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ABSTRACT

The well-known vertex enumeration problem calls for generating all vertices of a polyhedron
given by its description as a system of linear inequalities. Recently, a number of combinato-
rial techniques have been developed and applied successfully to a large number of monotone
generation problems from different areas. We consider several such techniques and give ex-
amples in which they are applicable to vertex enumeration. We also discuss their limitations
and suggest methods to prove NP-hardness of a monotone generation problem, in particular,
of vertex enumeration for (unbounded) polyhedra.
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1 Introduction

1.1 Vertex enumeration

The well-known Minkowski-Weyl theorem states that any convex polyhedron P ⊆ R
n can

be represented in the following two ways.

• H-representation: the intersection of finitely many halfspaces

P = {x ∈ R
n : Ax ≤ b}, (1)

where A ∈ R
m×n is an m× n real matrix and b ∈ R

m is an m-dimensional real vector;

• V -representation: the Minkowski sum of the convex hull of a set of vectors and the
conic hull of a set of directions in R

n

P = conv{v1, . . . , vr} + cone{d1, . . . , ds}, (2)

where V(P ) = {v1, . . . , vr} ⊆ R
n is the set of vertices or extreme points of P , D(P ) =

{d1, . . . , ds} ⊆ R
n is the set of extreme directions of P , and

conv{v1, . . . , vr} = {
r

∑

i=1

λivi :

r
∑

i=1

λi = 1, λ1 ≥ 0, . . . , λr ≥ 0, }

cone{d1, . . . , ds} = {
s

∑

i=1

µidi : µ1 ≥ 0, . . . , µs ≥ 0};

see, e.g., [46, 52] for a good introduction to polyhedral theory. In this article, we assume
that all vectors and matrices are rational, and denote by L the bit size of A and b.

The vertex enumeration problem calls for generating all the vertices V(P ) of a polyhedron
P given by its H-representation. Clearly, the size of the vertex set V(P ) can be (and typically
is) exponential in n or m, and thus, when we consider the computational complexity of the
vertex enumeration problem, one can only hope for output-sensitive algorithms, that is, those
whose running time depends not only on n, m and L, but also on |V(P )|. In particular, we
consider the following decision and generation problems:

Dec(P,V(P ),X ): Given a polyhedron, represented by a system of linear inequalities (1),
and a subset X ⊆ V(P ) of its vertices, is X = V(P )?

IncGen(P,V(P ),X ): Given a polyhedron, represented by a system of linear inequalities
(1), and a subset of its vertices X ⊆ V(P ), find a new vertex in V(P ) \ X , or indicate
that there is none.

Gen(P,V(P )): Given a polyhedron, represented by a system of linear inequalities (1), gen-
erate all elements of V(P ).
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When the polyhedron P is bounded, the decision problem is referred to as the Polytope-
Polyhedron problem [37]. One can distinguish different notions of efficiency, according to the
time/space complexity of the generation problem:

• Output polynomial or Total polynomial : Problem Gen(P,V(P )) can be solved in poly(n, m, L, |V(P
time.

• Incremental polynomial : Problem IncGen(P,V(P ),X ) can be solved in poly(n, m, L, |X |)
time, for every X ⊆ V(P ).

• Polynomial delay : Problem IncGen(P,V(P ),X ) can be solved in poly(n, m, L) time.
More precisely, the time required to generate a new element of V(P ) is polynomial only
in the input size.

• Polynomial space: The total space required to solve Gen(P,V(P )) s bounded by a
poly(n, m, L). This is only possible if the algorithm looks at no more than poly(n, m, L)
many outputs that it has already generated.

• Strongly P-enumerable: V(P ) can be enumerated with amortized polynomial delay
(that is, in poly(n, m, L)|V(P )| time) using polynomial space.

• NP-hard : the decision problem Dec(P,V(P ),X ) is NP-hard, which means that Dec(P,V(P ),X )
is coNP-complete, since it belongs to coNP.

It is obvious that any incremental polynomial-time algorithm for generating V(P ) is also
output-polynomial. Perhaps, the next statement is less obvious.

Proposition 1 The following 3 claims are equivalent:

(i) Dec(P,V(P ),X ) is polynomial;

(ii) Gen(P,V(P )) is incremental polynomial;

(iii) Gen(P,V(P )) is output polynomial.

Proof. Since (ii) ⇒ (iii) clearly holds, we show that (i) ⇒ (ii) and (iii) ⇒ (i).

(i) ⇒ (ii): We show that IncGen(P,V(P ),X ) can be solved, that is, a new vertex in
V(P ) \ X can be found, by m calls to the decision problem Dec(P,V(P ),X ).

Let J be an algorithm that solves Dec(P,V(P ),X ). For I ⊆ [m]
def
= {1, . . . , m}, denote

respectively by AI and bI the submatrices of A and b formed by the rows i ∈ I, and let
I = [m] \ I. Define the polyhedron

PI = {x ∈ R
n : AIx = bI , AI ≤ bI} (3)

and XI = {x ∈ X | x ∈ PI}. We initialize I = ∅, and iterate the following, for i = 1, . . . , m:
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Call J on PI′ and XI′, where I ′ = I ∪ {i}.
If J answers “Yes,” then update I := I ′.

It is not difficult to see that a new x ∈ V(P ) \ X can be computed by solving linear
equations AIx = bI for I obtained by the above procedure.

(iii) ⇒ (i). Let J be an algorithm that solves Gen(P,V(P ))and t(n, m, L, M) be the
(polynomial) worst case time limit of J on inputs of size parameters n, m, and L, as before,
and output size M = |V(P )|. Given X ⊆ V(P ), we run J , and stop as soon as one of the
following conditions is satisfied:

(a) a vertex x ∈ V(P ) \ X is found,

(b) the running time of J exceeds t(n, m, L, |X |), or

(c) all vertices of P are found.

If (a) happens, we return “Yes.” If (b) happens, we know that |X | < |V(P )| and thus we
return “Yes.” Otherwise, we can conclude that X = V(P ), and hence we return “No.” This
procedure clearly implies (iii) ⇒ (i). �

In view of this proposition, if the decision problem is NP-hard, then no algorithm can
generate all the elements of V(P ) in incremental or total polynomial time, unless P=NP.

Given a polytope (that is, bounded polyhedron) P by its representation (1), and a set
X ⊆ R

n, checking if P ⊆ conv(X ) was shown to be coNP-complete in [26]. If X ⊆ V(P ),
then conv(X ) ⊆ P , and hence the problem becomes equivalent to problem Dec(P,V(P ),X ).
More recently, it was shown [32] that, for general polyhedra, problem Dec(P,V(P ),X )is
NP-hard. Let us remark that polyhedra in the reduction of [32] are unbounded. Thus, it
remains open whether the vertex generation problem for polytopes is also hard. On the
other hand, it is well-known (as we shall also see below) that the joint generation problem
Gen(P,V(P ) ∪ D(P )) of generating the extreme points and extreme directions of a given
polyhedron P is equivalent to generating the vertices V(P ′) of some polytope P ′ derived
from P . In particular, if the vertex enumeration problem is polynomially solvable then the
following statement will be somewhat surprising.

Proposition 2 Let P be a polyhedron, given by its representation (1). Then

(i) If vertex enumeration for polytopes is solvable in output polynomial time, then there is
an incremental polynomial-time algorithm that outputs V(P ) ∪ D(P ) in the following
order: all the elements of D(P ) are generated first then all the elements of V(P ).

(ii) Unless P=NP, there is no incremental polynomial-time algorithm that outputs V(P ) ∪
D(P ) such that all the elements of V(P ) are generated before any element of D(P ).



– 4 –

Proof. The second statement follows from the NP-hardness of Dec(P,V(P ),X ) [32]; see
also Section 4. Let us prove the first one. Let U = 2poly(n,m,L) be a strict upper bound on the
ℓ1-norm ‖x‖1 of any vertex x of P (such bounds are known to exist for rational polyhedra,
see e.g., [46]). Let P ′ be the polytope P ∩ {x ∈ R

n : − U ≤ 1T
nx ≤ U}, where 1n is the

n-dimensional vector of all ones. Then it can be verified that the set V(P )∪D(P ) is in one-to-
one correspondence with V(P ′), and furthermore that V(P ) = V(P ′)∩{x ∈ R

n : ‖x‖1 < U}.
It is also known that the extreme directions of P are in one-to-one correspondence with the
vertices of the polytope P ′′ = {x ∈ R

n : Ax ≤ 0, 1T
nx = 1}. Thus, in the first stage, we use

our polynomial-time vertex enumeration routine to solve problem Gen(P ′′,V(P ′′)) and get
all extreme directions of P , in time poly(n, m, L, |D(P )|). In the second stage, we use the
routine to solve IncGen(P ′,V(P ′),X ) and only keep those outputs x ∈ V(P ′) that satisfy
‖x‖1 < U . The total time for the second stage is poly(n, m, L, |D(P )|+ |V(P )|). �

1.2 Monotone generation

We consider a monotone property π : 2W → {0, 1} defined over the subsets of a finite set
W : π(X) ≤ π(Y ) whenever X ⊆ Y ⊆ W . We assume that there exists a polynomial-
time evaluation oracle for π, that is, an algorithm that, given any X ⊆ W , determines
in polynomial time in the size of W (and maybe some other input parameters), the value
of π(X) ∈ {0, 1}. We denote by Min(π) ⊆ 2W (respectively, Max(π) ⊆ 2W ) the family
of all minimal (respectively, maximal) subsets of W satisfying (respectively, not satisfying)
a monotone property π. We will be interested in the generation of the families Min(π)
(and/or Max(π)), and so we can define, as before, the corresponding decision and generation
problems Dec(π, Min(π),X ), IncGen(π, Min(π),X ), and Gen(π, Min(π)).

Given a polyhedron P , defined as (1), one can express the vertex enumeration problem
for P as a monotone generation problem, for instance, as follows. Let W = [m] and for
I ⊆ E, denote by PI the polyhedron (3). Define the monotone property π : 2W → {0, 1} as
follows

π(I) = 1 ⇐⇒ PI 6= ∅. (4)

Then Max(π) is the family of maximal tight feasible subsystems of P , and it is not difficult
to verify that they are in one-to-one correspondence with the vertices of P :

Fact 1 If V(P ) 6= ∅ then there exists a one-to-one correspondence between Max(π) and
V(P ).

We now give another monotone formulation of the vertex enumeration problem. Consider
a polyhedron P = {x ∈ R

n : Ax = b, x ≥ 0} given in standard form, and let A ⊆ R
n be set

of n+1 vectors in R
n consisting of the columns of A and −b. Define the monotone property

π : 2A → {0, 1}:
π(X) = 1 ⇐⇒ 0 ∈ conv(X).
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Let us call the families Min(π) and Max(π) simplices and anti-simplices, respectively, with
respect to A. Then it turns out that the vertex enumeration problem for polytopes is equiv-
alent to the generation of such simplices. More precisely, we have the following relationship.

Fact 2 ([32]) There exists a one-to-one correspondence between Min(π) and V(P )∪D(P ).

It is worth mentioning that if we change the monotone property above to be defined
as: π(X) = 1 if and only if 0 ∈ int(conv(X)), where int(Y ) denotes the interior of a set
Y , then the status of the problem becomes less open. Precisely, it was shown in [10] that
Dec(Max(π),X ) (and hence the generation of the so-called anti-bodies) is NP-hard. On the
other hand, the generation of the family Min(π) of minimal subsets of A that contain 0 in
the interior of their convex hull (these are called bodies in [10]) turns out to be at least as
hard as the hypergraph transversal generation problem, described in the next section.

1.3 Hypergraph transversals

Let H ⊆ 2V be a hypergraph on a finite set of vertices V . A subset X ⊆ V is said to be a
transversal of H if X ∩ H 6= ∅ for all H ∈ H. We denote by Hd the transversal hypergraph
of H, that is, the hypergraph consisting of all minimal transversals of H. Clearly, if we
define a monotone property π : 2V → {0, 1} by π(X) = 1 if and only if X ∩ H 6= ∅ for
all H ∈ H, then we have a one-to-one correspondence between Hd and Min(π). It turns
out that the generation problem for many interesting monotone properties is reducible to
problem Gen(H,Hd) of generating all minimal transversals of a hypergraph H, see e.g.,
[8, 22, 34].

The best known algorithm [23] for this problem runs in quasi-polynomial time No(log N),
where N = |V |+|H|+|Hd|. No polynomial algorithm is known, though such algorithms exist
for many special cases, e.g., for graphs or, more generally, for the hypergraphs of bounded
edge-size [9, 20, 39, 40].

A similarity between the polytope-polyhedron and hypergraph transversal problems is
pointed out in [37], where it is also mentioned that the latter problem may be strictly between
P and coNP; this conjecture is attributed to Gottlob.

2 Four Generation Techniques

In this paper, we describe four methods that have been successfully applied to monotone
generation problems. We then survey some of the known results about vertex enumeration
and put them in the framework of these enumeration techniques. On the way, we also obtain
some new results. Namely, we show that the method used for enumerating vertices of 0/1-
polytopes is unlikely to extend for 0/1-polyhedra. We also give incremental polynomial-time
algorithms for enumerating all vertices of polyhedra associated with 0/1-network matrices.
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GEN-A(G):
Input: A supergraph G on the family Fπ satisfying a property π
Output: The elements of family Fπ

1. Find an initial vertex X0 ∈ Fπ

2. Initialize a queue Q = {X0} and a dictionary of output vertices D = {X0}.
(* Perform a breadth-first search of G starting from X0 *)

3. while Q 6= ∅ do
4. Take the first vertex X out of the queue Q and output X
5. for each Y ∈ N (X) do
6. if Y /∈ D then
7. Insert it to Q and to D

Figure 1: The supergraph method

2.1 The supergraph approach

Let W be a finite set and assume that we are interested in generating the family Fπ of all
subsets of W satisfying a certain (not necessarily monotone) property π : 2W → {0, 1}. This
technique works by building and traversing a directed graph G = (Fπ, E), defined on the
family Fπ ⊆ 2E to be generated. The arcs of G are defined by a neighborhood function
N : Fπ → 2Fπ that to any X ∈ Fπ assigns a set of its successors N (X) in G. A special
vertex X0 ∈ Fπ is identified from which all other vertices of G are reachable. The method
works by traversing, say, in the breadth-first search order, the vertices of G, starting from
X0. If G is strongly connected then X0 can be any vertex in Fπ.

The following facts are known about this approach (see e.g. [31, 47]):

Proposition 3 (i) If N (X) is polynomial-time computable, then GEN-A yields a polynomial-
delay algorithm for enumerating Fπ.

(ii) If N (X) can be generated in incremental polynomial time, then then GEN-A yields a
incremental polynomial-time algorithm for enumerating Fπ.

(iii) If N (X) is polynomial-time computable and G is a tree, then, using depth-first search
instead of breadth-first search in GEN-A, Fπ can be generated with polynomial de-
lay. Moreover, if in addition N−1(X) is polynomial-time computable, then Fπ can be
generated with polynomial space.

We remark that if the neighborhood function is polynomial-time computable then we
have |N (X)| ≤ poly(|W |) for every X ∈ Fπ. For (iii), it is not difficult to see that Fπ can
be generated in incremental polynomial time if N (X) is polynomial-time computable and G
is a tree. In order to obtain a polynomial-delay algorithm, X ∈ Fπ is output just after the
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first visit to it, if the depth of X is odd; Otherwise, X is output just before coming back to
the parent.

2.1.1 The neighborhood operator for vertices of polyhedra

Let P be a polyhedron given by (1). For a vertex v ∈ V(P ), it is natural to define the
neighbors of v as the ”polyhedral” neighbors, that is

N (v) = {v′ ∈ V(P ) : (v′, v) forms an edge of P}.

As is well-known, the supergraph G, defined with this neighborhood is strongly connected.
Thus, by Proposition 3, enumerating the vertices of V(P ) reduces to the neighborhood
computation. Conversely, as observed in [43], the generation of N (v) for a given v is at
least as hard as the vertex enumeration problem for polytopes. For example, consider the
generation of the vertices adjacent to the (n+1)st unit vector en+1 in the pyramid pyr(x, P ) ⊆
R

n+1 with base P and apex en+1. However, in some cases, as the examples given below, the
neighborhood computation can be done with polynomial delay or in incremental polynomial
time.

2.1.2 Simple polyhedra

Recall that a polyhedron P ⊆ R
n is simple if each vertex of P is the intersection of ex-

actly n facet-defining inequalities for P . For such polyhedra, the vertices are in one-to-one
correspondence with the subsets of tight inequalities, and hence the neighborhood operator
can be computed in polynomial time. Indeed, let v, v′ ∈ V(P ) be two vertices of P , and
I, I ′ ⊆ [m] be the linearly independent tight inequalities of P , defining these vertices respec-
tively. Then v and v′ are neighbors if and only if |I \ I ′| = 1. Thus for any vertex v, we
have |N (v)| ≤ n(m−n), and hence by Proposition 3-(i), Traversal(G) enumerates V(P ) with
polynomial delay. It was furthermore observed by Avis and Fukuda [3] that the supergraph
G can be turned into a tree as follows. Fix an arbitrary vector c ∈ R

n, for which there is
v0 ∈ V(P ) such that cT v0 < cT x for all x ∈ P . Then starting from any vertex v ∈ V(P )
and using the simplex method with any anti-cyclic rule, there is a unique path from v to
v0 on P . This defines a tree with root v0, for which the children of a given vertex v can be
generated by finding first all candidates v′ as above, but only keeping the vertices v′ such
that v is obtained from v′ by a single simplex pivoting operation. By traversing the tree in
depth-first search, we can show that the vertices of P can be enumerated with polynomial
delay and space. Clearly, the same can also be said about polyhedra in which every vertex
has at most n + δ tight inequalities, for some constant δ, since a vertex can correspond to
at most

(

n+δ

n

)

≤ O(nδ) tight inequalities.
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2.1.3 Flow polyhedra

Let G = (V, E) be a directed graph with vertex set V and arc set E, and let A ∈ {−1, 0, 1}V ×E

be the the vertex-arc incidence matrix of G, that is

au,e =







1 if arc e enters u
−1 if arc e leaves u
0 otherwise

for a vertex u ∈ V and an arc e ∈ E. For b ∈ R
V , let P = P (A, b) = {x ∈ R

E : Ax = b, x ≥
0} be the flow polyhedron associated with G. Provan [43] considered such a class of polyhedra
(even with upper and lower bounds on the variables l ≤ x ≤ c, for some l, c ∈ R

E) and
showed that they can be highly degenerate. Furthermore, he gave an incremental polynomial
time algorithm for enumerating the vertices using the supergraph approach as follows. Let
v ∈ V(P ) be a given vertex of P , and construct a graph G′ = (V ′, E ′) from G by contracting
all arcs e with ve > 0. Then the set of polyhedral edges of v is in one-to-one correspondence
with the directed cycles of G′, which can be enumerated with polynomial delay [44]. This
gives an incremental polynomial time procedure for enumerating the V(P ) ∪ D(P ) (c.f.
Proposition 3-(ii)). Furthermore, one can also list the set of vertices V(P ) by observing that
an unbounded edge (that is, an extreme direction) of P corresponds to a directed cycle of
G′, for which all the contracted arcs, that have both vertices on the cycle, are on the same
direction of the cycle. Let E ′′ = {e ∈ E : ve > 0}, and for an arc e ∈ E ′′, let Ge be the graph
obtained from G by contracting all arcs in E ′′ − e. Let P(u,w) be the set of directed paths
from u to w in G(u,w). It is well known that they can be enumerated with polynomial delay
[44]. Then the set of bounded edges adjacent to v (that correspond to neighbors v′ ∈ N (v))
are in one-to-one correspondence with the set

⋃

e∈E Pe; see [43] for more details. Since each
element of N (v) can be found at most |E| times, we get an output polynomial algorithm for
enumerating N (v), which can be turned into an incremental polynomial one, by Proposition
1.

A similar result was also obtained for the polyhedra P (AT , b) obtained from the transpose
of A and b ∈ R

E . This result was furthermore generalized in [1] to any matrix A with at
most two nonzero entries in each row or with at most two nonzero entries in each column.

2.2 Using transversal generation

2.2.1 Polyhedra with 0/1-matrices and 0/1-vertices

For A ∈ R
m×n and b ∈ R

m, let

P (A, b) = {x ∈ R
n | Ax ≥ b, x ≥ 0}. (5)

For a matrix A ∈ {0, 1}m×n, let H(A) ⊆ 2[n] be a hypergraph such that the characteristic
vectors of hyperedges are the rows of A. We denote by 1m the m-dimensional vector all of
whose components are ones. The following fact relates the vertices of an integral polyhedron
P (A, 1m) to the minimal transversals of H(A).
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Proposition 4 ([35]) Let A be an m×n 0/1-matrix such that the polyhedron P = P (A, 1m)
has only integral vertices. Then the vertices of P are in one-to-one correspondence with the
minimal transversals of the hypergraph H(A).

By the above proposition, the problem of enumerating the vertices of the polyhedron
P (A, 1m), when A is a 0/1-matrix and V(P ) ⊆ {0, 1}n, reduces to finding all minimal
transversals of the hypergraph H(A). As an immediate consequence of this and the result
of [23], we obtain the following statement.

Corollary 1 Let A be an m × n 0/1-matrix such that the polyhedron P (A, 1m) has only
integral vertices. Then the vertices of P (A, 1m) can be enumerated in incremental quasi-
polynomial time.

For example, if the matrix A is totally unimodular then the polyhedron P (A, 1m) has
integral vertices that can be enumerated in incremental quasi-polynomial time. A further
interesting special case: a matrix A ∈ {0, 1}m×n is said to be a network matrix, if there
exists a directed tree T such that the rows of A one-to-one correspond to the arcs in T and
each column of A is the characteristic vector of a directed path in T, where we say that
a directed graph G is a directed tree if the underlying graph of G (that is, the undirected
graph obtained from G by ignoring orientation of arcs) is a tree. Such a representation of a
network matrix can be obtained from A in polynomial time; see, e.g., [46].

In Section 3, we show the following results for polyhedra associated with 0/1-network
matrices.

Theorem 1 Let A ∈ {0, 1}m×n be a network matrix. Then we have:

(i) The vertices of P (A, 1m) can be enumerated in incremental polynomial time using poly-
nomial space.

(ii) The vertices of P (AT , 1n) can be enumerated in incremental polynomial time using
polynomial space.

In the next section, we relate the problems of enumerating vertices of the polyhedra
P (A, 1m) and P (AT , 1n) for a 0/1-network matrix A to two other enumeration problems on
directed trees. This will turn also to be useful in the NP-hardness proof of Section 2.5.4.

2.3 Two enumeration problems on directed trees

Given a directed tree T = (V, E) and a set of n directed paths on T, defined by source-sink
pairs P = {(si, ti) | si, ti ∈ V for i = 1, . . . , n}, let us call a minimal path cover any minimal
collection of paths X ⊆ P whose union covers all the arcs of T. Let us further call a minimal
cut conjunction any minimal collection of arcs X ⊆ E whose removal leaves no path between
si and ti for i = 1, . . . , n.

The following statement is clear form the definitions, Proposition 1, and the fact that a
network matrix is totally unimodular.
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Proposition 5 Let A ∈ {0, 1}m×n be a network matrix, defined by a tree T and a collection
of directed paths P. Then:

(i) The vertices of P (A, 1m) are in one-to-one correspondence with the minimal path covers
for (T,P).

(ii) The vertices of P (AT , 1n) are in one-to-one correspondence with the minimal cut con-
junctions for (T,P).

In view of Proposition 5, the two parts of Theorem 1 result respectively from the following
two lemmas that will be proved in Section 3.

Lemma 1 Given a directed tree T, and a collection of directed paths P, the family of min-
imal path covers with respect to (T,P) can be enumerated in incremental polynomial time
using polynomial space.

Lemma 2 Given a directed tree T, and a collection of directed paths P, the family of min-
imal cut conjunctions with respect to (T,P) can be enumerated in incremental polynomial
time using polynomial space.

We remark that an incremental polynomial time algorithm exists [33] for the more general
problem of enumerating cut conjunctions in undirected graphs: Given an undirected graph
G = (V, E), and a collection B = {(s1, t1), . . . , (sk, tk)} of k vertex pairs si, ti ∈ V , enumerate
all minimal edge sets X ⊆ E such that for all i = 1, . . . , k, vertices si and ti are disconnected
in G′ = (V, E \ X). This is obtained using the supergraph approach. However, in contrast
to the one presented in Section 3.2, the space used by the algorithm is not polynomial.

2.4 Transversal-bounded polyhedra

Recall that the vertices of a polyhedron P given by (1) can be regarded as the maximal sets
satisfying a monotone property π, given by (4). Let us call a polyhedron transversal-bounded
(or dual-bounded) [8, 16] if there exists a (quasi-)polynomial q : R+ → R+, for which the
following inequality holds

|Min(π)| ≤ q(n, m, L, |Max(π)|). (6)

It follows from the results of [5, 29] that, for transversal-bounded polyhedra, problem
Gen(P,V(P )) is (quasi-)polynomially reducible to the hypergraph transversal generation
problem, and thus is solvable in incremental quasi-polynomial time. The only example
known so far to satisfy (6) is the class of simple polytopes, for which it was shown in [45, 42],
that |Min(π)| ≤ (n + 1)|Max(π)|. It would be interesting to see if there are other types of
polyhedra that belong to this class.
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Procedure GEN-B(π, S1, S2):
Input: A property π : 2W → {0, 1} with π 6≡ 0 and two disjoint sets S1, S2

⊆ W
Output: The family Fπ of all subsets X of W satisfying X ⊇ S1, X ∩ S2 =

∅, and π(X) = 1
1. if Ext(π, S1, S2) is not feasible then
2. return
3. if there is an e ∈ W \ (S1 ∪ S2) s.t. Ext(π, S1 ∪ {e}, S2) is feasible then
4. GEN-B(π, S1 ∪ {e}, S2)
5. GEN-B(π, S1, S2 ∪ {e})
6. else output S1

7. return

Figure 2: The flashlight method

2.5 Flashlight approach and its applications

2.5.1 Flashlight (or backtracking) method

Let W = {1, 2, . . . , |W |}, and suppose that we want to enumerate all elements of a family Fπ

of subsets of W satisfying a given property π, where Fπ 6= ∅. This method works by building
a binary search tree of depth |W | whose leaves contain the elements of the family Fπ. Each
node of the tree is identified with an ordered pair (S1, S2) of two disjoint subsets S1, S2 ⊆ W ,
and at the root of the tree, we have S1 = S2 = ∅. The two children of an internal node (S1, S2)
of the tree are defined as follows. We choose an element e ∈ W \ (S1 ∪S2) such that there is
a subset X ∈ Fπ, satisfying X ⊇ S1 ∪ {e} and X ∩ S2 = ∅. If no such element can be found
then the current node is a leaf. Otherwise, the left child of the node (S1, S2) is identified with
(S1∪{e}, S2). Analogously, the right child of the node (S1, S2) is (S1, S2∪{e}), provided that
there is a subset X ∈ Fπ, such that X ⊇ S1 and X ∩ (S2 ∪{e}) = ∅. A formal description of
the method is given in Figure 2; see [44] for general background on backtracking algorithms.

Clearly, for this method to work in polynomial time, we need to be able to perform the
following check in polynomial time

Ext(π, S1, S2) : Given two disjoint subsets S1, S2 ⊆ W , does there exist a set X ∈ Fπ, such
that X ⊇ S1 and X ∩ S2 = ∅?

The performance of this method is summarized in the following statement.

Proposition 6 If Ext(π, S1, S2) is solvable in polynomial time for any given disjoint sets
S1, S2 ⊆ W then the algorithm GEN-B enumerates the family Fπ with polynomial delay
using polynomial space (even in lexicographic order, if some ordering on W is given).
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In general, the check Ext(π, S1, S2) is NP-hard, but in some cases, as the ones described
below, it can be performed in polynomial time. Sometimes, it is also possible to perform the
check in polynomial time, provided that we do the extension from the set S1 to S1 ∪ {e} in
a more careful way. More precisely, let F ′

π ⊆ 2E be a family of sets, such that

(F1) F ′
π ⊇ Fπ,

(F2) for every non-empty X ∈ F ′
π, there exists an element e ∈ X such that X \ {e} ∈ F ′

π

(in particular, ∅ ∈ F ′
π), and

(F3) we can test in polynomial time if a given set X ∈ F ′
π is contained in Fπ.

In the backtracking procedure, if we always maintain the invariant S1 ∈ F ′
π, Then checking

Ext(π, S1, S2) could be easier, see the example in Section 2.5.3.

2.5.2 0/1-polytopes

Bussieck and Lübbecke [18] used the flashlight method show the strong P-enumerability
of the vertex set of 0/1-polytopes (more generally, of polytopes that are combinatorially
equivalent with 0/1-polytopes). Recall that a polyhedron P is 0/1 if V(P ) ⊆ {0, 1}n. Let
W = [n] and π : 2W → {0, 1} be defined as follows: for X ⊆ W , π(X) = 1 if and only if
X ⊆ [n] is the support set of a vertex. Then Problem Ext(π, S1, S2) calls for the following
check:

Ext(π, S1, S2) : Given a 0/1-polyhedron P defined by (5) and two disjoint sets of variables
S1, S2 ⊆ [n], determine if there is a vertex x of P such that xi = 1 for all i ∈ S1 and
xi = 0 for all i ∈ S2.

If the polyhedron P is bounded, that is, P is a 0/1-polytope, then the extension problem
above is equivalent to checking if the polytope

P ′ = {x ∈ P | xi = 1 for all i ∈ S1, and xi = 0 for all i ∈ S2}.

is non-empty, and hence it can be checked in polynomial time by solving a linear programming
problem. Thus Proposition 1 implies that V(P ) is strongly P-enumerable in this case. Note
that this remains true even if the polytope is given by a separation oracle. However, the
problem seems to be intractable for unbounded 0/1-polyhedra (see Theorem 2).

2.5.3 The perfect 2-matching polytope

Let G = (V, E) be a graph. Consider the polytope

P (G) = {x ∈ R
E | Ax = 1V , x ≥ 0},
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where A ∈ {0, 1}V ×E denotes the vertex-edge incidence matrix of G. When G is bipartite,
the vertices of P (G) are in one-to-one correspondence with the perfect matchings of G, and
the result of the previous section implies that V(P ) can be enumerated with polynomial
delay. More efficient algorithms are known [24, 25, 50, 51].

For non-bipartite graphs G, it is well-know that the vertices of P (G) are half-integral
[38] (that is, the components of each vertex are in {0, 1, 1/2}), and that they correspond to
the basic perfect 2-matchings of G, that is, subsets of edges that form a cover of the vertices
with vertex-disjoint edges and vertex-disjoint odd cycles. A (not necessarily basic) perfect
2-matching of G is a subset of edges that covers the vertices of G with vertex-disjoint edges
and (even or odd) cycles. Denote respectively by M2(G) and M′

2(G) the families of perfect
2-matchings and basic perfect 2-matchings of a graph G. We present below the proof from
[6], that the family M2(G) can be enumerated with polynomial delay, and the family M′

2(G)
can be enumerated in incremental polynomial time.

Lemma 3 All perfect 2-matchings of a graph G can be generated with polynomial delay.

Proof. We use the flashlight method with a slight modification. For X ⊆ E, let π(X) be
the property that the graph (V, X) has a perfect 2-matching. Then Fπ = M2(G). Define

F ′

π = {X ⊆ E | the graph (V, X) is a vertex-disjoint union

of some cycles, some edges, and a path possibly of length zero}.

It is easy to check if conditions (F1), (F2) and (F3) are satisfied. Given S1 ∈ F ′
π, S2 ⊆ E,

we modify the basic approach described in Section 2.5 in two ways. First, when we consider
a new edge e ∈ E \ (S1 ∪ S2) to be added to S1, we first try an edge incident to an endpoint
of the path in S1, if this path has positive length. If the path has length zero then any
edge e ∈ E \ (S1 ∪ S2) can be chosen and defined to be a path of length one in S1 ∪ {e}.
Second, when we backtrack on an edge e defining a path of length one in S1, we redefine S1

by considering e as a single edge rather than a path of length one. Now it remains to check
if Ext(π, S1, S2) can be checked in polynomial time. Given S1 ∈ F ′

π, S2 ⊆ E, and an edge
e ∈ E \ (S1∪S2), chosen as above, such that S1 ∪{e} ∈ F ′

π, we can check in polynomial time
whether there is an X ∈ M2(G) such that X ⊇ S1 ∪ {e} and X ∩ S2 = ∅ in the following
way. First, we delete from G all edges in S2, and all vertices incident to edges in S1, except
the end-points x and y of the single path P in S1. Let us call the resulting graph G′. Then,
we construct an auxiliary bipartite graph Gb from G′ as follows (see [38]). For every vertex
v 6= x, y of G′ we define two vertices v′ and v′′ in Gb. In addition, Gb also contains two other
vertices x′ and y′′. For every edge {u, v} in G′, with {u, v}∩ {x, y} = 0, we define two edges
{u′, v′′} and {u′′, v′} in Gb. For each edge {x, u} in G′, we introduce an edge {u′, x′′} in Gb,
and for each edge {u, y} in G′, we introduce an edge {u′, y′′} in Gb. It is easy to see that
there is an X ∈ M2(G) such that X ⊇ S1 ∪ {e} and X ∩ S2 = ∅ if and only if there is a
perfect matching in Gb. �
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Lemma 4 For a graph G = (V, E), we have

|M2(G)| ≤

(

|M′
2(G)| + 1

2

)

. (7)

Proof. Note that each non-basic perfect 2-matching M in G can be decomposed into two
distinct basic perfect 2-matchings M ′ and M ′′. This can be done by decomposing each even
cycle C in M into two edge-disjoint perfect matchings C ′ and C ′′. The two basic perfect
2-matchings M ′ and M ′′ are defined to contain the disjoint edges in M and the edges of the
odd cycles in M . In addition, M ′ contains the edges of the perfect matching C ′ for each even
cycle C in M and M ′′ contains the edges of the perfect matching C ′′ for each even cycle C
in M . This decomposition implies (7). �

Thus by generating all perfect 2-matchings of G and discarding the non-basic ones, we
can generate all basic perfect 2-matchings. By Lemma 4, the total time for this generation
is polynomial in |V |, |E|, and |M′

2(G)|. By Proposition 1, we get an incremental polynomial
time algorithm for enumerating V(P (G)).

2.5.4 NP-hardness of Flashlight for enumerating vertices of 0/1-polyhedra

It is natural to ask whether the same method used for generating the vertices of 0/1-polytopes
can be extended to polyhedra with 0/1-vertices. In this section we answer this question in the
negative: we show that the extension problem, on which the efficiency of this method relies,
is generally NP-hard. Our reduction will use polyhedra associated with network matrices
of the form (5). Note that, if the vertices of a polyhedron P = P (A, 1m), defined by (5),
are integral, then the vertices of the polytope P ∩ {0, 1}n correspond to the transversals of
the hypergraph H(A), which might be exponentially larger in cardinality than the minimal
transversals. More directly, we have the following negative results.

Theorem 2 Let A is an m × n (0, 1)-network matrix. Then we have:

(i) For a set S ⊆ [n], problem Ext(P (A, 1m), S, ∅) is NP-complete.

(ii) For a set S ⊆ [m], problem Ext(P (AT , 1n), S, ∅) is NP-complete.

Proof. We reduce the following monotone satisfiability problem, which is known to be
NP-complete [28] (see also Section 4.2.1), to the two problems.

Problem Monotone SAT

Input: A conjunctive normal form (CNF) φ(x1, . . . , xN) = C1 ∧ . . . ∧CM , where each
Cj, j = 1, . . . , M ′, is a disjunction of some literals in {x1, . . . , xN}, and each
Cj, j = M ′ + 1, . . . , M , is a disjunction of some literals in {x1, . . . , xN}.

Question: Is there a satisfying truth assignment for CNF φ, that is, x ∈ {0, 1}N such
that φ(x) = 1 ?
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(i) Ext(P (A, 1m), S, ∅): Given a CNF φ, we define a network matrix A by constructing
a directed tree T = (V, E) and a set P of directed paths in T as follows:

V = {u′

i, u
′′

i | i ∈ [N ]} ∪ {cj | j ∈ [M ]} ∪ {u0}

E = {(u′

i, u0), (u0, u
′′

i ) | i ∈ [N ]}

∪{(u0, cj) | j ∈ [M ′]} ∪ {(cj, u0) | j ∈ {M ′ + 1, . . . , M}} (8)

P = {(u′

i, u0, u
′′

i ) | i ∈ [N ]} ∪ {(u′

i, u0, cj) | xi ∈ Cj} ∪ {(cj, u0, u
′′

i ) | xi ∈ Cj}

Here vertices u′
i and u′′

i , i ∈ [N ], correspond to positive and negative literals xi and xi,
respectively, and cj, j ∈ [M ] corresponds to clause Cj in φ. Finally, we define the subfamily
S of P by

S = {(u′
i, u0, u

′′
i ) | i ∈ [N ]}

and claim that Ext(P (A, 1n), S, ∅) is equivalent to Monotone SAT.
From Proposition 2, we note that Ext(P (A, 1n), S, ∅) is to check if S can be extended to

a minimal path cover for (T,P), that is, a minimal family of paths whose union contains
all the arcs in E. Thus, to see our claim, we show that φ is satisfiable if and only if S is
extendable to a minimal path cover for (T,P).

Let X be such a minimal extension, and let us define an assignment by setting xi := 1 if
and only if (u′

i, u0) is covered with X − S. Since the minimality of X implies that any path
in S is not covered with X−S, (u0, u

′′
i ) is covered with X−S only if xi = 0. Now, since X is

a path cover, for each j ∈ [M ′] = {1, . . . , M ′}, (u0, cj) is covered with some path in X, and
hence, Cj contains a literal xi with value 1. Similarly, for each j ∈ [M ′′] = {M ′ +1, . . . , M},
(cj, u0) is covered with some path in X, and hence Cj contains a literal xi with value 0.
These imply that CNF φ is satisfiable.

Conversely, from any satisfying assignment x for φ we can construct a minimal path cover
X that contains S by setting X = S ∪
{(u′

i, u0, cj) | i is the least index such that xi = 1 and xi ∈ Cj for j ∈ [M ′]}∪
{(cj, u0, u

′′
i ) | i is the least index such that xi = 0 and xi ∈ Cj for j ∈ [M ′′]}.

This completes the proof of (i).

(ii) Ext(P (AT , 1n), S, ∅): Given a CNF φ, we define a network matrix A (that is, a
directed tree T = (V, E) and a set P of directed paths in T) by (8). Furthermore, we define
the subset S of arcs by

S = {(u0, cj) | j ∈ [M ′]} ∪ {(cj, u0) | j ∈ [M ′′]},

and claim that Ext(P (AT , 1m), S, ∅) is equivalent to Monotone SAT.
Indeed, from Proposition 2, we derive that Ext(P (AT , 1m), S, ∅) is to check if S can be

extended to a minimal cut conjunction for (T,P), that is, a minimal set of arcs that hits
every directed path in P. Thus, to see our claim, we show that φ is satisfiable if and only if
S is extendable to a minimal cut conjunction for (T,P).
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Let X be such a minimal extension. Then clearly, it can be obtained from S and exactly
one of the two arcs (u′

i, u0) and (u0, u
′′
i ) for every i ∈ [N ] (no other arc is contained in

X). This defines an assignment by setting xi := 1 if and only if (u′
i, u0) 6∈ X (that is,

(u0, u
′′
i ) ∈ X). Now the minimality of X implies that for each j ∈ [M ′], there is a path

(u′
i, u0, cj) in P such that (u′

i, u0) 6∈ X, and and similarly, for j = M ′ + 1, . . . , M , there is a
path (cj, u0, u

′′
i ) in P such that (u0, u

′′
i ) 6∈ X. This implies that CNF φ is satisfiable.

Conversely, from any satisfying assignment x for φ we can get a minimal cut conjunction
X that contains S setting

X = S ∪ {(u0, u
′′
i ) | xi = 1} ∪ {(u′

i, u0) | xi = 0}. �

We conclude with the following remark. If flashlight works it results in a polynomial delay
algorithm, while we get only an incremental polynomial one using the supergraph approach.
However, for this reason, the flashlight subroutine is frequently NP-hard.

For example, for the transversal hypergraph problem flashlight techniques calls the fol-
lowing decision subproblem. Given a hypergraph H and a subset of its vertices X, whether
X can be extended to a minimal transversal of H . A simple criterion is given in [13], see also
[7]. However, the corresponding conditions are NP-hard to verify [13] already for graphs [7]
unless the size of X is bounded by a constant.

The same happens for many generating problems on graphs. For example, given a (di-
rected) graph G = (V, E), a pair of vertices s, t ∈ V , and a subset X ⊆ E, it is NP-hard to
decide whether X can be extended to a simple (directed) cycle, or to an s, t (directed) path,
or to a minimal s, t-cut in G [14].

2.6 Projection techniques

The proof of Lemmas 1 and 2 is based on the following enumeration technique, developed
originally in [49] (see also [31] and [36]). Let W = [w] = {1, . . . , w} be a finite set of elements,
and let π be a monotone property defined over 2W , that is, all the sets Y with X ⊆ Y ⊆ W
satisfy property π, if X ⊆ W satisfies π. Here we assume that W satisfies π. Let Fπ be the
family of minimal subsets satisfying π. By assumption, we have Fπ 6= ∅.

For i = 1, . . . , w, denote by [i : w] the set {i, i+1, . . . , w}, where we define [w+1 : w] = ∅.
By definition, we have [1, i] = [i]. We shall say that a set X ⊆ W i-minimally satisfies π
if X ⊇ [i : w], X satisfies π, and X \ {j} does not satisfy π for all j ∈ X ∩ [i − 1]. Thus,
(w + 1)-minimally satisfying sets are just the minimal satisfying sets, i.e., such that in the
family Fπ. For i = 1, . . . , w, denote by F i

π the family of sets that i-minimally satisfy property
π. Given i ∈ W and X ∈ F i

π, denote by Fπ(i, X) the family of minimal subsets Y ⊆ [i− 1],
such that X ∪ Y \ {i} satisfies π.

Proposition 7 ([21, 36]) Let Fπ, F
i
π, and Fπ(i, X) be defined as above. Then

(i) |F i
π| ≤ |Fπ| holds for all i ∈ [w + 1].

(ii) |Fπ(i, X)| ≤ |F i+1
π | holds for all i ∈ [w] and all X ∈ F i

π.
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Procedure GEN-C(π, i, X):
Input: A monotone property π, an index i ∈ [w], and an i-minimal satisfying

set X ∈ F i
π.

Output: The family Fπ of all minimal subsets of [w] satisfying π.

1. if i = w + 1 then
2. output X;
3. else
4. if X \ {i} is satisfies π then
5. GEN-C(π, i + 1, X \ {i});
6. else
7. GEN-C(π, i + 1, X);
8. for each minimal set Y ∈ Fπ(i, X) do
9. if X ∪ Y \ {i} ∈ F i+1

π then
10. Compute the lexicographically largest set Z ⊆ X ∪ Y s.t.
¿ Z ∈ F i

π.
11. if Z = X then
12. GEN-C(π, i + 1, X ∪ Y \ {i});

Figure 3: The projection method

Let us now formally describe a general procedure for generating all minimal sets that
satisfy monotone property π.

Given i ∈ [w], and X ∈ F i
π, we assume in the algorithm below that the minimal sets in

Fπ(i, X) are computed by calling a process A(i, X), in which, once A(i, X) finds an element
Y ∈ Fπ(i, X), it returns control to the calling process GEN(π, i, X), and when called the
next time, it returns the next element of Fπ(i, X) that has not been generated yet, if such
an element exits.

Proposition 8 ([9, 49]) If the family Fπ(i, X) can be enumerated in incremental polyno-
mial time using polynomial space, for every i ∈ [w] and every X ∈ F i

π, then so can the family
Fπ using GEN-C.

3 Enumerating vertices of polyhedra associated with

(0, 1)-network matrices

In this section, we show how to enumerate the families Fπ(i, X), in the two cases of path
covers and cut conjunctions on trees.
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3.1 Enumerating minimal path covers

Let T = (V, E) be a directed tree, and let P be a collection of directed paths in T. To
apply the generation algorithm described in the previous section, we order the paths in P
arbitrarily, say P = {P1, . . . , Pn}, let W = [n], and for each X ⊆ W , let π be the property
that {Pi | i ∈ X} is a path cover. For simplicity, we may sometimes refer to a path Pi

directly by its index i. In this setting, we show the following.

Lemma 5 Given an i ∈ W and a set X ∈ F i
π such that X \ {i} is not a path cover, all

elements of the family Fπ(i, X) can be enumerated with delay O(|V ||P|) and space O(|V | +
|P|).

To generate the family Fπ(i, X), let U be a set of arcs in E that are not covered with
the paths in X \ {i}, and we define a hypergraph H ⊆ 2U by H = {Pj ∩U | j ∈ W \X}. By
definition, we have U ⊆ Pi and H is interval, that is, every hyperedge in H defines an interval
(that is, a subpath) in U , where U is regarded as a path obtained from Pi by contracting
arcs which are contained in some path Pj ∈ X \ {i}.

Now, we can see that Fπ(i, X) corresponds the family of all minimal covers of an interval
hypergraph H, and show that they can be enumerated efficiently, from which Lemma 4
follows.

The latter problem is known to be solvable in incremental polynomial time. Indeed,
an interval hypergraph H is 2-Helly: a subset of hyperedges from H has a common vertex
whenever every 2 hyperedges of this subset have one. The transposed hypergraph HT is
2-conformal [4], and for this class for hypergraphs, it is known that the set of minimal
transversals can be enumerated in incremental polynomial time [9]. Equivalently, if HT is
2-conformal, all minimal covers for H can be enumerated in incremental polynomial time.
Here we obtain the following stronger result, from which Lemma 4 follows.

Theorem 3 Given an interval hypergraph H ⊆ 2U , all minimal covers of H can be generated
with delay O(|U ||H|) and in space O(|U | + |H|).

Proof of Theorem 3. Let U = {1, . . . , |U |}, and each hyperedge H in an interval hyper-
graph H is given by IH = [LH : RH ], where LH ≤ RH . Let X = {[L1 : R1], . . . , [Lk : Rk]} be
a sub-hypergraph of H, that is, X ⊆ H. If X is a minimal cover then Li 6= Lj clearly holds
for all i and j with i 6= j, since no interval in X contains another. Moreover, we have the
following characterization.

Proposition 9 Let X = {[L1 : R1], . . . , [Lk : Rk]} be a sub-hypergraph of H ⊆ 2U , such that
L1 < L2 < . . . < Lk. Then X is a minimal cover if and only if (i) Li+1 ≤ Ri + 1 < Li+2, for
i = 1, . . . , k − 2, (ii) Lk ≤ Rk−1 + 1 < Rk + 1, and (iii) [L1 : Rk] = U .

Proof. Suppose that X ⊆ H be a minimal cover. Then the minimality of X implies
Rk−1 < Rk. Note also that, for all i = 1, . . . , k − 1, we have Li+1 ≤ Ri + 1, for otherwise the
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point Ri + 1 cannot be covered by any interval in X. Furthermore, for i = 1, . . . , k − 2, we
have Li+2 > Ri + 1, for otherwise, [Li : Ri] ∪ [Li+2 : Ri+2] ⊇ [Li+1 : Ri+1], contradicting the
minimality of X. Since X is a cover of U , (i) and (ii) imply [L1 : Rk] = U .

Conversely, if X = {[L1 : R1], . . . , [Lk : Rk]} satisfies properties (i)-(iii) stated in the
proposition, then it is not difficult to see that X is a minimal cover of U . �

Let F be the family of minimal collections of intervals in H that cover U , and let F ′

be the family of all collections X = {[L1 : R1], . . . , [Lk : Rk]} of intervals in H satisfying
properties (i)-(ii) of Proposition 9 such that L1 = 1. By definition, we have F ⊆ F ′, and any
X ∈ F ′ is a minimal cover of [1 : Rk] ⊆ U (= {1, . . . , |U |}). In our backtracking procedure,
we shall always choose S1 from F ′.

Given two disjoint subsets S1 = {[L1 : R1], . . . , [Lk : Rk]} ∈ F ′ and S2 ⊆ H, any interval
I = [Lk+1 : Rk+1] ∈ H\(S1∪S2) satisfies S1∪{I} ∈ F ′ if and only if Rk−1+1 < Lk+1 ≤ Rk+1
and Rk+1 > Rk. Furthermore, by Proposition 9, one can verify whether there is an X ∈ F
such that X ⊇ S1 ∪ {I} and X ∩ S2 = ∅ in O(|H|) timed by checking if

⋃

{H ∈ H \ (S1 ∪ S2) | LH > Rk + 1} ⊇ [Rk+1 + 1 : maxU ]. (9)

Since the depth of the backtracking tree is at most |U |, by Proposition 9, the theorem follows.
�

3.2 Enumerating minimal cut conjunctions

Let T = (V, E) be a directed tree with a vertex set V and an arc set E, and let P = {(si, ti) |
si, ti ∈ V, for i = 1, . . . , n} be a collection of directed paths in T, defined by source-sink
pairs. To apply the generation algorithm described in the previous section, we let W = E,
and for each X ⊆ E, we let π be the property that the graph (V, E \X) has no path between
si and ti for i = 1, . . . , n. Clearly, we may assume, without loss of generality, that every leaf
of T is either a source or sink, or both. Let us pick a vertex r ∈ V arbitrarily to be a root
of T, and label all arcs of T by their breadth- first search orders {1, . . . , |E|} from r, in the
underlying tree of T.

Lemma 6 Given an arc i ∈ W and a set X ∈ F i
π of i-minimal cut conjunctions such that

X \ {i} is not a cut conjunction, all elements of the family Fπ(i, X) can be enumerated with
delay O(|V |) and space O(|V |).

Proof. Since X \ {i} does not satisfy π, the graph (V, E \ (X \ {i})) contains a set of paths
P ′ ⊆ P. Since no such path exists in (V, E \X), each such path must contain arc i = (a, b).
Assume without loss of generality that the arc (a, b) points towards r, that is, b is closer to r
than a in the underlying tree of T. Note that the arcs in the subtree of T rooted at a, (i.e.,
the arcs that are further from r than (a, b)) are labeled with values higher than i. Since all
the paths in P ′ avoid all the arcs in X \ {i} such that X ⊇ {i + 1, . . . , n}, none of these arcs



– 20 –

appears in the paths in P ′. In other words, all the paths in P ′ have a common source a, P ′

forms an arborescence T′ = (V ′, E ′) rooted at a, connecting a to sinks in P ′.
The family Fπ(i, X) thus consists of all minimal collection of arcs whose removal discon-

nects a from every sink of P ′. We assume without loss of generality that all sink of P ′ are
leaves in T′, since disconnecting a non-leaf v from a also means disconnecting from a all the
nodes in the sub-arborescence of T′ rooted at v. To find the elements of Fπ(i, X), we again
use a backtracking method that is based on the one described in the previous section.

Let S1 and S2 be two disjoint subsets of arcs in E ′ such that they are extendable to some
element of Fπ(i, X), that is, there exists a Y ∈ Fπ(i, X) with Y ⊇ S1 and Y ∩ S2 = ∅.
Let j ∈ E ′ \ (S1 ∪ S2). Then it is not difficult to see that S1 ∪ {j} and S2 are extendable
to some element of Fπ(i, X) if and only if S1 ∪ {j} forms an antichain, that is, there is no
directed path in T′ containing two distinct arcs in S1. Therefore, such an arc j can be found
in O(|V |) time. Similarly, S1 and S2 ∪{j} are extendable to some element of Fπ(i, X) if and
only if E ′ \ (S2 ∪{j}) is a cut conjunction of P ′, which can be checked in O(|V |) time. Since
the depth of the backtracking tree is at most |V |, we have an O(|V |2) delay algorithm. To
reduce the complexity, we modify the algorithm as follows.

Let us first relabel all arcs of T′ by their breadth-first search orders {1, . . . , |E ′|} from a.
In the algorithm, starting from S1 = S2 = ∅, we try to add the least arc j such that S1 ∪{j}
and S2 are extendable to some element of Fπ(i, X). Moreover, when we add an arc j to S1,
we add to S2 all the arcs j′ such that j and j′ do not form an antichain, i.e., there exists a
directed path between j and j′, since they are never added to S1 if j ∈ S1. Note that by
this modification, all the arcs in E ′ \ (S1 ∪ S2) can be added to S1, and by the new labeling
of arcs, when we add the least arc j = (c, d) to S1, we just add to S2 all the arcs in the
sub-arborescence of T′ rooted at d. Thus we can go to the left child (and backtrack, that is,
go from the left child to the parent) in O(∆) time, where ∆ denotes the number of the arcs
in the sub-arborescence of T′ rooted at d.

On the other hand, when we add an arc j to S2, we modify T′ by contracting j. Then we
can see that j = (c, d) can be added to S2 if and only if c = a and d is a leaf of the current
T ′, and hence we can go to the right child (and backtrack) in O(1) time.

Since the above ∆’s are pairwise disjoint in any path in the backtracking tree, the modified
algorithm generates the elements of Fπ(i, X) with O(|V |) delay and in O(|V |) space. �

4 How to prove that a generation problem is hard?

As we noted earlier, in view of Proposition 1, if Dec(P,V(P ),X ) is NP-hard then no algorithm
can generate all the elements of V(P ) in incremental or total polynomial time, unless P=NP.
Thus, generation problems can be NP-hard.

Let us remark that there are many generation problems where already finding the first
output object is difficult (for instance, generate all Hamiltonian cycles of a given graph).
Let us note however that for a monotone generation problem with a polynomial oracle it is
always easy to find the first (few) output objects. Furthermore, whenever we can generate
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exponentially many output objects then, by the definition of incremental efficiency, the rest
of the generation cannot be NP-hard. Hence, the general structure of an NP-hardness proof
for a monotone generation problem consists of showing that after we got polynomially many
output objects, deciding the existence of a next one is NP-hard. We are aware of only two
techniques to achieve this goal, which we are going to describe here.

4.1 Reduction from stability number

As an example for an NP-hard monotone generation problem, let us consider integer pro-
gramming. Given a system Ax ≥ b of m linear inequalities in n integer variables, that is,
A ∈ R

m×n and b ∈ R
m, we are looking for integral solutions x ∈ Z

n such that 0 ≤ x ≤ c,
where c ∈ R

n
+ is a fixed non-negative vector. We get a binary programming problem if all

n coordinates of c are equal to 1, that is, c = 1n. It is well-known that in general even the
feasibility of such systems is NP-hard to verify. However, if matrix A is non-negative, A ≥ 0
then the system is feasible if and only if Ac ≥ b. In this case the problem is to generate all
integral (i) minimal feasible and (ii) maximal infeasible vectors. It is shown in [11] that (i)
can be solved in incremental quasi-polynomial time, while (ii) is NP-hard.

Proposition 10 [11]. Given a system Ax ≥ b with A ≥ 0 and a family X of its integral
maximal infeasible vectors, it is NP-hard to decide whether the family X is complete or it
can be extended. The problem remains NP-hard even if A is a (0, 1)-matrix, c = 1n, and all
coordinates of b but one are equal to 1.

Proof. Let us consider the well-known NP-complete decision problem, called Stability Num-
ber: Given a graph G = (V, E) and a threshold t ≥ 2, decide if G contains a stable set of
size t, or not. Let us introduce n = |V | binary variables xv, v ∈ V , and write m − 1 = |E|
inequalities of the form xv + xv′ ≥ 1 corresponding to the edges e = (xv, xv′) ∈ E, followed
by a single inequality

∑

v∈V xv ≥ n − t. It is easy to verify that if x is the characteristic
vector of an edge e ∈ E then 1n − x is a maximal infeasible vector. Furthermore, there is
another such vector if and only if G has a stable set of size t. �

A few more generation problems whose hardness is proved by reduction from stability
number can be found in in [16, 15] Typically, the input of such a problem contains at least
one unbounded parameter. In the above example there is exactly one: the coordinate n − t
of vector b.

4.2 Reduction from satisfiability: sausage techniques

4.2.1 Reformulations of satisfiability in terms of monotone DNFs and CNFs
and corresponding hard generation problems

Let C be a CNF of k Boolean variables x1, . . . , xk. It is well-known that verifying the
satisfiability of C is an NP-complete problem that we refer to as SAT.
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Remark 1 SAT remains NP-complete even if we assume additionally that:

(i) No literal appears in all clauses of C. (Indeed, if x (or x) appears in all clauses then
obviously C is satisfiable.)

(ii) For every variable x both literals x and x appear in C (and not in the same clause, of
course). (Indeed, we can substitute x = 1, if x appears in C and x does not and, respectively,
x = 0 if x appears and x does not. In both cases the obtained CNF C′ is satisfiable if and
only if C is satisfiable.)

It is also known ([48], Theorem 2.1) that SAT remains NP-hard even when

(iii) each clause contains at most 3 variables and each variable appears in at most 3
clauses (that is, when each variable appears in C once negated, once non-negated, and it
may appear once more, either negated or not).

For example, the following CNF satisfies all above conditions (i), (ii), (iii):

C = (x1 ∨ x2 ∨ x3)(x2 ∨ x3)(x1 ∨ ∨x3)(x1 ∨ x2).

Given a CNF C, let us assign a non-negated literal yi to each negated literal xi of C, denote
the obtained monotone CNF by C = C(C) and the dual monotone DNF by D = D(C). For
the above example we get

C = (x1 ∨ y2 ∨ y3)(x2 ∨ x3)(x1 ∨ y2 ∨ x3)(y1 ∨ y2),

D = x1y2y3 ∨ x2x3 ∨ x1x3 ∨ y1y2.
(10)

Let us also introduce a pair of dual CNF C0 and DNF D0 as follows:

C0 = (x1 ∨ y1) ∧ . . . ∧ (xk ∨ yk),

D0 = x1y1 ∨ . . . ∨ xkyk.
(11)

Now we can reformulate SAT in many trivially equivalent ways.

Proposition 11 The following 11 claims are equivalent:

(0) C is not satisfiable,

(1) D0 ≥ C, (2) D0 ∨ C ≡ D0, (3) D0 ∧ C ≡ 0,
(4) C ⇒ D0, (5) C ∧ D0 ≡ C, (6) C ∨ D0 ≡ 1;

(1′) C0 ≤ D, (2′) C0 ∧ D ≡ C0, (3′) C0 ∧ D ≡ 0,
(4′) D ⇐ C0, (5′) D ∨ C0 ≡ D, (6′) D ∨ C0 ≡ 1.

Proof. Equivalence of (1-5) is obvious. Furthermore, (i′) is dual to (i) for i = 1, 2, 3, 4, 5.
It remains to show that (0) and (1) are equivalent. Indeed, both (0) and (1) are obviously
equivalent to the following claim: each prime implicant of C contains a pair xj , yj for some
j ∈ [k] = {1, . . . , k}. �
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Remark 2 Thus, given a monotone DNF D = c1 ∨ . . . ∨ cn and CNF C = d1 ∧ . . . ∧ dm of
common variables x1, . . . , xk, inequality D ≥ C is NP-hard to verify. In contrast, D ≤ C (or
equivalently, D ⇒ C, D ∨ C ≡ C, C ∧ D ≡ D) can be easily verified in linear time. To do
so, choose some i ∈ [n] = {1, . . . , n}, set all variables of ci to 1, and all others to 0. Then,
obviously, D = 1. It is also clear that C 6≥ D if we get cj = 0 for some j ∈ {1, . . . , m};
otherwise, C = 1 whenever D = 1, that is, C ≥ D.

Let us also note that verification of the identity C ≡ D is exactly dualization. As we
already mentioned, this problem can be solved in quasi-polynomial time and, hence, it is not
NP-hard unless each problem from NP is quasi-polynomially solvable. Moreover, verifying
each of the following dual identities

D1 ∨ . . . ∨ Dn ≡ C, C1 ∧ . . . ∧ Cn ≡ D,

for arbitrary monotone DNFs D, D1, . . . , Dn and CNFs C, C1, . . . , Cn are obviously equivalent
to dualization too. In contrast, verifying identities

D1 ∧ . . . ∧ Dn ≡ C0, C1 ∨ . . . ∨ Cn ≡ D0,

are NP-hard, since they generalize D ∧ C0 ≡ C0 and C ∨ D0 ≡ D0, respectively.

Finally, let us note that CD0 is equal to a “dipole” CNF, where all clauses of C are
positive (contain no negations) and all clauses of D0 = (x1 ∨ y1) . . . (xk ∨ yk) are negative
(contains only negated literals). Hence, equivalence of claims (0) and (5) implies that SAT is
NP-complete already for dipole CNFs, or in other words, that Monotone SAT is NP-complete,
a fact that we already made use of in Section 2.5.4.

Some statements from Proposition 11 can be naturally reformulated as (NP-hard) gen-
eration problems. For example, (2) D0 ∨C ≡ D0, calls for enumerating all prime implicants
of a monotone Boolean expression D0 ∨ C. One can immediately get k of them, xiyi for
i = 1, . . . k, however, it is NP-hard to decide whether the obtained list is complete or it can
be extended. In the next sections we will develop this approach and derive corollaries for
reliability theory and vertex enumeration.

Now, let us consider two similar dual identities

D1 ∧ . . . ∧ Dn ≡ D0, C1 ∨ . . . ∨ Cn ≡ C0 (12)

where D0 and C0 are defined by (11).

Proposition 12 It is a coNP-complete problem to verify any of the identities of (12) already
for quadratic DNFs D1, . . . , Dn and CNFs C1, . . . , Cn.

Proof. By duality, it will suffice to prove the first claim only. We will reduce it from SAT.
Let C be a CNF (satisfying conditions (i), (ii), (iii) of Remark 1) of k variables x1, . . . , xk.
Let us substitute yj for each xj and get a monotone CNF C = d1 ∧ . . . ∧ dn.
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Now for i = 1, . . . , n let us set in (12) Di = D0 ∨ di. Conventionally, we delete the
term xjyj from Di if the elementary disjunction di contains xj or yj, for i = 1, . . . , n and
j = 1, . . . , m. Then, by assumption (i), we have D1 ∧ . . . ∧ Dn = D0 if and only if the CNF
C is not satisfiable. �

Let us remark that the following, more general, identities

D1 ∧ . . . ∧ Dn ≡ D, C1 ∨ . . . ∨ Cn ≡ C (13)

can be reduced to dualization, and hence, verified in quasi-polynomial time in the next two
special cases.

Case 1. All DNFs Di (CNFs Ci) are linear, or in other words, they are just elementary
disjunctions Di = di = x1

i ∨ . . . ∨ xki

i (respectively , elementary conjunctions Ci = ci =
x1

i . . . xki

i ) for i = 1, . . . , n. In this case (13) is reduced to the form D ≡ C which is exactly
dualization.

Case 2. The number of clauses in each of the CNFs C1, . . . , Cn (respectively, DNFs
D1, . . . , Dn) are bounded by a constant. In this case each DNF Di (respectively, CNF Ci)
can be efficiently dualized in polynomial time, or even in parallel, see [7, 9].

We can reformulate Proposition 12 as NP-hardness of the following generation problem:
Product of Hypergraphs. To each monotone DNF D let us assign (as usual) a hypergraph
H = (V, E) whose vertices are the variables and whose edges are the prime implicants of D.

Proposition 13 Given n hypergraphs Hi = (V, Ei) on the common vertex set V , generate
all minimal subsets of V which contain an edge of Hi for each i = 1, . . . , n. This generation
problem is NP-hard already for graphs.

Proof. We can just translate the previous proof (of Proposition 12) in terms of graphs.
Assign a vertex ui (respectively, vi to each literal xi (respectively, yi) for i = 1, . . . , k,
introduce a new vertex w, and set V = {w, u1, v1 . . . , uk, vk}. Then for i = 1, . . . , n to each
quadratic conjunction Di = D0∨di let us assign the graph Gi = (V, Ei) in which Ei contains
edges (v0, uj) (respectively, (v0, vj)) for each literal xj (respectively, yj) in di. By Proposition
12, the product of the obtained n graphs Gi, . . . , Gn, or in other words, all minimal subsets
of V which contain an edge from Ei for each i = 1, . . . , n, is NP-hard to generate. �

Another corollary of Propositions 12, 13 is also related to the sets of n graphs in which,
however, edges, not vertices, are in common. Given n (directed) graphs Gi = (Vi, Ei) for
i = 1, . . . , n, whose edges are labeled by the same indices E = {e1, . . . , em}, generate all
minimal subsets of E such that the corresponding edges contain a (directed) cycle in Gi for
each i = 1, . . . , n. It is easy to see that, by Propositions 12, 13, this problem is NP-hard.
Let us remark that the problem is open for the case when n is bounded by a constant, in
particular, for n = 2.

We can fix a pair of vertices si, ti ∈ Vi for each i = 1, . . . , n and consider (directed) (si, ti)
paths instead of (directed) cycles. The corresponding generation problem remains NP-hard.
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There are also interesting corollaries of Propositions 12, 13 in reliability theory. Given
a directed graph G = (V, E) and n pairs of terminals si, ti ∈ V for i = 1, . . . , n, generate
all minimal subsets of E that contain a directed path from si to ti for each i = 1, . . . , n. It
results from Proposition 12 that this generating problem is hard [12].

4.2.2 Sausage technique

Given a CNF C, let us assign distinct positive variables to all its literals and denote the
obtained read-once monotone CNF by C ′ and the dual read-once monotone DNF by D′. We
will denote by x1

i , x
2
i , . . . and y1

i , y
2
i , . . . the variables of C ′ and D′ corresponding respectively

to positive xi and negated xi literals of C. For our example from Section 4.2.1 we get

C ′ = (x1
1 ∨ y1

2 ∨ y1
3)(x

1
2 ∨ x1

3)(x
2
1 ∨ x2

3)(y
1
1 ∨ y2

2), D′ = x1
1y

1
2y

1
3 ∨ x1

2x
1
3 ∨ x2

1x
2
3 ∨ y1

1y
2
2).

Let us now introduce formulae C ′
0 and D′

0 as follows,

C ′
0 =

m
∧

i=1

((x1
i x

2
i . . .) ∨ (y1

1y
2
1 . . .)), D′

0 =

m
∨

i=1

((x1
i ∨ x2

i ∨ . . .)(y1
i ∨ y2

i . . .)).

Let us remark that C ′
0 and D′

0 are dual (∨,∧)-formulae of depth 3 rather than a CNF and
DNF. For our example we get

C ′
0 = (x1

1x
2
1 ∨ y1

1)(x
1
2 ∨ y1

2y
2
2)(x

1
3x

2
3 ∨ y1

3), D′
0 = (x1

1 ∨ x2
1)y

1
1 ∨ x1

2(y
1
2 ∨ y2

2) ∨ (x1
3 ∨ x2

3)y
1
3.

Again, it is not difficult to see that inequality C ′ ≤ D′
0 holds if and only if the original

CNF C is satisfiable. Furthermore, we can rewrite C ′ ≤ D′
0 in several obviously equivalent

ways:

C ′ ∨ D′
0 ≡ D′

0, C ′ ∧ D′
0 ≡ C ′, C ′ ≤ D′

0, C ′ ⇒ D′
0;

D′ ∧ C ′
0 ≡ C ′

0, D′ ∨ C ′
0 ≡ D′, D′ ≥ C ′

0; D′ ⇐ C ′
0.

Given a CNF C, let us standardly assign series-parallel graphs G(C ′), G(D′), G(C ′
0), and

G(D′
0) to the monotone (∨,∧) Boolean formulae C ′, D′, C ′

0, and D′
0, respectively. Each of

these four graphs has two terminals s and t. Let us also note that all four have a common
edge-set. By construction, all four are series-parallel and, in particular, planar. Moreover,
(G(C ′), G(D′)) and (G(C ′

0), G(D′
0)) form two pairs of dual planar graphs. Figure 4 shows

all four graphs corresponding to the CNF C considered above.
We can reformulate SAT, as before, in many trivially equivalent ways.

Proposition 14 The following 5 statements are equivalent:

(0) CNF C is satisfiable.
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Figure 4: Four labeled graphs corresponding to the CNF C.
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(1) Graph G(C ′
0) has an s, t-path whose edge-set contains the edge-set of an s, t-path in

G(C ′).

(1’) There are two edge-disjoint s, t-paths: one in G(C ′), another in G(C ′
0).

(2) Graph G(C ′
0) has an s, t-path whose edge-set contains the edge-set of no s, t-path in

G(D′).

(2’) Graph G(C ′
0) has an s, t-path whose edge-set intersects the edge-set of every s, t-path

in G(D′).

Proof. Let us show that claims (0) and (1) are equivalent. Indeed, it is easy to see that
each s, t-path p0 in G(C ′

0) is an assignment of variables of C and this assignment is satisfying
iff the edge-set of p0 contains the edge-set of some s, t-path p in G(C). Hence, (1) means
exactly that there is a satisfying assignment for C.

Now let us note that for each s, t-path in G(C ′
0) there exists another s, t-path such that

the corresponding two edge-sets are complementary.
Moreover, the s, t-paths in G(C ′) (respectively, in G(C ′

0)) are in a one-to-one corre-
spondence with the s, t-cuts in G(D′) (respectively, in G(D′

0)), since (G(C ′), G(D′)) and
(G(C ′

0), G(D′
0)) form two pairs of dual planar graphs.

These two observations easily imply that all 5 above claims are equivalent. �

Furthermore, we can substantially extend the list substituting a path of a graph by the
corresponding cut of the dual graph.

Since SAT is NP-complete, we get a long list of NP-complete problems related to pairs
of graphs G′ = (V ′, E), G′′ = (V ′′, E) with common edge-sets.

In particular, it is NP-hard to check if G′ and G′′ have edge-disjoint (or edge nested)
s, t-paths (or s, t-cuts); whether they have edge-disjoint (or edge-nested) pair of an s, t-path
and s, t-cut; whether G′ has an s, t-cut (or s, t-path) whose edge set contains no s, t-path (or
s, t-cut, or vice versa) of G′′, etc.

Remark 3 Moreover, all above problems remain NP-complete for directed graphs too. To
get a proof it is sufficient to orient all edges of all four graphs in direction from s to t. It
is well known that for series-parallel graphs (and, in fact, only for them) this operation is
well-defined.

Finally, let us note that each of the above problems still remains NP-complete if we sub-
stitute simple (directed) cycles for (directed) s, t-paths. Indeed, let us identify the terminals
s and t in G(C ′) and in G(C ′

0). Then in these two (directed) graphs each (directed) s, t-path
turns into a simple (directed) cycle. We should note that:

(a) the number of s, t-paths may be exponential in size of CNF C for G(C ′) and G(C ′
0),

while for G(D′) and G(D′
0) it is at most linear and, respectively, quadratic in size of

C;
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(b) in all four graphs there are other simple (directed) cycles, not related to (directed) s, t-
paths. However, their number is at most linear in the size of C. Hence, they can be
checked separately and cannot influence the complexity.

We showed that Proposition 14 leads to many NP-hard decision problems. Let us now
demonstrate that they can be easily reformulated as generation problems. The following
statement explains the method.

Given two (directed) graphs G′ = (V ′, E) and G′′ = (V ′′, E) with a common edge-set E,
generate all minimal subsets of E that contain a simple (directed) cycle in G′ or in G′′. This
problem is called disjunction of cycles [14].

Proposition 15 Disjunction of cycles is an NP-hard generation problem.

Proof. Consider the non-directed case first. Let us merge vertices s and t in G(D′) and
G(C ′

0) and denote the obtained graphs by G′ and G′′, respectively. Then we can easily
enumerate all simple cycles of G′ and all “short” simple cycles of G′′. However, by Proposition
14 it is NP-complete to decide if there is a “long” simple cycle in G′′ whose edge-set contains
no edge-set of a simple cycle in G′.

Exactly the same arguments work in the directed case too. We only have to orient all
edges of G(D′) and G(C ′

0) from s to t. Let us note that in this case there are no “short”
simple cycles in G′′. �

Remark 4 Clearly, the similar statement holds if we substitute (directed) s, t-paths or s, t-
cuts for simple (directed) cycles.

In the previous subsection we considered the similar concept of conjunction of (directed)
s, t-paths or simple cycles in n graphs. Let us recall that the corresponding generation problem
is NP-hard when n is a part of the input, and it is open when n is bounded, already for n = 2.

The method of this subsection we refer to as “sausage technique”, because the graphs
G(C ′) and G(C ′

0) look like a sausage.

4.2.3 Generating all negative directed cycles is hard

Given a directed graph G = (V, E) and a real-valued weight function w : E → R on its
edges, generate all negative directed cycles, or more precisely, all simple directed cycles C in
G such that

∑

e∈E(C) w(e) < 0. This generating problem is NP-hard.

Proposition 16 Given G, w and a collection of negative cycles X , it is NP-hard to decide
whether this collection is complete or it can be extended. The problem remains NP-hard even
if w takes only two values: +1 and −1.
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In [32] this result is proved for both directed and non-directed graphs. Here we give a
sketch of this proof for the directed case. Graph G (“double sausage”) is constructed as
follows.

Let us merge vertex t of graph G(C ′) and vertex s of graph G(C ′
0) and denote the obtained

vertex by u. The obtained graph G1 is still series-parallel, so let us orient all its edges from
s in G(C ′) towards t in G(C ′

0).
Let us recall that graphs G(C ′) and G(C ′

0) had the common edge-set E which is in one-
to-one correspondence with the literals of the CNF C. Hence, the edges of the obtained
directed graph G2 are labeled by E and each label e ∈ E appears exactly twice.

Furthermore, it is NP-hard to check if G2 contains an s, t-path in which each label e ∈ E
appears at most once. Indeed, such a path exists in G2 if and only if there exist two edge-
disjoint s, t-paths in G(C ′) and G(C ′

0), which is NP-hard to verify by Proposition 14.
Now let us subdivide each directed edge [v′, v′′) in G2 by 3 vertices v1, v2, v3 such that

v′, v1, v2, v3, v
′′ go successively. In the obtained directed graph G3 let us define weight function

w as follows: w(v′, v1) = w(v3, v
′′) = +1, w(v1, v2) = w(v2, v3) = −1.

Furthermore, for each index e ∈ E let us consider two corresponding directed edges
[v′, v′′) and [u′, u′′) in G2 and their subdivisions v′, v1, v2, v3, v

′′ and u′, u1, u2, u3, u
′′ in G3;

then let us merge v1 and u3 and also v3 and u1, denote two obtained vertices by v and u,
respectively; see Figure 5. Finally, let us add one more directed edge [t, s) and assign to it
weight −1.

u′′

v′

v

v1

u3

v2

u2

u

v3

u1

u′

v′′

+1

+1

−1

−1

−1

−1

+1

+1

Figure 5: Two pairs of vertices are merged.

By construction, vertices v, v2, u, u2 form a simple directed cycle of weight −4 in the
obtained directed graph G4. There are |E| such cycles. Does G4 contain more negative
cycles? We will show that this question is NP-hard.

Let us note that there is a directed cycle of weight −1 in G4 whenever there exist two edge-
disjoint s, t-paths in graphs G(C ′) and G(C ′

0) (and this is NP-hard to decide, by Proposition
14). Indeed, the union of these two paths is an s, t-path in G4 whose total weight is 0. Hence,
these two paths and the edge [t, s) form a simple directed cycle in G4 of weight −1.

It is not difficult to verify that there can be no other negative cycles in G4. In other
words, G4 contains |E| cycles of weight −4, and projection of any other negative cycle Y
to G(C ′) and G(C ′

0) must form an s, t-path in each graph. The complete proof is given in
[32]. However, its main point is simple. If Y contains successive vertices u2, v, v2 or u2, v, v2
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then Y is a cycle of weight −4. If Y contains successive vertices v′, v, u′′ or u′, u, u′′ then Y
cannot be negative, moreover, w(Y ) ≥ 1. �

4.2.4 Generating all vertices of a polyhedron is hard

We will derive the statement of the above title from two classical results.
Given a directed graph G = (V, E) and a weight function w : E → R, let us introduce

the potential function x : V → R and transform the weight of each edge e = [v′, v′′) ∈ E by
formula: wx(e) = w(e) + x(v′) − x(v′′).

Gallai [27] proved that there is a potential function x such that wx(e) ≥ 0 for all e ∈ E
if and only if there is no negative cycle in G.

Given G and w, let us introduce the system of linear inequalities

x(v′′) − x(v′) ≤ w(e) ∀ e = [v′, v′′) ∈ E. (14)

By Gallai’s result, the minimal infeasible subsystems of (14) (so-called Helly subsystems)
are in one-to-one correspondence with the simple negative directed cycles of G. Hence, by
Proposition 16, given a system of linear inequalities, it is NP-hard to generate all its Helly
subsystems.

Furthermore, by Farkas Lemma, a system Ax ≥ b is infeasible if and only if there is a
vector y ≥ 0 such that yTA = 0 and yT b = 1. The polyhedron Q = {y | y ≥ 0, yT A =
0, yT b = 1} of all such vectors is called the alternative polyhedron of the system Ax ≥ b. It is
well-known that the vertices of Q are in one-to-one correspondence with the Helly subsystems
of Ax ≥ b.

Thus, it is NP-hard to generate all vertices of a polyhedron.
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