Alignment Problem

by

Srikrishnan Divakaran

Dept. of Computer Science
Hofstra University

Hempstead, New York 11649

DIMACS is a collaborative project of Rutgers University, Princeton University, AT&T Labs–
Research, Bell Labs, NEC Laboratories America and Telcordia Technologies, as well as affil-
iate members Avaya Labs, HP Labs, IBM Research, Microsoft Research, Stevens Institute of
Technology, Georgia Institute of Technology and Rensselaer Polytechnic Institute. DIMACS
was founded as an NSF Science and Technology Center.

ABSTRACT

In generalized tree alignment problem, we are given a set S of k biologically related sequences
and we are interested in a minimum cost evolutionary tree for S. In many instances of this
problem partial topology of the phylogenetic tree for S is known. In such instances, we
would like to make use of this knowledge to restrict the tree topologies that we consider
and construct a biologically relevant minimum cost evolutionary tree. So, in this paper we
propose the following natural generalization of the generalized tree alignment problem, a
problem known to be MAX-SNP Hard, stated as follows:

Constrained Generalized Tree Alignment Problem: Given a set S of k related
sequences and a phylogenetic forest comprising of node-disjoint phylogenetic trees
that specify the topological constraints that an evolutionary tree of S needs to
satisfy, construct a minimum cost evolutionary tree for S.

In this paper, we present constant approximation algorithms for the constrained generalized
tree alignment problem. For the generalized tree alignment problem, a special case of this
problem, our algorithms provide a guaranteed error bound of 2 − 2/k and do not exclude
any tree topology a priori.

Key words: Analysis of algorithms; Approximation algorithms; Bioinformatics; Computa-
tional Biology; Generalized Tree Alignment;

1 Introduction

Let S be a set of k biological related sequences. The ancestral relationship among these
sequences are described by a phylogenetic tree. The tree is rooted and has k leaves each la-
beled with a unique sequence. The internal nodes of the tree correspond to the hypothetical
ancestral sequence and are unlabeled. We construct an alignment by reconstructing each
ancestral sequence and optimally align each pair of sequences induced by the edges of the
tree. This fully labeled tree is called the evolutionary tree. In this tree, if each edge (u, v)
has a cost defined to be the edit distance between the sequence labels of nodes u and v and
the cost of the tree to be the sum of the cost of the edges of the tree, then the tree alignment

is the problem of constructing a minimum cost evolutionary tree for a given phylogenetic
tree. The generalized tree alignment, a generalization of the tree alignment, is the problem
where we need to construct the minimum cost evolutionary tree among all phylogenetic trees
of S. That is, we need to determine both the phylogenetic tree as well the minimum cost
evolutionary tree. This problem is one of the central problems in computational biology that
has been studied widely in the context of inferring evolutionary history of related species
from their associated biological sequences. This problem can also be viewed as a minimum
cost steiner tree problem in sequence space, where the sequence space consists of biological
sequences represented by a point and only sequences that are at edit distance of one are
adjacent to it.

In many instances of the generalized tree alignment problem, a partial phylogenetic tree
topology for S is known either based on clustering information or based on known biological
relationship between some of the sequences in S. In such instances, if there are no con-
straints on the evolutionary tree topology then there is no incentive for algorithms to exploit
the knowledge of partial phylogenetic tree topology to construct biologically relevant evolu-
tionary trees. However, if constraints are placed on the evolutionary tree topology, then there
is incentive for algorithms to make use of the partial phylogenetic tree topology to restrict
the number of tree topologies it considers and construct biologically relevant minimum cost
evolutionary trees for S. So, in this paper we propose the following natural generalization
of the generalized tree alignment problem:

Constrained Generalized Tree Alignment Problem: Given a set of k related se-
quences and a phylogenetic forest comprising of node dis-joint phylogenetic trees
that specifies the topological constraints that any evolutionary tree needs to sat-
isfy, construct a minimum cost evolutionary tree for S.

Notice that the generalized tree alignment problem is a special case of constrained tree
alignment problem when the phylogenetic forest has k trees each consisting of a single node
labeled by one of the k sequences in S.

Previous Results: The Tree alignment problem was shown to be NP-hard by Jiang et
al [8]. From the perspective of approximation algorithms, Jiang et al [8] presented a 2-

– 2 –

approximation algorithm for tree alignment and extended it into a polynomial-time approxi-
mation scheme. Wang and Gusfield [13] also presented a improved version of 2-approximation
algorithm and the polynomial time approximation scheme. From the perspective of heuris-
tics, Sankoff [11], Kruskal and Sankoff [10] and Altschul and Lipman [1], proposed iterative
methods for tree alignment, Hein [6,7] introduced an approach for tree alignment based on
the concept of sequence graph. For an excellent overview of algorithms for tree alignment
and related problems, we refer the reader to Gusfield [5], and Wang and Jiang [15].

The Generalized tree alignment problem was shown to be MAX SNP-hard by Jiang et
al [8] and has been studied by Kruskal and Sankoff [10], Hein [6,7], Wang and Jiang [14,15],
and Schwikowski and Vingron [12]. From the perspective of approximation algorithms, Gus-
field [4] presented a 2 approximation algorithm based on minimum spanning tree heuristic,
Jiang et al [8] suggested a steiner tree heuristic based on the steiner tree approximation
algorithms of Du et al [3], Zelikovsky [18] and Berman and Ramaiyer [2] that lead to better
approximation ratios. However, Schwikowski and Vingron [12] point out in their paper that
these heuristics exclude many topologies apriori and as a result do not provide biologically
reasonable results. In addition the computational complexity of these heuristics limit their
usefulness. Later, Schwikowksi and Vingron [12] proposed a deferred path heuristic that uses
sequence graphs to merge a path heuristic for the construction of steiner tree with clustering
method as usually applied to only distance data. Their heuristic provides a guaranteed error
bound of (2− 2/k) and their experimental results indicate that they achieve results that are
biologically meaningful and are of good quality when measured in terms of tree length, their
underlying scoring function.

Our Results: In this paper, we present polynomial time constant approximation algorithms
for the constrained generalized tree alignment problem. First, we present an O(k3 + k2n2)
time 4-approximation algorithm. Then, for 0 < ε ≤ 1, we present a 2(1 + ε) approxima-
tion algorithm with a run time proportional to the number of spanning trees of the edit
graph of S with cost less that 2

1+ε
times the cost of an optimal lifted tree of S. In this

paper, our focus is on the theoretical results. In view of this and the fact that even re-
stricted instances of the constrained generalized tree alignment problem are known to be
intractable, we consider an elementary model where where the cost function is defined in
terms of mutational distance. From a practical perspective our algorithms extend to nu-
cledotide substitution and other models where the cost function satisfies triangle inequality.
The details about the implementation, the experimental set-up and experimental results of
our algorithms and heuristics based on these algorithms are forthcoming in a separate paper.

Paper Outline: The rest of this paper is organized as follows. In Section 2, we first
describe the constrained generalized tree alignment problem and other related tree align-
ment problems. Then, we summarize some of the known complexity and algorithmic results
in tree alignment that are relevant to this paper. In Section 3, we present properties of
phylogenetic and lifted trees that satisfy some topological constraints. In Section 4 we make

– 3 –

use of the properties presented in Section 3 to design constant approximation algorithms for
the constrained generalized tree alignment problem.

2 Problem Description

In this section we first define the tree alignment, generalized tree alignment and constrained
generalized tree alignment problems. Then, we summarize known complexity and algorithmic
results on the tree alignment and generalized tree alignment problems that we use in this
paper.

2.1 Problem Definition

Let S = {s1, ..., sk} be a set of k related biological sequences. The ancestral relationship
between these sequences can be described by a phlogenetic tree. A phylogenetic tree for S
is a rooted tree with k leaves where each leaf is labeled by a unique sequence in S and the
internal nodes of S are ancestral sequences that are unlabeled (i.e. need to be determined).
A loaded tree is a phylogenetic tree with all its internal nodes fully labeled. A lifted tree is
a loaded tree where each internal node is labeled by one of the k sequences in S. A lifted
tree is called a uniformly lifted tree if, for each level of the tree, either every internal node
at the level receives its sequence label from its left child or every internal node at the level
receives its sequence label from its right child. We typically refer to a fully labeled tree as
evolutionary tree and a tree with only the leaves labeled as phylogenetic tree.

For any given rooted tree T , let r(T) be the root of T , I(T) be the set of internal nodes
of T and L(T) the set of leaves of T . For each node v ∈ T , let l(v) be the sequence label
associated with v, T (v) denote the sub-tree of T rooted at v and S(v) denote the set of
sequence labels of all descendant leaves of v. For an edge (u, v) ∈ T , let l(u, v) denote the
label associated with (u, v).

Note: In this paper we will be considering multi-graphs where between a pair of vertices
there may be multiple edges each with different edge costs. In such a situation, associating
labels with edges helps to uniquely identify the multi-edges and their associated costs.

For a set of sequences S, let ΨP (S), ΨE(S) and ΨL(S) denote the respective sets consisting
of all phylogenetic, evolutionary and lifted trees of S. Note that ΨL(S) ⊂ ψE(S). Also,
notice that there can be many evolutionary trees that have the same underlying phlogenetic
tree. We will consider all evolutionary trees that have the same underlying phylogenetic tree
to belong to the same phylogenetic class.

For S, we define a phlogenetic forest F(S) = {T (u1), ..., T (ul)} to be a set of node dis-
joint trees such that for i ∈ [1..l], each T (ui) is a sub-tree of some phylogenetic tree of S
and

⋃l
1 L(T (ui)) = S. For a phylogenetic forest F(S), we say FL(S) = {TL(u1), ..., TL(ul)}

– 4 –

is a lifted forest of F(S) if for i ∈ [1..l], TL(ui) is a lifted tree of T (ui). Similarly, we say
FE(S) = {TE(u1), ..., TE(ul)} is an evolutionary forest for F(S) if for i ∈ [1..l], TE(ui) is an
evolutionary tree of T (ui). Notice that for a given phylogenetic forest there are several lifted
forests and evolutionary forests possible depending on how sequence labels are assigned to
each intermediate node in F(S).

We say that a phylogenetic tree T ∈ ΨP (S) satisfies F(S) if every tree in F(S) is a sub-tree
of T . We say that an evolutionary tree T ∈ ΨE(S) satisfies F(S) if the phylogenetic tree
corresponding to T satisfies F(S). For a given phylogenetic forest F(S), let ΨF

P (S) , ΨF
L(S)

and ΨF
E(S) be the respective phylogenetic, lifted and evolutionary trees that satisfy F(S).

Note that if F = {s1, ..., sk}, then ΨF
P (S) = ΨP (S), ΨF

E(S) = ΨE(S) and ΨF
L(S) = ΨL(S).

Otherwise, ΨF
P (S) ⊆ ΨP (S), ΨF

E(S) ⊆ ΨE(S) and ΨF
L(S) ⊆ ΨL(S).

For any given evolutionary tree T , let Cost(T) be defined as the sum of the cost of the
edges of T , where the cost of an edge (u, v) ∈ T is the edit distance dist(u, v) between the
sequence labels of nodes u and v. The edit distance is is defined to be the minimum number
of substitutions/insertions required to change u to v or vice versa and can be easily deter-
mined using dynamic programming in time proportional to the product of the lengths of the
input sequences.

We will denote by OPTE(S)(OPTL(S)) the evolutionary tree(lifted tree) in ΨE(S)(ΨL(S)
with minimum cost. For T ∈ ΨP (S), we will denote by OPTE(T)(OPTL(T) the evolutionary
tree(lifted tree) in the phylogenetic class of T with the minimum cost. For a phlogenetic
forest F(S), we will denote by OPT F

E (S)(OPT F
L (S) the evolutionary tree (lifted tree) in

ΨF
E(S)(ΨF

L(S)) with the minimum cost.

Now, we define the tree alignment, the generalized tree alignment and constrained gen-
eralized tree alignment problems as follows:

Tree Alignment Problem: Given a set S of k related biological sequences and a phy-
logenetic tree T ∈ ΨP (S), determine OPTE(T).

Generalized Tree Alignment Problem: Given a set S of k related biological sequences,
determine OPTE(S).

Constrained Generalized Tree Alignment Problem: Given a phylogenetic forest F(S),
determine OPT F

E (S).

– 5 –

2.2 Summary of Complexity and Algorithmic Results on Tree
Alignment and Generalized Tree Alignment

In this section, we summarize the existing results on the Tree Alignment and Generalized
Tree Alignment Problems that we use.

Tree Alignment

Theorem 1 The Tree Alignment Problem is NP-Hard even when the given phylogenetic tree

is a binary tree.

This result was established by Jiang et al [8]. For the proof, we refer the reader to the paper
of Jiang et al [8].

Theorem 2 For any given phylogenetic tree T ∈ ΨP (S), there exists a lifted tree for T with

a cost at most twice the cost of the optimal evolutionary tree for T and can be obtained using

dynamic programming in O(k3 + k2n2) time.

Theorem 3 For any t > 0, the Tree Alignment Problem has a PTAS with an approximation

ratio 1+3/t and runs in time O(k2t−1+2M(d, t−1, n)) where M(d, t−1, n) is the time needed

to optimally align a tree of depth t− 1.

The above two results were first established by Jiang et al [8] and later an improved 2-
approximation algorithm and PTAS was presented by Wang and Gusfield [13]. In this
paper, we make use of the following results of Jiang et al [8] : (1) the dynamic programming
algorithm for obtaining an optimal lifted tree for any given phylogenetic tree, and (2) PTAS
for the tree alignment problem. For details about these algorithms and their analysis we
refer the reader to the paper of Jiang et al [8].

Generalized Tree Alignment

Theorem 4 Generalized Tree Alignment Problem is MAX SNP-hard.

This result was established by Jiang et al [8]. We refer the reader to the paper of Jiang et
al [8] for the proof.

Theorem 5 Let G(S) be the edit graph of S. The minimum spanning tree of G(S) has a

cost within 2 − 2/k of any evolutionary tree for S.

This theorem was established by Gusfield [4]. We refer the reader to the paper of Gusfield
[4] for the algorithm and its analysis.

– 6 –

3 Phylogenetic and Lifted Trees that satisfy F(S)

In section 3.1, we first define an edit graph of F(S) and then characterize spanning, phy-
logenetic and lifted trees that satisfy F(S) in terms of spanning trees of the edit graph of
F(S). In Section 3.2, we introduce ordered spanning trees and establish their relationship
with phylogenetic trees that satisfy F(S). In Section 3.3, we present properties of optimal
lifted trees of phylogenetic and spanning trees that satisfy F(S) and use them to establish
lower and upper bounds on the cost of an optimal lifted tree that satisfies F(S).

3.1 Characterization of Phylogenetic and Lifted Trees that satisfy

F(S)

We first present a proposition that without loss of generality will help restrict our attention
to binary phylogenetic and evolutionary trees that satisfy F(S). Then, we define the edit
graph G(F (S)) of F(S) and characterize spanning, phylogenetic and lifted trees that satisfy
F(S) in terms of the spanning trees of G(F (S)).

Proposition 1: Given any evolutionary tree T of S with arbitrary maximum degree there
exists an evolutionary tree T ′ of S with maximum degree two such that Cost(T ′) ≤ Cost(T).
Proof Let T be an evolutionary tree of S with c vertices of degree greater than two. For some
d > 2, le v ∈ T be any vertex with d children u1, ..., ud with sequence labels l(u1), ..., l(ud)
respectively. Now, we will replace vertex v by d − 1 vertices of degree two and obtain an
evolutionary tree T ′ such that Cost(T ′) = Cost(T) and T ′ has c−1 vertices of degree greater
than two. We create T ′ from T as follows: Let T1 = T (u1). Create d − 1 trees T2, ..., Td−1

such that for i ∈ [2..d], the tree Ti is rooted at a node vi with a sequence label l(vi) = l(v)
and the left and right sub-trees of Ti are respectively Ti−1 and T (ui). Now set T ′ = Td−1. It
is easy to observe that Cost(T ′) = Cost(T) and T ′ has c − 1 nodes of degree greater than
two. Now, if we repeat this construction c times we will get an evolutionary tree with the
same cost as T and the maximum degree of every vertex will be less than or equal to two.

Edit Graph of F(S)

Let S = {s1, ..., sk} be a set of k related biological sequences and F(S) = {T (u1), ..., T (ul)}
be a phylogenetic forest for S. Let FL denote the set of all lifted forests of F(S).

Definition 3.1 We define the edit graph of F(S) to be a graph G(F (S)) = (V,E), where

V = {u1, u2, ..., ul}, and for each pair of sequences si, sj ∈ S there is an edge e = (r(si), r(sj))
in E with label l(e) = (si, sj) and cost cost(e) = dist(si, sj), where r(si) and r(sj) are the

respective roots of the trees in F(S) to which si and sj belong.

Note: G(F (S)) is a multi-graph and between a pair of vertices there can be multiple edges
each with a different cost. We label the edges in G(F (S)) to associate each edge with the

– 7 –

sequence pair in S that determines its cost.

Spanning Trees that satisfy F(S)

Definition 3.2 A spanning tree T that satisfies F(S) is defined as a spanning tree on the

vertices of F(S) such that each tree in F(S) is a sub-tree of T .

A spanning tree that satisfies F(S) can be constructed from F(S) by inserting a minimal
set of edges from G(F (S)). Notice that each such minimal set is a spanning tree of G(F (S)).
More formally, any spanning tree that satisfies F(S) can be expressed as F(S)

⋃
T , for some

spanning tree T of G(F (S)), and each edge e = (ui, uj) ∈ T can be viewed as merging the
phylogenetic trees T (ui) and T (uj).

Phylogenetic Trees that satisfy F(S)

We can view a phylogenetic tree that satisfies F(S) to be a steiner tree consisting of the
nodes in F(S) and up to l− 1 additional steiner points, whereas a spanning tree that satis-
fies F(S) can be viewed as a steiner tree consisting of the nodes in F(S) with no additional
steiner points. Now, we present a property that states the relationship between spanning
trees that satisfy F(S) and phylogenetic trees that satisfy F(S).

Property 1: Let F(S) = {T (u1), ..., T (ul)} be a phylogenetic forest. A spanning tree that
satisfies F(S) and is rooted at a node in {u1, ..., ul} is a phylogenetic tree that satisfies F(S).

From the earlier steiner tree characterization and Property 1, we can see that the set of
all spanning trees that satisfy F(S) and rooted at a node in {u1, ..., ul} are a sub-set of the
set of all phylogenetic trees that satisfy F(S).

Lifted Trees that satisfy F(S)

A lifted tree that satisfies F(S) can be constructed from a phylogenetic tree that satisfies
F(S) by labeling each internal node by one of the k sequences in S. We can also construct
lifted trees that satisfy F(S) from any spanning tree that satisfies F(S) and is rooted at a
node in {u1, ..., ul} by labeling each internal node by one of the k sequences in S. Notice
that the set of all lifted trees that are constructed from spanning trees that satisfy F(S) are
a sub-set of all lifted trees that satisfy F(S).

Any lifted tree T̄ of a spanning tree that satisfies F(S) can be expressed as FL

⋃
T , where

FL ∈ FL(S) is a lifted forest of F(S) and T is a spanning tree of G(F (S)). Let e = (ui, uj)
be an arbitrary edge that is present in T̄ as well as G(F (S)). Let l(e) = (si′ , sj′) be the
label associated with edge e in G(F (S)). Let sī and sj̄ be the sequence labels of ui and uj

in T̄ respectively. Notice that the cost of the edge e in G(F (S)) may not be the same as
its cost in T̄ . In G(F (S)), Cost(e) = dist(si′ , sj′), whereas in T̄ , Cost(e) = dist(sī, sj̄). If

– 8 –

si′ = sī and sj = sj̄ then Cost(e) in G(F (S)) is the same as Cost(e) in T̄ . Now, we classify
lifted trees of spanning trees that satisfy F(S) into proper trees and improper trees based on
the relationship between the cost of the edges of T in T̄ and the cost of the edges of T in
G(F (S)).

Definition 3.3 Let T̄ = FL

⋃
T be a lifted tree of a spanning tree that satisfies F(S). We

define T̄ to be proper if the cost of the edges of T in G(F (S)) is the same as the cost of the

edges of T in T̄ , otherwise improper.

Now, we present a property about proper trees that we later use in establishing a lower
bound on the cost of an optimal lifted tree that satisfies F(S).

Property 2: Let T̄ = FL

⋃
T be a lifted tree of a spanning tree that satisfies F(S). If

T̄ is a proper tree then Cost(T̄) = Cost(FL) + Cost(T).

3.2 Ordered Trees and their relationship with phylogenetic trees

that satisfy F(S)

In this section, we will first introduce a new type of spanning tree that we refer to as ordered

tree. Then, we present some properties that we primarily use to show that we can construct
an optimal lifted tree that satisfies F(S) by only considering lifted trees of spanning trees
that satisfy F(S). These properties also imply that if we associate an ordered tree with each
spanning tree that satisfies F(S) and then consider only the lifted trees of these ordered
trees, then we can construct an optimal lifted trees that satisfy F(S) without excluding any
tree topologies apriori.

Ordered Trees

Definition 3.4 For a spanning tree T and a node v ∈ T , let an ordering σ = {σ(u) : u ∈
T (v)}, where σ(u) specifies the rank among the children of u in T (v). Let σ(T) denote the

set of all possible orderings on T . For a spanning tree T , a node v ∈ T and an ordering

σ ∈ σ(T), we define T σ(v) to be the ordered tree of T rooted at v where the rank among the

children of each node in T (v) is specified by σ.

For a spanning tree T , the number of ordered trees depends on the number of choices for
the root and the number of orderings in σ(T). The number of choices for the root equals k,
the number of nodes in T . The number of orderings in σ(T) depends on the topology of T .
The worst case is when T has a star topology. In this situation the number of orderings is
(k− 1)!. However, spanning trees that correspond to biologically relevant evolutionary trees
usually have good depth. In these cases the number of orderings is usually O(2k).

Relationship between Ordered Trees and Phylogenetic Trees that satisfy F(S)

First, we present a function construct − phylogenetic − tree that given any ordered tree

– 9 –

of a spanning tree that satisfies F(S) transforms it into a phylogenetic tree that satisfies
F(S). Then, we show that construct− phylogenetic− tree can construct any phylogenetic
tree that satisfies F(S) by transforming some ordered tree that satisfies F(S) and is rooted
at a node in {u1, ..., ul}. This would imply that by constructing lifted trees by only consid-
ering optimal lifted trees of ordered trees we will not be excluding any tree topologies apriori.

Basic Idea: First construct a tree T0 consisting of a single leaf node v0. Then, recursively
construct the phylogenetic tree for each of the sub-trees of T (v). Finally, construct the phy-
logenetic tree T σ

P (v) by successively merging two at a time the trees T0 and the phylogenetic
trees of the sub-trees of T (v). The sequence in which these phylogenetic trees are merged is
specified by σv.

Function Construct-Phylogenetic-Tree(T σ(v))
Inputs:(1) T (v) : spanning tree that satisfies F(S) and rooted at v ∈ {u1, ..., ul};

(2) σ : An ordering on the children of each node in T (v);
Output: (1) T σ

P (v) : A phylogenetic tree that satisfies F(S);
begin

Let nv be the number of children of v;
Let T0 be a tree consisting of leaf node v0;
for (i = 1; i ≤ nv; i = i+ 1)
begin

Let u = σv(i) be the ith child of v ;
Let T σ

P (u) = Construct− Phylogenetic− Tree(T, u, σ) be the phylogenetic
tree for T σ(u) constructed recursively;
Let Ti be the tree with root vi, left sub- tree Ti−1 and right sub-tree T σ

P (u);
end
return Tnv

end

We now show that construct− phylogenetic− tree can construct any phylogenetic tree that
satisfies F(S) by transforming some ordered tree of a spanning tree that satisfies F(S) and
is rooted at a node in {u1, ..., ul}.

Lemma 6 Let F(S) = {T (u1), ..., T (ul)} be a phylogenetic forest. For any phylogenetic

tree T ′ that satisfies F(S) there exists an ordered tree T̄ σ(v) such that T ′ = Construct −
phylogenetic − tree(T̄ σ(v)), where T̄ is a spanning tree that satisfies F(S), v ∈ {u1, ..., ul}
and σ ∈ σ(T̄).

Proof Let T ′ be any phylogenetic tree that satisfies F(S) and T ′

L be some arbitrary lifted
tree of T ′. Now, we will construct a spanning tree T̄ that satisfies F(S) such that T ′

L =
Construct − phylogenetic − tree(T̄ σ(v) for some v ∈ {u1, ..., ul} and and some ordering
σ ∈ σ(T̄). We can view the lifted tree T ′

L as a tournament. That is at all levels the internal
nodes receive its sequence label from one of its children. Let v be a node at level i and let a
and b be the respective labels of its left and right child. If node v receives its sequence label

– 10 –

from its left child then we say that a defeated b at level i otherwise we say b defeated a at
level i. Now, for each node v ∈ {u1, ..., ul}, we define defeated(v) = {w : w ∈ {u1, ..., ul}
and l(v) defeated l(w)}, where l(v) and l(w) are the sequence labels of nodes v and w
respectively. We order the nodes in defeated(v) in the increasing order of the level at which
they were defeated by v. Now, we define T̄ to be F(S)

⋃
{(ui, uj) : uj ∈ defeated(ui)},

the ordering σ(ui) for i ∈ [1..l] among the children of node ui is specified by their rank in
defeated(ui), and the root of T̄ to be the node ur ∈ {u1, ..., ul} with an undefeated sequence
label. From the construction of T̄ , we can see that T̄ satisfies F(S) and the phylogenetic
tree Construct− phylogenetic− tree(T̄ σ(ur) has the same topology as T ′

L.

3.3 Optimal lifted trees that satisfy F(S)

In this section, we first present a lemma that establishes the relation between the cost of an
optimal lifted tree of an ordered tree T σ(v) and the cost of an optimal lifted of the phyloge-
netic tree T σ

P (v) = construct− phylogenetic− tree(T σ(v)). Then, we present lemmas that
establish the lower and upper bounds on the cost of an optimal lifted tree that satisfies F(S).

Let F(S) ={T (u1), ..., T (ul)} be a phylogenetic forest consisting of binary phylogenetic
trees. Let v, w be any two nodes in {u1, ..., ul}. Let T (v) be any spanning tree that
satisfies F(S), and T σ(w) be any ordered tree of T where σ ∈ σ(T). Let T σ

P (w) =
Construct−Phylogenetic−Tree(T σ(w)) be the phylogenetic tree obtained by transforming
the ordered tree T σ(w).

Now, we show that the cost of an optimal lifted tree of T (v) is the same as the cost of
the optimal lifted tree of T σ

P (w).

Lemma 7 Cost(OPTL(T (v))) = Cost(OPTL(T σ
P (w))

Proof From definition we know that the edges in T (v) are the same as the edges in T σ(w).
So any lifted tree for T (v) is also a lifted tree for T σ(w). Now, using a function similar to
construct−phylogenetic−tree, given any lifted tree for T σ(w) we can transform it into a lifted
tree for T σ

P with the same cost. This implies that Cost(OPTL(T (v)) ≥ Cost(OPTL(T σ
P (w)).

Conversely, given any lifted tree for T σ
P (w), if we compress all the edges of zero cost, we will

get a lifted tree for T σ(w) with the same cost. Hence the result.

Now, we present three lemmas that establish lower and upper bounds on the cost of an
optimal lifted tree that satisfies F(S).

Let F(S) = {T (u1), ..., T (ul)}, F
OPT
L = {OPTL(T (u1)), ..., OPTL(T (ul))} be the lifted for-

est corresponding to F(S), where for i ∈ [1..l], OPTL(T (ui)) is the optimal lifted tree of
T (ui) constructed using the dynamic programming algorithm of Wang and Gusfield [13].
For 0 < ε ≤ 1, let F ε

E = {T ε
E(u1), ..., T

ε
E(ul)} be an evolutionary forest corresponding to

F(S), where for i ∈ [1..l], T ε
E(ui) is the (1 + ε) approximate evolutionary tree corresponding

– 11 –

to T (ui) constructed using the PTAS of Wang and Gusfield [13]. Let G(F (S)) be the edit
graph of F (S) and MST be the minimum cost spanning tree of G(F (S)).

Lemma 8 For any spanning tree T of G(F (S)) with cost Cost(T), there exists a lifted tree

that satisfies F(S) with cost at most 3Cost(FOPT
L) + 2Cost(T).

Proof Let T be some arbitrary spanning tree of G(F (S)) with cost Cost(T), T̄P = F(S)
⋃
T and T̄L = FOPT

L

⋃
T . Notice that T̄L is a lifted tree that satisfies F(S). If T̄L is proper

then we know from property 2 that Cost(T̄L) = Cost(FOPT
L) + Cost(T) and we are done.

So without loss of generality we assume that T̄L is not proper. Now, we will establish this
lemma as follows: First, we will transform T into a spanning tree T ′ with the degree of each
node at most two and cost at most 2Cost(T). Then, we will transform T ′ into a spanning
tree TR such that the degree of each node is at most two and FOPT

L

⋃
TR is a proper tree

with cost at most 2Cost(FOPT
L) + Cost(T ′) = 2Cost(FL) + 2Cost(T).

Now, we will construct T ′. Let v ∈ {u1, ..., ul} be any arbitrary node in T and uπ(1), ..., uπ(l)

be an ordering of the nodes of T based on a DFS of T starting at v. Let T ′ = {e =
(uπ(i), uπ(i+1)) : e ∈ G(F (S)) and Cost(e) is the lowest among all edges in G(F (S)) between
uπ(i) and uπ(i+1). We want to remind the reader that G(F (S)) is a multi-graph on {u1, ..., ul}
that has edges between every pair of vertices and the edge costs satisfy triangle inequality.
From the construction of T ′ and repeated application of triangle inequality, we can easily
see that T ′ is a spanning path with cost at most 2Cost(T).

Now, we construct TR from T ′ by replacing each edge e′ = (ui, uj) ∈ T ′ by an edge
er = (ui, uj) ∈ G(F (S)) such that Cost(er) = Cost(l(ui), l(uj)), where l(ui) and l(uj)
are the respective labels of ui and uj in FOPT

L . From the construction of TR, we can see
that TR is a spanning path and FOPT

L

⋃
TR is a lifted tree that is proper. Now, we will show

that the cost of this proper tree is at most 3Cost(FOPT
L) + Cost(T ′). From property 2, we

know Cost(FOPT
L

⋃
TR) = Cost(FOPT

L) + Cost(TR). Now, to prove this lemma, we need to
show that Cost(TR ≤ 2Cost(FOPT

L + Cost(T ′). Now, we will relate Cost(TR) in terms of
Cost(FOPT

L) and Cost(T ′). Let e′ = (ui, uj) be some arbitrary edge in T and e′′ = (ui, uj)
be its corresponding edge in TR. Let l(e′) = (si′ , sj′) and l(e′′) = (si′′ , sj′′ be the edge labels
of the edges e′ and e′′ respectively. Let P (ui, s

i′) and (P (uj, s
j′)) be the respective paths in

FOPT
L from node ui to node si′, and node (uj) to sj′ respectively. Using triangle inequal-

ity, we get Cost(e′′) ≤ Cost(P (ui, s
i′) + Cost((si′ , sj′) + Cost(P (sj′, uj). Summing over all

edges in TR, and using the fact that the maximum degree of any node in TR is two, we get
Cost(TR) ≤ 2Cost(FOPT

L) + Cost(T ′). Hence the result.

Lemma 9 Let T be any spanning tree of G(F (S)) with cost Cost(T). Then there exists an

evolutionary tree that satisfies F(S) with cost at most 2(Cost(F OPT
L) + Cost(T)).

The proof of this lemma is essentially the same as the previous lemma except that we use
the PTAS of Wang and Gusfield [13] to construct an evolutionary forest F ε

E with a stronger
guarantee on its cost than the optimal lifted forest FOPT

L .

– 12 –

Lemma 10 Cost(OPT F
L (S)) ≥ Cost(FOPT

L) + Cost(MST)

Proof From lemmas 6 and 7, we know that to construct an optimal lifted tree that sat-
isfies F(S) it is sufficient to consider only lifted trees of spanning trees that satisfy F(S).
We know that every spanning tree that satisfies F(S) can be expressed as F(S)

⋃
T for

some spanning tree T of G(F (S)). This implies that every lifted tree of a spanning tree
that satisfies F(S) can be expressed as FL

⋃
T , where FL is a lifted forest corresponding to

F(S) and T is a spanning tree of F(S). We know from definition that FOPT
L is the optimal

lifted forest for F(S) and MST is the minimum cost spanning tree of G(F (S)). Therefore,
any lifted tree that satisfies F(S) will have a cost at least Cost(F OPT

L)+Cost(MST).

Notice that any spanning tree that satisfies F(S) can be expressed as F(S)
⋃
T , where

T is a spanning tree of the edit graph G(F (S)). From this observation and Lemmas 6, 7,
8 and 9, we can see that an optimal lifted tree that satisfies F(S) can be constructed by
enumerating spanning trees of G(F (S)) with cost ≤ Cost(FL(S)) + 2Cost(MST), and then
for each such spanning tree T construct the optimal lifted tree for F(S)

⋃
T .

4 Algorithms for constructing lifted trees that satisfy

F(S)

In this section we use the properties presented in Section 3 to design algorithms for con-
structing evolutionary trees that satisfy F(S). In Section 4.1, we present a 4-approximation
algorithm. In Section 4.2, for 0 ≤ ε ≤ 1, we present a 2(1 + ε) approximation algo-
rithm when the number of spanning trees of the edit graph G(F (S)) with cost less than

2
1+ε

(Cost(MST) + Cost(FOPT
L)) is bounded.

4.1 An Approximation Algorithm for constructing a lifted tree

that satisfies F(S)

We present an algorithm A that given any phylogenetic forest F(S) constructs a lifted tree
that satisfies F(S) with cost at most three times the optimal lifted tree in O(k2n2 + k3)
time. Then, we modify this algorithm to construct a lifted tree that satisfies F(S) and is
within twice the cost of an optimal lifted tree that satisfies F(S).

Basic Idea: Find the minimum spanning tree MST of the edit graph G(F (S)). If F(S) =
{s1, ..., sk} then return MST . Otherwise, first construct a lifted forest FOPT

L by constructing
the optimal lifted tree for each phylogenetic tree in F(S). Second, construct a spanning tree
T ′ of G(F (S)) by joining any two vertices i and j in T such that π(j) − π(i) = 1, where π
is any DFS order of the nodes of MST . Third, construct the tree TR from T ′ by replacing
each edge (ui, uj) ∈ T ′ by the edge (r(ui), r(uj)), where r(ui) and r(uj) are the roots of
the the respective trees in F(S) that contain the nodes ui and uj. Finally, construct TL by
concatenating FOPT

L and TR.

– 13 –

Algorithm A
Input: F(S): A Phylogenetic Forest F (S) = {T (u1), ..., T (ul)};
Output: A lifted tree that satisfies F(S);
begin

Let G(F (S)) be the edit graph of F(S) and MST be a minimum cost spanning
tree of G(F (S));
If F(S) = {s1, ..., sk};

Let TL = MST ;
else

Let FOPT
L = {OPTL(T (u1)), ..., OPTL(T (ul))}, where for i ∈ [1..l],

OPTL(T (ui)) is the optimal lifted tree of T (ui) constructed using the dynamic
programming algorithm of Gusfield and Wang [13];

Let uπ(1), ..., uπ(l) be any DFS order of the vertices in MST ;
Let T ′ = {e = (uπ(i), uπ(i+1)) : e ∈ G(F (S)) and Cost(e) is the lowest among all the
edges in G(F (S)) between uπ(i) and uπ(i+1);
Let TR be the tree obtained by replacing each edge (ui, uj) ∈ T ′ by an edge (ui, uj)
∈ G(F (S)) such that Cost(ui, uj) = Cost(l(ui), l(uj)), where l(ui) and l(uj) are the
respective labels of ui and uj in FOPT

L ;
Let TL = FOPT

L

⋃
TR;

return TL;
end

We now show that algorithm A constructs a lifted tree that satisfies F(S) and is within three
times the cost of any lifted tree that satisfies F(S). From Theorem 2 this would imply that
A is a 6-approximation algorithm for the constrained generalized tree alignment problem.
For the special case when F(S) ={s1, ..., sk} this problem reduces to the generalized tree
alignment problem. In this case algorithm A returns the minimum cost spanning tree.
From Theorem 5, this would imply that algorithm A is a 2-approximation algorithm for the
generalized tree alignment problem.

Theorem 11 Let F(S)={T (u1), ..., T (ul)} and let TL be the lifted tree constructed by al-

gorithm A then Cost(TL) ≤ 6Cost(OPT F
E (S)). If F(S) = {s1, ..., sk} then Cost(TL) ≤

2Cost(OPT F
E (S)).

Proof If F(S) ={s1, ..., sk} then this problem reduces to the generalized tree alignment
problem. In this case this theorem follows from Theorem 5. Otherwise, this theorem follows
from Theorem 2 and Lemmas 8 and 10.

We now modify the algorithm A to make use the PTAS of Wang and Gusfield [13] to
construct an evolutionary tree that satisfies F(S) and is within twice the cost of an optimal
lifted tree that satisfies F(S). From Theorem 2 this would imply that A is a 4-approximation
algorithm for the constrained generalized tree alignment problem.

We modify the algorithm A by replacing statement (1) by statement (2)

– 14 –

(1) FOPT
L = {OPTL(T (u1)), ..., OPTL(T (ul))}, where for i ∈ [1..l], OPTL(T (ui))

is the optimal lifted tree for T (ui) constructed using the dynamic programming
algorithm of Wang and Gusfield [13].

(2) FL = {T ε
E(u1), ..., T

ε
E(ul)}, where for i ∈ [1..l], T ε

E(ui) is the evolutionary
tree for T (ui) constructed using the PTAS of Wang and Gusfield [13].

Theorem 12 Let F(S)={T (u1), ..., T (ul)} and let TL be the lifted tree constructed by al-

gorithm A then Cost(TL) ≤ 4Cost(OPT F
E (S)). If F(S) = {s1, ..., sk} then Cost(TL) ≤

2Cost(OPT F
E (S)).

Proof If F(S) ={s1, ..., sk} then this problem reduces to the generalized tree alignment
problem. In this case this theorem follows from Theorem 5. Otherwise, this theorem follows
from Theorem 2 and Lemmas 9 and 10.

4.2 An Algorithm for Constructing an Optimal Lifted Tree that

satisfies F(S)

We now present algorithm B that given any phylogenetic forest F(S) and a real number
0 ≤ ε ≤ 1, constructs a lifted tree that is within (1 + ε) the cost of an optimal lifted tree
that satisfies F(S).

Basic Idea: First, construct the lifted forest FOPT
L by constructing the optimal lifted tree for

each phylogenetic tree in F(S). Second, starting with the minimum spanning tree enumer-
ate the spanning trees of the edit graph G(F (S)) in non-decreasing order of cost. For each
spanning tree T of G(F (S)) we construct the optimal lifted tree for the phylogenetic tree
F(S)

⋃
T . Finally, from among all the constructed lifted trees return the lifted tree with

the lowest cost.

Algorithm B(Phylogenetic Forest F(S))
Inputs: (1) F(S): A Phylogenetic Forest F (S) = {T (u1), ..., T (ul)};

(2) ε : The desired quality of approximation;
Output: An lifted tree that satisfies F(S);
begin

Let G(F (S)) be the edit graph of F(S) and MST be a minimum cost spanning tree
of G(F (S));
Let FOPT

L = {OPTL(T (u1)), ..., OPTL(T (ul))} be the lifted forest, where for i ∈ [1..l]
OPTL(T (ui)) is the optimal lifted tree for T (ui) constructed using the dynamic
programming algorithm of Gusfield and Wang [13];

Let c = 2
1+ε

(Cost(FOPT
L) + Cost(MST)), min = c+ 1;

Let ST (F (S)) be the spanning trees of G(F (S)) with cost less than c arranged in
non-decreasing order of cost and v be any vertex in {u1, ..., ul};
For T ∈ ST (F (S))

– 15 –

begin
Let TP = F(S)

⋃
T ;

Let TOPT
L (v) be the optimal lifted tree for TP (v) constructed using the dynamic

programming algorithm of Wang and Gusfield [13];
If (Cost(TL(v)) < min)

Let Tmin = TL(v) and min = Cost(TOPT
L (v));

end
return Tmin;

end

Now, we show that algorithm B constructs a lifted tree that satisfies F(S) and has a cost that
is within (1+ε) times the cost of any lifted tree that satisfies F(S) in time proportional to the
number of spanning trees of G(F (S)) with cost less than 2

1+ε
(Cost(MST) + Cost(FOPT

L)).

Theorem 13 Let F(S) = {T (u1), ..., T (ul)} and 0 ≤ ε ≤ 1 and N(x) be the number of

spanning trees of G(F (S)) with cost less than or equal to x. Let Tmin be the lifted tree

constructed by algorithm B and c = 1
1+ε

(2Cost(MST) + 3Cost(FOPT
L)), then B constructs

Tmin in O(k3 + k2n2)N(c) time such that Cost(Tmin) ≤ (1 + ε)OPT F
L (S).

Proof From Lemmas 6 and 7, we know that to determine an optimal lifted tree that satisfies
F(S) it is sufficient to consider lifted trees of spanning trees that satisfy F(S). Now, depend-
ing on the cost of the optimal lifted tree that satisfies F(S) there are two situations possible.
If c > OPT F

L (S), then from Lemmas 8 and 10, we know that the algorithm B will construct
an optimal lifted tree that satisfies F(S). Otherwise, the algorithm B will construct a lifted
tree that satisfies F(S) with cost at most 3Cost(FOPT

L)) + 2Cost(MST). In this case, the
cost of an optimal lifted tree that satisfies F(S) is at least 1

1+ε
(2Cost(MST)+3Cost(FOPT

L)).
Hence the result.

Remark 1: In Algorithm B if we used the PTAS of Wang and Gusfield [13] instead of
their dynamic programming algorithm the worst case performance guarantee would still be
the same.

5 Conclusions and Future Work

In this paper, we present polynomial time constant approximation algorithms for the con-
strained generalized tree alignment problem. Our focus in this paper is on the theoretical
results. In view of this and the fact that even restricted instances of the constrained gen-
eralized tree alignment problem are known to be intractable, we consider an elementary
model where where the cost function is defined in terms of mutational distance. From a
practical perspective our algorithms extend to nucledotide substitution and other models
where the cost function satisfies triangle inequality. The details about the implementation,
the experimental set-up and experimental results of our algorithms and heuristics based on
these algorithms are forthcoming in a separate paper.

– 16 –

References

[1] S. Altschul and D.Lipman, Trees, stars, and multiple sequence alignment, SIAM Journal
on Applied Math 49(1989) 197-209.

[2] P. Berman and V. Ramaiyer, Improved Approximations for the Steiner Tree Problem,
Journal of Algorithms bf 17:3(1994) 381-408.

[3] D.Z. Du, Y. Zhang and Q. Zeng, On better heuristic for eucledian steiner minimum trees,
Proc. of the 32nd Symposium on the Foundations of Computer Science (1991) 431-439.

[4] D. Gusfield, Efficient methods for multiple sequence alignment with guaranteed error
bounds, Bull. Math. Biol. 55(1)(1993) 141-154.

[5] D. Gusfield, Algorithms on Strings, Trees, and Sequences: Computer Science and Com-
putational Biology, Cambridge University Press. (1997).

[6] J. Hein, A new method that simultaneously aligns and reconstructs ancestral sequences
for any number of homologous sequences, when the phylogeny is given, Molecular Biology
and Evolution. 6(1989) 649-668.

[7] J. Hein, Unified to Alignment and Phylogenies, Methods in Enzymology. 183(1990)
626-645.

[8] T. Jiang, E.L. Lawler, and L. Wang, Aligning sequences via an evolutionary tree: com-
plexity and approximation, In Symposium on Theory of Computing.(1994) 760-769.

[9] S. Kapoor and H. Ramesh, Algorithms for Enumerating All Spanning Trees of Undirected
and Weighted Graphs, SIAM Journal of Computing.(1995)

[10] J.B. Kruskal and D. Sankoff, An anthology of Algorithms and Concepts for Sequence
Comparison in: Time Warps, String Edits and Macromolecules: The Theory and Practice
of Sequence Comparison., Addison Wesley(1983).

[11] D. Sankoff, Minimal mutation trees of sequences, SIAM Journal on Applied Math,
28(1975) 35-42.

[12] B. Schwikowski and M. Vingron, The deferred path heuristic for the generalized tree
alignment problem, In Proceedings of the first annual International Conference on Com-
putational Molecular Biology (RECOMB’97), ACM Press. (1997) 257-266.

[13] L. Wang and D. Gusfield, Improved Approximation Algorithms for Tree Alignment,
Journal of Algorithms. 25(1997) 255-273.

[14] L. Wang and T. Jiang, On the Complexity of Multiple Sequence Alignment, Journal of
Computational Biology. 1(1994) 337-348.

[15] L. Wang and T. Jiang, Algorithmic Methods for Multiple Sequence Alignment, Current
Topics in Computational Molecular Biology, MIT Press. (2002) 72-110.

[16] L. Wang, T. Jiang, and D. Gusfield, A more efficient approximation scheme for tree
alignment, SIAM J. Comput. 30(2001) 283-299.

– 17 –

[17] L. Wang, T. Jiang, and E.L. Lawler, Approximation algorithms for tree alignment with
a given phylogeny, Algorithmica. 16(1996) 302-315.

[18] A. Zelikovsky. Better Approximation Bounds for the Network and Eucledian Steiner
tree problems. Technical Report 96-06, Department of Computer Science, U. of Virginia
(1996).

