
DIMACS Technical Report 2006-02

The Paradoxical Nature of Locating Sensors in Paths
and Cycles: The Case of 2-Identifying Codes

by

David L. Roberts1

College of Computing
Georgia Institute of Technology

Atlanta, GA 30332 USA
robertsd@cc.gatech.edu

Fred S. Roberts2

DIMACS
Rutgers University

Piscataway, NJ 08854 USA
froberts@dimacs.rutgers.edu

1This research was performed while on appointment as a U.S. Department of Homeland Security
(DHS) Fellow under the DHS Scholarship and Fellowship Program, a program administered by the
Oak Ridge Institute for Science and Education (ORISE) for DHS through an interagency agreement
with the U.S. Department of Energy (DOE). ORISE is managed by Oak Ridge Associated Univer-
sities under DOE contract number DE-AC05-00OR22750. All opinions expressed in this paper are
the author’s and do not necessarily reflect the policies and views of DHS, DOE, or ORISE.

2The author thanks the National Science Foundation for its support under grant EIA-0205116 to
Rutgers University.

DIMACS is a collaborative project of Rutgers University, Princeton University, AT&T Labs–
Research, Bell Labs, NEC Laboratories America and Telcordia Technologies, as well as affil-
iate members Avaya Labs, HP Labs, IBM Research, Microsoft Research, Stevens Institute of
Technology, Georgia Institute of Technology and Rensselaer Polytechnic Institute. DIMACS
was founded as an NSF Science and Technology Center.



ABSTRACT

For a graph G and a set D ⊆ V (G), define Nr[x] = {xi ∈ V (G) : d(x, xi) ≤ r} (where
d(x, y) is graph theoretic distance) and Dr(x) = Nr[x] ∩D. D is known as an r-identifying-
code if for every vertex x, Dr(x) 6= ∅, and for every pair of vertices x and y, x 6= y ⇒ Dr(x) 6=
Dr(y). The various applications of these codes include attack sensor placement in networks
and fault detection/localization in multiprocessor or distributed systems. In [2] and [16],
partial results about the minimum size of D for r-identifying codes are given for paths and
cycles and complete closed form solutions are presented for the case r = 1, based in part
on [14]. We provide complete solutions for the case r = 2 as well as present our own solutions
(verifying earlier results) to the r = 1 case. We use these closed form solutions to illustrate
some surprisingly counterintuitive behavior that arises when the length of the path or cycle
or the value of r varies.



1 Introduction

The problem of placing sensors or detectors in a network arises in many applications in-
cluding homeland security, civil engineering, manufacturing, fault detection in distributed
or multiprocessor systems, etc. There are several goals in sensor placement: Rapid and
accurate detection of attacks, faults, or contamination of a network, minimizing the cost of
sensors used, and identification of the location of an attack or fault or contamination. If we
think of the network as represented by an undirected graph, the problem of sensor location
to guarantee source identification has been formalized in several ways in the literature. This
problem turns out to be NP-complete for general networks in its various formalizations and
surprisingly complex for simple network topologies such as paths and cycles.

In [2], Bertrand, Charon, Hudry, and Lobstein study this problem for paths and cycles and
provide a partial solution for detectors of varying strengths under two different formulations.
The problem has been completely solved under both formulations for detectors that can
detect attacks on neighbors. One purpose of this paper is to provide the complete solution
under one of the formulations when detectors can detect attacks on vertices up to two steps
away in the network.

In the process of solving this problem, we have found that the solution is sufficiently
counterintuitive that it raises some very interesting paradoxes about sensor location. We were
led to our interest in these issues by the paper [1], by Berger-Wolf, Hart, and Saia. This paper
formalizes several sensor placement problems in networks represented by directed graphs. In
particular, it formalizes the problem of attack detection and/or source identification with
a fixed number of sensors and of detection and/or source identification within a given time
limit. The authors argue that the complex goals of sensor placement require careful analysis
in order to achieve the goals. The paradoxes we have uncovered underscore their point that
sensor placement strategies require careful analysis by methods of computer science and
mathematics since the results are sometimes counterintuitive and seemingly paradoxical.

To make our ideas precise, let G = (V, E) be an undirected graph, D be a set of vertices
in G at which we place detectors, and r be a positive integer. Let Nr[x] be the set of all
vertices in V to which there is a path of length at most r from x (so in particular x ∈ Nr[x])
and Dr(x) = Nr[x] ∩D. In certain literature, path length corresponds to the elapsed time
before a detector is activated after an attack. In this sense, Dr(x) is the set of all detectors
at which an attack at x is detected in at most r time periods by some detector. We denote
D1(x) by D(x). We say that D is an r-dominating set in G if for every vertex x of G,
Dr(x) 6= ∅, i.e., there is path of length ≤ r from x to some y ∈ D. (A 1-dominating set is
of course a dominating set.) We say that D is an r-identifying code in G (r-IC) if it is
an r-dominating set and if whenever x 6= y are vertices, Dr(x) 6= Dr(y). In an r-IC, the set
of detectors activated by an attack provides a unique signature that allows us to determine
where the attack took place. We shall seek the smallest d so that there is an r-IC of d vertices
in G, if there is one. If so, we denote d by M I

r (G). If r = 1, we drop r in our terminology
and speak of an identifying code or IC, and use M I(G) to mean M I

1 (G). Identifying codes
have been studied by many authors, starting with Karpovsky, Chakrabarty, and Levitin [19]
and motivated by fault detection in multiprocessor networks. An r-identifying code enables
a central controller to identify inoperable processors in a multiprocessor network. Some of
the processors have “monitors” that report to the central controller if some processor within



– 2 –

distance r is inoperable. If the monitors have been placed so that they define an r-identifying
code, then the central controller can determine which processor is inoperable based on the
reports by the monitors.

Note that not every graph has an r-identifying code. For instance, in the complete graph,
every D(x) is the set of all vertices. More generally, in any graph, if there are two vertices
with the same closed neighborhood, there can be no 1-identifying code.

A closely related concept is defined as follows. We say that a set D of vertices in graph
G is an r − locating − dominating set or r − LD set for short if for all x /∈ D, Dr(x) 6= ∅
and for all x, y /∈ D, x 6= y, we have Dr(x) 6= Dr(y). The smallest d such that there is an
r-LD set of size d is denoted by MLD

r (G). If r = 1, we speak of locating-dominating sets,
LD sets and MLD(G). Locating-dominating sets were introduced (for r = 1) by Slater [23],
motivated by nuclear power plant safety. r − locating − dominating sets can also be used
for fault detection in distributed systems. Note that in contrast to r-identifying codes, r-LD
sets always exist, since the entire vertex set of a graph is an r-LD set.1

The literature about r-identifying codes and r-locating-dominating sets has become quite
extensive. See [20] for a recent bibliography with over 100 entries. In this paper, we will
limit ourselves to r-identifying codes.

One reason for our interest in paths and cycles is that paths are appropriate in appli-
cations like subway tunnels and cycles in applications like airport tram loops, to give two
examples. (Note that while the trains or trams may only go one way, contaminants or
pathogens can go either way through tunnels.) Many other interesting topologies have been
investigated in the literature. The paper [19] studies r-identifying codes in specific topologies
of interest in distributed computing, in particular binary cubes, nonbinary cubes, various
meshes, and trees, and various other papers study r-identifying codes and r-LD sets for
binary hypercubes, e.g., [3]. Papers [10, 12, 18] study square lattices while [8, 11, 19] study
hexagonal and triangular grids. [4, 21, 23] study complete multipartite graphs and planar
and outerplanar graphs.

As noted above, problems of finding optimal r-identifying sets or r-LD sets are difficult.
Berger-Wolf, Hart, and Saia [1] show that for directed graphs the problem of minimizing the
size of an r-identifying code is NP-complete. NP-completeness results for directed graphs for
both r-LD sets and r-identifying codes were also obtained by Charon, Hudry, and Lobstein [6,
7] for both digraphs and undirected graphs, and for identifying codes by Cohen, Honkala,
Lobstein, and Zemor [9] and for LD sets by Colbourn, Slater, and Stewart [13], both papers
for undirected graphs.2 By way of contrast, Slater [22] gives a linear time algorithm for
finding optimal LD sets in acyclic graphs, in particular trees, and Colbourn, Slater, and
Stewart [13] give a linear time dynamic programming algorithm for finding optimal LD sets
in series-parallel graphs.

In Section 2 we summarize the values of M I(G) for paths and cycles, that is in the case
where detectors can only detect attacks one step away in a network. Section 3 finds the values

1A variant of an r-locating-dominating set is defined by Carson and Oellerman [5]. Let D be a set of vertices
{v1, v2, . . . , vk} in G and for each x /∈ S, let ~x be the vector whose ith entry is min{r + 1, d(x, vi)} where
d(u, v) is the distance from u to v in the graph. Then we say that D is an r-reference-dominating set if
for all x /∈ D,Dr(x) 6= ∅ and for all x, y /∈ D,~x = ~y iff x = y. If r = 1, a 1-reference-dominating set is the
same as a 1-locating-dominating set.

2Carson and Oellermann [5] give similar NP-completeness results for reference-dominating sets.



– 3 –

M I
2 (G) for paths and cycles, i.e., it analyzes the case where we have stronger detectors, ones

that can detect attacks up to two steps away. In Section 4 we present some paradoxical
results that follow from our theorems. Finally, Section 5 includes closing remarks.

2 Identifying Codes for Paths and Cycles

In this section, we present our own proofs of the known results for M I(Pn) and M I(Cn)
where Pn is the path of n vertices and Cn is the cycle of n vertices. We label the vertices
along the path or around the cycle in order as x1, x2, . . . , xn and when we are dealing with
a cycle, we also use addition and subtraction modulo n, so that, for example, x5n+4 means
x4. We shall determine M I(Pn) and M I(Cn) for every n. The results are simple, but serve
as interesting contrasts to the results for 2-identifying codes given in Section 3.

Lemma 2.1. Suppose the maximum degree of a vertex in graph G is 2, y1, y2, y3, y4 is a path
in G, and D is an IC for G. Then it is not possible to have y1 /∈ D and y4 /∈ D.

Proof. If y1 /∈ D, y4 /∈ D, then D(y2) = D(y3).

Lemma 2.2. Suppose the maximum degree of a vertex in graph G is 2 and D is an IC for
G. Then in any induced path in G of four vertices, at least two are in D.

Proof. Suppose y1, y2, y3, y4 is an induced path with at most one vertex in D. If on the path,
only y1 ∈ D or only y4 ∈ D or no yi is in D, then D(y3) = ∅ or D(y2) = ∅. The result follows
by Lemma 2.1.

2.1 1-ICs for Cycles

Lemma 2.3. If n > 4, D is an IC for a cycle Cn iff

(1) there are no four consecutive vertices with the first and last not in D

(2) there are no three consecutive vertices none of which is in D.

Proof. Condition (2) is necessary and sufficient for the condition that D(x) 6= ∅ for all
x. Necessity of condition (1) follows from Lemma 2.1. We shall now observe sufficiency
of conditions (1) and (2) for the requirement that D(x) 6= D(y), x 6= y. Consider xi and
xj, i < j, and assume (A) that the distance from xi to xj is no larger in a clockwise direction
around the cycle than in a counterclockwise direction. If i + 1 ≤ j ≤ i + 3, apply condition
(1) and (A) to xi−1 and xi+2 to show that D(xi) 6= D(xj). If j > i + 3, condition (2) implies
that one of xi−1, xi, xi+1 is in D, and thus, using (A), we have D(xi) 6= D(xj).

The following theorem was proved for the case of even cycles in [2] and for odd cycles
in [14]. It is also proved for odd cycles in [16]. Its analogue for LD sets was proved in [23].

Theorem 2.4. For the cycle Cn:

(1) M I(C4) = 3, M I(C2k) = k, k ≥ 3;



– 4 –

(2) M I(C5) = 3, M I(C2k+1) = k + 2, k ≥ 3.

Proof. Specific constructions demonstrate the upper bounds. For C4, {x2, x3, x4} defines
an IC of 3 vertices. For C2k, {x2, x4, . . . , x2k} is an IC of k vertices when k ≥ 3. For C5,
{x1, x2, x3} gives a 3-vertex IC. For C2k+1, {x1, x2, x3, x5, x7, x9, . . . , x2k+1} gives a (k + 2)-
vertex IC if k ≥ 3.

We now prove the lower bounds. In C4, it is straightforward to show that 2-element sets
D cannot be IC. Now consider C2k, k > 2. If D is an IC, condition (1) of Lemma 2.3 implies
that for every i, xi ∈ D or xi+3 ∈ D. (Here, as usual for cycles, addition is modulo n.) There
are n such constraints and each xi is in exactly two of them. Thus, if D has d detectors,
at most 2d constraints are satisfied. It follows that D must have at least

⌈
n
2

⌉
vertices. In

particular, this shows that if n = 2k, any IC has at least k vertices, as desired.
We now assume that n = 2k + 1. By the argument above, at least k + 1 vertices are

needed in an IC D. This proves the lower bound for C5. Let n > 5. Let D be an IC.
Since D has at least k + 1 vertices, there must be two consecutive vertices xi, xi+1 in D. By
condition (1) of Lemma 2.3, either xi−1 ∈ D or xi+2 ∈ D, so we conclude that there are three
consecutive vertices in D. Without loss of generality, assume x1, x2, x3 ∈ D. By Lemma 2.2,
each following consecutive set of four vertices has at least two vertices of D. It follows that
if 2k + 1 = 4m + 3, then D has at least 3 + 2m = k + 2 vertices. Suppose 2k + 1 = 4m + 1.
If x4 ∈ D or x5 ∈ D, then there are at least four vertices of D in the first five vertices and
at least two in each subsequent four vertices, or at least 4 + 2(m − 1) = 2m + 2 = k + 2
vertices of D. If x4 /∈ D and x5 /∈ D, then by condition (1) of Lemma 2.3, x7 ∈ D, x8 ∈ D.
Moreover, by condition (2) of Lemma 2.3, x6 ∈ D. It follows that in the first nine vertices
around the cycle, at least six are in D. In any subsequent four vertices, at least two are in
D. Thus, the number of vertices of D is at least 6 + 2(m− 2) = 2m + 2 = k + 2.

2.2 1-ICs for Paths

We turn next to paths.

Lemma 2.5. Consider a path Pn with vertices x1, x2, . . . , xn in order and suppose D is an
IC for Pn. Then x3 and xn−2 are in D.

Proof. If x3 /∈ D, then D(x1) = D(x2) and similarly for xn−2.

Lemma 2.6. If n > 4, D is an IC for a path Pn iff the following conditions hold:

(1) there are no four consecutive vertices with the first and last not in D

(2) there are no three consecutive vertices none of which is in D

(3) x3, xn−2 ∈ D

(4) x1 or x2 ∈ D and xn or xn−1 ∈ D.

Proof. Necessity of condition (1) follows by Lemma 2.1, of condition (2) since otherwise D(x)
for the middle vertex would be ∅, condition (3) by Lemma 2.5, and condition (4) because
D(x1) 6= ∅, D(xn) 6= ∅. Sufficiency of the conditions follows by a proof analogous to that of
Lemma 2.3.



– 5 –

The following theorem was first proved in [2]. Its analogue for LD sets is due to [23].

Theorem 2.7. For the path Pn:

(1) M I(P2) is undefined, M I(P2k) = k + 1, k ≥ 2;

(2) M I(P2k+1) = k + 1, k ≥ 0.

Proof. We know that P2 = K2 has no IC. The upper bounds are easy to establish. For P2k,
an IC of k + 1 vertices is given by {x2, x3, x4, x6, x8, x10, ..., x2k}. For P2k+1, it is trivial that
{x1, x3, x5, . . . , x2k+1} is an IC of k + 1 detectors.

We now prove the lower bounds. Suppose n = 2k = 4m and D is an IC for Pn with at
most k detectors. By Lemma 2.2, every four consecutive vertices in the path has at least
two vertices of D and so every four consecutive vertices includes exactly two elements of D.
By conditions (1), (3) and (4) of Lemma 2.6, we note that x1 ∈ D or x4 ∈ D, that x3 ∈ D,
and that x1 ∈ D or x2 ∈ D. Thus, x1, x3 ∈ D and x2, x4 /∈ D. Then condition (1) of the
lemma implies that x5 ∈ D and hence x6 /∈ D since there can be no more than two vertices
of D among x3, x4, x5, x6. Similarly, x7 ∈ D, x8 /∈ D. Continuing this way, we conclude that
xn−2 /∈ D, which violates condition (3) of the lemma.

Suppose n = 2k = 4m + 2 and D is an IC with at most k detectors. By Lemma 2.6,
condition (4), either xn or xn−1 is in D. It follows that each consecutive set of four vertices
starting with the first four has exactly two vertices of D. But then by the construction
above, xn−2 /∈ D, contradicting condition (3) of the lemma.

Suppose n = 2k + 1 = 4m + 1 and D is an IC. If xn ∈ D, then since in the first m sets
of four consecutive vertices, each has at least two vertices of D, we conclude that D has
at least 1 + 2m = k + 1 vertices. If xn /∈ D and D has at most k = 2m vertices, then by
the construction above, xn−1 = x4m is not in D. But then condition (4) of Lemma 2.6 is
violated.

Suppose n = 2k + 1 = 4m + 3 and D is any IC. Then by conditions (3) and (4) of
Lemma 2.6, either xn or xn−1 is in D and also xn−2 is in D, so there are at least two vertices
of D in the last three. There are at least two vertices of D in each consecutive set of four
vertices starting with the first four, so at least 2 + 2m = k + 1 vertices in D in all.

3 2-Identifying Codes for Paths and Cycles

We observed in Section 2 that if two vertices in G have the same closed neighborhood, then
there can be no IC. Recall that N2[x] = {y : d(x, y) ≤ 2}, where d(x, y) is graph-theoretical
distance. Then if there are two vertices with the same N2, there can be no 2-IC. This shows
that P3, P4, C4, and C5 have no 2-IC.

In the following, we assume that the vertices of Pn or Cn have been labeled consecutively
as x1, x2, . . . , xn. When we are dealing with a cycle, we also use addition and subtraction
modulo n as before.

Lemma 3.1. Suppose graph G has maximum degree 2, y1, y2, y3, y4, y5, y6 is a path in G,
and D is a 2-IC for G. Then it is not possible to have y1 /∈ D and y6 /∈ D.

Proof. If y1 /∈ D and y6 /∈ D, then D2(y3) = D2(y4).



– 6 –

3.1 2-ICs for Cycles

Lemma 3.2. If n > 6, D is a 2-IC for a cycle Cn iff

(1) there are no six consecutive vertices with the first and last not in D

(2) there are no five consecutive vertices none of which is in D.

Proof. Condition (2) is necessary and sufficient for the condition that D2(x) 6= ∅ for all
x. Necessity of condition (1) follows from Lemma 3.1. We shall now observe sufficiency of
conditions (1) and (2) for the condition D2(x) 6= D2(y), x 6= y. Consider xi and xj, i < j, and
assume (A) that the distance from xi to xj is no larger in a clockwise direction around the
cycle than in a counterclockwise direction. To show that D2(xi) 6= D2(xj) if i+1 ≤ j ≤ i+5,
apply condition (1) and (A) to xi−2 and xi+3. If j > i + 5, apply condition (2) and (A) to
xi−2, xi−1, xi, xi+1, xi+2.

Parts of the next theorem were known previously. In particular, (1) was proved by
Bertrand, Charon, Hudry, and Lobstein [2], who show that the same result holds for arbitrary
r. (1) is also proved by Gravier, Moncel, and Semri in [16]. Result (2)(c) follows from a
more general result of [16], namely that if 2r + 1 divides n odd, then M I

r (Cn) = n+1
2

+ r.
For arbitrary r, [2] and [16] also provide lower bounds and [16] gives exact values for some
special cases. For r = 2, [2] gives exact values of M I

r (Cn) when n = 10k + 14. [2] also gives
results about optimal r-LD sets for cycles for arbitrary r.

Theorem 3.3. For the cycle Cn:

(1) M I
2 (C4) is undefined, M I

2 (C6) = 5, M I
2 (C2k) = k for k ≥ 4.

(2) M I
2 (C5) is undefined and if k = 5p + q, q ∈ {0, 1, 2, 3, 4}, then

(a) M I
2 (C2k+1) = k + 2 if q = 0 and p > 0;

(b) M I
2 (C2k+1) = k + 1 if q = 1 and p > 0;

(c) M I
2 (C2k+1) = k + 3 if q = 2 and p > 0;

(d) M I
2 (C2k+1) = k + 1 if q = 3 and p ≥ 0;

(e) M I
2 (C2k+1) = k + 2 if q = 4 and p > 0, with M I

2 (C9) = 5.

Proof. We have already observed that C4 has no 2-IC. For C6, we note that including all but
x6 gives a 2-IC, so M I

2 (C6) ≤ 5. Suppose D is a 2-IC with at most four vertices. Assume
without loss of generality that x1 /∈ D. Then using Lemma 3.1 in both the clockwise and
counterclockwise direction implies that x2 ∈ D, x6 ∈ D. If x4 /∈ D, then D2(x1) = D2(x4).
Thus, either x3 /∈ D or x5 /∈ D, without loss of generality the former. But then D2(x4) =
D2(x6). We conclude that M I

2 (C6) ≥ 5, so M I
2 (C6) = 5.

Lemma 3.2 implies the constraint xi ∈ D ∨ xi+5 ∈ D for i = 1, 2, . . . , n.3 There are n
such constraints and each xi is a term in exactly two of them. Thus, if D has d vertices, at
most 2d such disjunctions are satisfied. It follows that D must have at least

⌈
n
2

⌉
vertices. If

3A similar condition for arbitrary r corresponds to the idea of a transversal in an auxiliary graph C ′
(n,r) in [16].



– 7 –

n = 2k, then D must have at least k vertices, so M I
2 (C2k) ≥ k. If n = 2k + 1, then similarly

M I
2 (C2k+1) ≥ k +1. If k ≥ 4, the set of xi for i odd is a 2-IC for C2k, so M I

2 (C2k) ≤ k, which
completes the proof for C2k.

We now turn to C2k+1. We return to the constraints above and, for notational conve-
nience, abbreviate xj by j and abbreviate xi ∈ D or xj ∈ D by i∨j. Choose i ∈ {1, 2, 3, 4, 5}.
Consider the following stream of constraints, which we call constraint stream i:

i ∨ i + 1× 5, i + 1× 5 ∨ i + 2× 5, . . . , i + (gi − 1)× 5 ∨ i + gi × 5, i + gi × 5 ∨ hi,

where

i + gi × 5 ≤ 2k + 1 < i + (gi + 1)× 5 ≡ hi(mod[2k + 1]), hi ∈ {1, 2, 3, 4, 5}

Suppose k = 5p+ q, q ∈ {0, 1, 2, 3, 4}. If k 6= 5p+2, then h1 6= 1. Then constraint stream
1 leads into constraint stream h1, which leads into constraint stream hh1 , and so on until we
hit every stream and end with the last hi = 1. Putting the streams together in this order
gives us the full constraint stream. For example, if k = 13, constraint stream 3 is given
by

3 ∨ 8, 8 ∨ 13, 13 ∨ 18, 18 ∨ 23, 23 ∨ 1

and the full constraint stream is

1∨6, 6∨11, 11∨16, 16∨21, 21∨26, 26∨4, 4∨9, 9∨14, 14∨19, 19∨24, 24∨2, 2∨7, 7∨12, 12∨17

17∨22, 22∨27, 27∨5, 5∨10, 10∨15, 15∨20, 20∨25, 25∨3, 3∨8, 8∨13, 13∨18, 18∨23, 23∨1

Generalizing from k = 13, we note that if k = 5p + 3, we have 2k + 1 = 10p + 7, so g3 = 2p
since 3 + 2p× 5 ≤ 10p + 7 < 3 + (2p + 1)× 5. If k = 5p + 2, then hi = i and there is no full
constraint stream. By way of contrast, if k = 5p + 4, then g3 = 2p + 1.

We first prove (2)(b). We already know that M I
2 (C2k+1) ≥ k + 1. We next show that we

can find a 2-IC with k + 1 vertices. The basic idea of the proof is that since the full stream
has 2k + 1 constraints and each vertex is in exactly two constraints, then if we can satisfy
all the constraints with k +1 vertices of D, there must be exactly one constraint where both
vertices are in D and all other constraints have exactly one of their vertices in D. Which
vertex in a constraint is in D is forced upon us by traversing the full stream starting from the
constraint with both vertices in D. Without loss of generality this constraint is 1∨1+1×5.
Then we have the following:

• From constraint stream 1, include in D vertices 1 and 1 + z × 5, z odd and 3 [a total
of p + 2 vertices since g1 = 2p];

• Then, from constraint stream 3, additionally include in D vertices 3+z×5, z 6= 0 even
[a total of p additional vertices since g3 = 2p];

• Then, from constraint stream 5, additionally include in D vertices 5 + z × 5, z odd [a
total of p additional vertices since g5 = 2p− 1];

• Then, from constraint stream 2, additionally include in D vertices 2 + z × 5, z odd,
and 4 [a total of p + 1 additional vertices since g2 = 2p];



– 8 –

• Finally, from constraint stream 4, additionally include in D vertices 4 + z × 5, z 6= 0
even [a total of p− 1 additional vertices since g4 = 2p− 1].

By construction, the set D satisfies all the 2k + 1 constraints and so condition (1) in
Lemma 3.2 holds. In all, we have included in D

(p + 2) + p + p + (p + 1) + (p− 1) = 5p + 2 = k + 1

vertices. It suffices to show that condition (2) in Lemma 3.2 holds. But this can be demon-
strated as follows. Consider 1 + 5z, 2 + 5z, 3 + 5z, 4 + 5z, 5 + 5z, z ≥ 1. Note that if z ≥ 1,
i + 5z ∈ D iff i + 5(z + 1) /∈ D. If we never have j ∈ {1, 2, 3, 4, 5} such that i + 5 ∈ D iff
i ≤ j or i + 5 ∈ D iff i ≥ j, then condition (2) holds. In our case, we have i + 5 ∈ D iff
i = 1, 2, 5. This completes the proof of (2)(b).

The proof of (2)(d) is analogous. The vertices of D are chosen as follows, starting with
1 and 1 + 1× 5:

• From stream 1: 1, 1 + z × 5, z odd [p + 2 vertices];

• Then from stream 4: 4 + z × 5, z odd, plus 2 [p + 1 additional vertices];

• Then from stream 2: 2 + z × 5, z 6= 0 even, plus 5 [p + 1 additional vertices];

• Then from stream 5: 5 + z × 5, z 6= 0 even [p additional vertices];

• Finally from stream 3: 3 + z × 5, z odd [p additional vertices].

Again, D satisfies all the constraints in condition (1) of Lemma 3.2 and moreover the number
of vertices in D is 5p+4 = k+1. Condition (2) of Lemma 3.2 follows as above since i+5 ∈ D
iff i = 1, 4.

We turn next to the proof of (2)(e). We assume that we can find a 2-IC D of k+1 vertices
and shall reach a contradiction. As in the proof of (2)(b), once we take 1 and 1 + 1 × 5 in
D, the rest of the membership of D is forced upon us:

• From stream 1: 1 and 1 + z × 5, z odd [p + 2 vertices];

• Then from stream 2: 2 + z × 5, z odd [p + 1 additional vertices];

• Then from stream 3: 3 + z × 5, z odd [p + 1 additional vertices];

• Then from stream 4: 4 + z × 5; z odd [p + 1 additional vertices];

• Finally from stream 5: 5 + z × 5, z odd [p additional vertices].

This satisfies condition (1) of Lemma 3.2 and uses 5p + 5 = k + 1 vertices. However,
condition (2) of Lemma 3.2 is violated if p > 0, since then 11, 12, 13, 14, 15 are not in D.
We conclude that M I

2 (C2k+1) ≥ k + 2 if k = 5p + 4, p > 0. If p = 0, the construction gives
us D = {1, 6, 7, 8, 9} and it is easy to show that this is a 2-IC of size k + 1, so it is optimal.
This shows that M I

2 (C9) = 5.
To complete the proof for k = 5p + 4, we construct a 2-IC with k + 2 vertices. We do

this by taking the following vertices for D:



– 9 –

• From stream 1: 1, 1 + z × 5, z odd [p + 2 vertices];

• Then from stream 2: 2 + z × 5, z odd, and 3 [p + 2 additional vertices];

• Then from stream 3: 3 + z × 5, z 6= 0 even, and 3 + (2p + 1) × 5 [p + 1 additional
vertices];

• Then from stream 4: 4 + z × 5, z odd [p + 1 additional vertices];

• Finally from stream 5: 5 + z × 5, z odd [p additional vertices].

This satisfies the constraints of Condition (1) of Lemma 3.2 and uses 5p+6 = k +2 vertices.
Moreover, condition (2) of Lemma 3.2 holds since i + 5 ∈ D iff i = 1, 2, 4, 5. This proves
part (2)(e) of the Theorem.

The proof of (2)(a) is similar. Suppose k = 5p, p > 0, and there is a 2-IC D of k + 1
vertices. Without loss of generality, we take 1 and 1 + 1 × 5 in D and the rest of the
membership of D is forced upon us. Since both 1 and 6 are in D, we get 7, 8, 9, 10, 11 not
in D since 1 + z × 5 /∈ D for z even while for i = 2, 3, 4, 5, i + z × 5 /∈ D for z odd. Thus,
condition (2) of Lemma 3.2 is violated.

To complete the proof for k = 5p, p > 0, we construct a 2-IC with k + 2 vertices. We do
this by taking the following vertices for D:

• From stream 1: 1, 1 + z × 5, z odd, plus 1 + 2p× 5 [p + 2 vertices];

• Then from stream 5: 5 + z × 5, z odd, plus vertex 4 [p + 1 additional vertices];

• Then from stream 4: 4 + z × 5, z 6= 0 even, plus vertex 3 [p additional vertices];

• Then from stream 3: 3 + z × 5, z 6= 0 even, plus vertex 2 [p additional vertices];

• Finally from stream 2: 2 + z × 5, z 6= 0 even [p− 1 additional vertices].

This satisfies the constraints of condition (1) of Lemma 3.2 and uses 5p + 2 = k + 2 vertices.
Moreover, condition (2) of Lemma 3.2 holds since i + 5 ∈ D iff i = 1, 5. This proves part
(2)(a) of the Theorem.

We now turn to Condition 2(c) and assume k = 5p + 2. In this case, each constraint
stream begins and ends in i and the vertices in the different constraint streams are disjoint.
Thus, to satisfy Condition (2) of Lemma 3.2, we need to satisfy all of the constraints in
each stream i separately. Since each stream has 2p + 1 constraints, we need at least p + 1
vertices from it to be put into D in order to satisfy all constraints. Thus, we need at least
5(p + 1) = k + 3 vertices in D, which shows that M I

2 (C2k+1) ≥ k + 3 in this case. It remains
to prove that we can find a 2-IC D with k +3 vertices. We do this as follows: For i = 1, 3, 5,
choose i and i+z×5 for z odd; for i = 2, 4, choose i and i+z×5 for z even. This satisfies all
of the constraints and so condition (1) of Lemma 3.2 holds. It uses 5(p+1) = k +3 vertices.
Finally, condition (2) of Lemma 3.2 holds since i + 5 ∈ D iff i = 1, 3, 5. This completes the
proof of Theorem 3.3.



– 10 –

3.2 2-ICs for Paths

We turn now to paths. The next lemma will help us to calculate M I
2 (Pn).

Lemma 3.4. Consider a path Pn with vertices x1, x2, . . . , xn in order and suppose D is a
2-IC for Pn. Then:

(1) x4 ∈ D and xn−3 ∈ D

(2) x5 ∈ D and xn−4 ∈ D

Proof. If x4 /∈ D, then D2(x1) = D2(x2), and similarly for xn−3. If x5 /∈ D, then D2(x2) =
D2(x3), and similarly for xn−4.

We now have:

Lemma 3.5. If n > 6, D is a 2-IC for a path Pn iff the following conditions hold:

(1) there are no six consecutive vertices with the first and last not in D

(2) there are no five consecutive vertices none of which is in D

(3) x4, x5, xn−3, xn−4 ∈ D

(4) x1, x2, or x3 ∈ D and xn, xn−1, or xn−2 ∈ D.

Proof. Necessity of condition (1) follows by Lemma 3.1, of condition (2) since otherwise
D2(x) = ∅ for the middle vertex x, of condition (3) by Lemma 3.4, and of condition
(4) because D2(x1) 6= ∅, D2(xn) 6= ∅. Sufficiency follows by a proof analogous to that of
Lemma 3.2.

Lemma 3.5 allows us to proceed for a path Pn much as we did with cycles. Constraint
streams are again the focus of our argument but since we have paths and not cycles, we
modify the definition of constraint stream i to omit the last disjunction i + gi × 5 ∨ hi. We
will consider the cases n = 5p+q, q ∈ {0, 1, 2, 3, 4}. For example, if n = 5p+1, the constraint
stream 3 is given by

3 ∨ 3 + 1× 5, 3 + 1× 5 ∨ 3 + 2× 5, . . . , 3 + (p− 2)× 5 ∨ 3 + (p− 1)× 5

Since the constraint streams have disjoint sets of vertices, we are in a situation analogous to
that of cycles in the case k = 5p + 2 where we considered satisfying the constraints in each
stream separately.

We summarize the results in the following theorem. The result in case (2) for p even is
proven in [2], where lower bounds are also given for M I

r for arbitrary r that in fact match
the exact results given in the theorem in cases (1), (2), and (3) for p even and cases (4) and
(5) for p odd. [2] also gives results for r-LD sets for paths. The authors credit I. Honkala
with obtaining the exact values for MLD

r (Pn) when r = 2.4

4Let MRD
r (G) be the size of the smallest r-reference-dominating set in G (as defined in an earlier footnote).

The exact values of MRD
r (Pn) are calculated in [5].



– 11 –

Theorem 3.6. Let n = 5p + q, q ∈ {0, 1, 2, 3, 4}.

(1) If q = 0, p ≥ 1, then M I
2 (Pn) = 5p

2
+ 1 if p is even, M I

2 (Pn) = 5(p−1)
2

+ 4 if p is odd.

(2) If q = 1, p ≥ 1 then M I
2 (Pn) = 5p

2
+ 1 if p is even, M I

2 (Pn) = 5(p−1)
2

+ 5 if p is odd.

(3) If q = 2, p ≥ 1, then M I
2 (Pn) = 5p

2
+ 2 if p is even, M I

2 (Pn) = 5(p−1)
2

+ 5 if p is odd.
Also, M I

2 (P2) is undefined.

(4) If q = 3, p ≥ 1, then M I
2 (Pn) = 5p

2
+ 3 if p is even, M I

2 (Pn) = 5(p−1)
2

+ 5 if p is odd.
Also, M I

2 (P3) is undefined.

(5) If q = 4, p ≥ 1, then M I
2 (Pn) = 5p

2
+ 3 if p is even, M I

2 (Pn) = 5(p−1)
2

+ 5 if p is odd.
Also, M I

2 (P4) is undefined.

Proof. As in the proof of Theorem 3.3, we use i as an abbreviation for vertex xi.

(1) If i ∈ {1, 2, 3, 4, 5}, the constraint stream i is given as follows:

i ∨ i + 1× 5, i + 1× 5 ∨ i + 2× 5, . . . , i + (p− 2)× 5 ∨ i + (p− 1)× 5,

with p−1 constraints. By Lemma 3.5, condition (3), we know that 4, 5, 5p−3, 5p−4 ∈
D. This tells us that the first constraint in streams 4 and 5 is satisfied and the last
constraint in streams 1 and 2 by choosing detectors at these locations. To satisfy
Condition (4) of Lemma 3.5, there are three possible cases: (1A) choose 3 and 5p− 2
from stream 3; (1B) choose 1 from stream 1 and 5p− 2 from stream 3, 2 from stream
2 and 5p− 2 from stream 3, 3 from stream 3 and 5p− 1 from stream 4, 3 from stream
3 and 5p from stream 5; (1C) choose 1 from stream 1 and 5p − 1 from stream 4, 1
from stream 1 and 5p from stream 5, 2 from stream 2 and 5p − 1 from stream 4, 2
from stream 2 and 5p from stream 5. (We lump these cases because counting number
of detectors needed is the same in each of the situations in each case.)

Consider first case (1A). We need to satisfy all of the constraints in stream 1 and we
have already placed 5p − 4 in the detector set, satisfying the last constraint. There
are p − 2 remaining constraints, none containing 5p − 4, so we need at least

⌈
p−2
2

⌉
detectors to satisfy the remaining constraints. Turning to stream 2, since we have
already placed 5p − 3 in the detector set, satisfying the last constraint, and since
5p − 3 does not appear in other constraints in this stream, the number of remaining
constraints once again require at least

⌈
p−2
2

⌉
detectors. The same number at least is

required for streams 4 and 5. In stream 3, we need to use detectors 3 and 5p − 2,
thus satisfying the first and last constraints, and at least

⌈
p−3
2

⌉
detectors are needed

to satisfy the remaining p− 3 constraints, none of which contain either 3 or 5p− 2. It
follows that we need at least

4 + 2 +

⌈
p− 3

2

⌉
+ 4×

⌈
p− 2

2

⌉
detectors in all. If p is even, this number is 5p

2
+ 1, whereas if p is odd, the number is

5(p−1)
2

+ 5.



– 12 –

We need to do a similar analysis in Case (1B). We consider the situation where we
choose 1 from stream 1 and 5p− 2 from stream 3. After choosing 1, 4, 5, 5p− 2, 5p−
3, 5p − 4 we need at least

⌈
p−3
2

⌉
detectors to satisfy the remaining p − 3 constraints

in stream 1, and, in each of the other streams, at least
⌈

p−2
2

⌉
detectors to satisfy the

remaining p− 2 constraints. Thus, we need at least 5p
2

+ 1 detectors if p is even and at

least 5(p−1)
2

+ 5 if p is odd.

Last, we consider Case (1C) and suppose we choose 1 from stream 1 and 5p− 1 from
stream 4. After choosing 1, 4, 5, 5p − 1, 5p − 3, 5p − 4, to satisfy the remaining
constraints, we need at least

⌈
p−3
2

⌉
for stream 1, at least

⌈
p−2
2

⌉
for stream 2, at least⌈

p−1
2

⌉
for stream 3, at least

⌈
p−3
2

⌉
for stream 4, and at least

⌈
p−2
2

⌉
for stream 5. Thus,

the number of detectors needed in all is 5p
2

+ 2 if p is even and 5(p−1)
2

+ 4 if p is odd.

Finally, comparing the required minimum number of detectors in all three cases, we
see that when p is even, the minimum is 5p

2
+ 1, which is achieved in both cases (1A)

and (1B), and when p is odd, the minimum is 5(p−1)
2

+4, which is achieved in Case (1C)
only. This establishes these values as lower bounds on M I

2 (Pn) in the case n = 5p.

We next establish these values as upper bounds. Consider first the case where p is
even. We use either Case (1A) or Case (1B), which are the cases where the optimal
lower bound is achieved. The lower bounds were calculated under the assumption that
we minimize the number of detectors needed to satisfy all constraints in each stream.
We now simply use algorithms similar to those used in the proof of Theorem 3.3 to
choose detectors to satisfy each constraint stream and achieve the minimums. We use
the first or last vertex in a stream as required and remove the corresponding first or
last constraints. We then proceed left to right among remaining constraints, always
choosing the largest vertex in the first unsatisfied constraint. It turns out that this
method does not work for Case (1A), but does for Case (1B). Consider the situation
where we use 1 from stream 1 and 5p−2 from stream 3. In stream 1, we choose vertices
1 and 5p−4 for the detector set D and then the algorithm adds vertices 1+z×5, z 6= 0
even. In stream 2, we choose vertex 5p− 3 and the algorithm adds vertices 2+ z× 5, z
odd. In stream 3, we choose vertex 5p − 2, as well as vertices 3 + z × 5, z odd. In
stream 4 we choose vertices 4 and 4+z×5, z 6= 0 even. Finally, in stream 5, we choose
vertex 5 and vertices 5 + z × 5, z 6= 0 even. We now use Lemma 3.5 to verify that this
defines a 2-IC. Conditions (1), (3), and (4) of the lemma are satisfied by construction.
Condition (2) follows as in the proof of Theorem 3.3 by observing that i + 5 ∈ D iff
i = 2, 3. This completes the proof in the case that p is even.

Next, suppose p is odd. Here, we use case (1C) and suppose we choose 1 from stream
1 and 5p− 1 from stream 4. In stream 1, we use 1 and 5p− 4, and the algorithm gives
us in addition 1+ z×5, z 6= 0 even. In stream 2, we use 5p−3 and the algorithm gives
us in addition 2 + z× 5, z odd. In stream 3, the algorithm gives us 3 + z× 5, z odd. In
stream 4, we use 4 and 5p− 1 and in addition 4 + z × 5, z 6= 0 even. In stream 5, we
use 5 and 5p and in addition 5 + z × 5, z 6= 0 even. Condition (4) of Lemma 3.5 holds
i + 5 ∈ D iff i = 2, 3. This completes the proof of part (1) of the theorem.

The proofs of parts (2) through (5) are analogous and we leave the details to the



– 13 –

reader. We simply include below the instructions for how to achieve the optimal
detector assignment in each case.

(2) When p is even, the optimal detector assignment occurs when we use stream 1 to satisfy
condition (4) of Lemma 3.5 for both front and back, i.e., we include vertices 1 and 1+5p
in D. The optimal assignment is obtained by including 1, 4, 5, 1 + 5z, 4 + 5z, 5 + 5z
for z 6= 0 even, and 2 + 5z, 3 + 5z for z odd. When p is odd, an optimal assignment
is obtained by using streams 2 and 5 to satisfy condition (4) of Lemma 3.5. The
corresponding optimal assignment is obtained by including 2, 4, 5, 3+5(p−1) = 5p−2,
and also 2 + 5z, 4 + 5z, 5 + 5z for z 6= 0 even and 1 + 5z, 3 + 5z for z odd.

(3) When p is even, the optimal detector assignment occurs when we use stream 1 to satisfy
condition (4) of Lemma 3.5 for both front and back, i.e., we include vertices 1 and 1+5p
in D. The optimal assignment is obtained by including 1, 4, 5, 4 + 5(p− 1) = 5p− 1
and also 1 + 5z, 4 + 5z, 5 + 5z for z 6= 0 even, and 2 + 5z, 3 + 5z for z odd. When p is
odd, an optimal assignment is obtained by using streams 1 and 3 to satisfy condition
(4) of Lemma 3.5. The corresponding optimal assignment is obtained by including 1,
3, 4, 5, and also 1 + 5z, 3 + 5z, 4 + 5z, 5 + 5z for z 6= 0 even and 2 + 5z for z odd.

(4) When p is even, the optimal detector assignment occurs when we use stream 1 to
satisfy condition (4) of Lemma 3.5 for both front and back, i.e., we include vertices 1
and 1+5p in D. The optimal assignment is obtained by including 1, 4, 5, 4+5(p−1) =
5p−1, 5+5(p−1) = 5p and also 1+5z, 4+5z, 5+5z for z 6= 0 even, and 2+5z, 3+5z for
z odd. When p is odd, an optimal assignment is obtained by using streams 1 and 2 to
satisfy condition (4) of Lemma 3.5. The corresponding optimal assignment is obtained
by including 1, 4, 5, and also 1 + 5z, 4 + 5z, 5 + 5z for z 6= 0 even and 2 + 5z, 3 + 5z
for z odd.

(5) When p is even, the optimal detector assignment occurs when we use streams 1 and
4 to satisfy condition (4) of Lemma 3.5, i.e., we include vertices 1 and 4 + 5p in D.
The optimal assignment is obtained by including 1, 4, 5, 5 + 5(p − 1) = 5p, and also
1 + 5z, 4 + 5z, 5 + 5z for z 6= 0 even, and 2 + 5z, 3 + 5z for z odd. When p is odd,
an optimal assignment is obtained by using streams 2 and 3 to satisfy condition (4) of
Lemma 3.5. The corresponding optimal assignment is obtained by including 2, 4, 5,
and also 2 + 5z, 4 + 5z, 5 + 5z for z 6= 0 even and 1 + 5z, 3 + 5z for z odd.

4 Paradoxes

Some values obtained from Theorems 2.4, 2.7, 3.3, and 3.6 are given in the Appendix. From
the Appendix and the theorems, one can verify that the following paradoxical, counterintu-
itive results hold.

Paradox 1. For k > 2, M I(C2k+1) > M I(C2k+2).

This result is paradoxical since we take the same topology and make it longer but require
fewer detectors. For instance, M I(C7) > M I(C8). There are, of course, other examples in



– 14 –

the literature where the parity (odd vs. even) creates similar paradoxes. The next paradox
is a bit more unusual:

Paradox 2. For p ≥ 1, M I
2 (C10p+5) > M I(C10p+5).

This result shows that for the same topology, using detectors with greater range can actually
require more detectors for perfect discrimination! For instance, M I

2 (C15) > M I(C15). The
next paradox gives a similar result for paths and shows that, for example, that M I

2 (P5) >
M I(P5) and that M I

2 (P13) > M I(P13).

Paradox 3. For n = 5, 6, 7 and n = 10p+3, 10p+5, 10p+6, 10p+7, p ≥ 1, M I
2 (Pn) > M I(Pn).

Our final paradox also concerns cycles.

Paradox 4. For n = 6, 11 and n = 10p + 5, 10p + 9, 10p + 11, p ≥ 1, M I
2 (Cn) > M I

2 (Cn+1).

Thus, for example, M I
2 (C15) > M I

2 (C16), M
I
2 2(C19) > M I

2 (C20), M
I
2 (C21) > M I

2 (C22). In
fact, we even have M I

2 (C10p+5) = M I
2 (C10p+6) + 2, p ≥ 1. So, going to longer cycles can

actually decrease the number of detectors needed by more than one.
Carson [4] has previously pointed out that increasing the range of detectors may lead us

to require more detectors. He found a tree T so that MLD
2 (T ) = 6 while MLD

6 (T ) > 6.

5 Closing Remarks

The emphasis in this paper has been on determining exact values for M I(G) and M I
2 (G) for

given graphs, in particular paths and cycles. It should be noted that our results for paths
and cycles are obtained by explicit constructions that yield simple algorithms that are linear
in time in terms of the number of vertices. We have given results for 1-ICs and 2-ICs. It
would be of interest to extend them to r-ICs for r > 2. It would also be of interest to
completely describe MLD

2 (G) for cycles. In [2], the exact value of MLD
2 (G) is given for paths

(the authors credit the result to I. Honkala) and it is given for cycles if n = 6k, k ≥ 1. Other
cases remain open.

In our formulation of the problem, we don’t explicitly consider the time allocated for
movement over an edge although it is implicitly considered to be equal for every edge.
Considering the same problem for edges with weights representing possibly different times of
movement over edges is also of interest. This problem is studied from an algorithmic point
of view in [1].

Our formulation of the problem is only concerned with detecting attacks at single vertices.
It would be useful to formulate and solve similar perfect detection discrimination problems
if we allow attacks at multiple locations. This problem is studied by [15, 19] and elsewhere
for identifying codes, but not for paths or cycles.

The problem with sensor failures allowed would also be of interest. Some preliminary
results with one sensor failure can be found in [24] while some for multiple sensor malfunctions
are in [17].

Finally, we have limited the discussion to detection problems on networks where both
detectors and attacks can only take place at vertices. The problem is also of interest and
can benefit from precise analysis of the type in this paper if we weaken these restrictions and
allow attacks and/or detectors anywhere along an edge.



– 15 –

A Tables

Table 1: M I(Cn) and M I
2 (Cn)5

n 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
MI(Cn) 3 3 3 5 4 6 5 7 6 8 7 9 8 10 9 11 10 12 11 13
MI

2(Cn) ⊥ ⊥ 5 4 4 5 5 7 6 7 7 10 8 9 9 11 10 12 11 12

n 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
MI(Cn) 12 14 13 15 14 16 15 17 16 18 17 19 18 20 19 21 20 22 21
MI

2(Cn) 12 15 13 14 14 16 15 17 16 17 17 20 18 19 19 21 20 22 21

Table 2: M I(Pn) and M I
2 (Pn).

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
MI(Pn) 1 ⊥ 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11
MI

2(Pn) ⊥ ⊥ ⊥ ⊥ 4 5 5 5 5 6 6 7 8 8 9 10 10 10 10 11

n 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
MI(Pn) 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 20
MI

2(Pn) 11 12 13 13 14 15 15 15 15 16 16 17 18 18 19 20 20 20 20

References

[1] Berger-Wolf, T., Hart, W. E., and Saia, J. Discrete sensor placement problems
in distribution networks. Mathematical and Computer Modelling 42 (2005), 1385–1396.

[2] Bertrand, N., Charon, I., Hudry, O., and Lobstein, A. Identifying and
locating-dominating codes on chains and cycles. European Journal of Combinatorics
25 (2004), 969–987.

[3] Blass, U., Honkala, I., and Litsyn, S. Bounds on identifying codes. Discrete
Mathematics 241 (2001), 119–128.

[4] Carson, D. I. On generalized location-domination. In Graph Theory, Combinatorics
and Applications, Y. Alavi and A. Schwenk, Eds. Wiley, New York, 1995, pp. 161–179.

[5] Carson, D. I., and Oellermann, O. R. A generalized reference-domination param-
eter. Unpublished manuscript, Department of Computer Science, University of Natal,
1995.

[6] Charon, I., Hudry, O., and Lobstein, A. Identifying and locating-dominating
codes: NP-completeness results for directed graphs. IEEE Transactions on Information
Theory IT-48 (2002), 2192–2200.

[7] Charon, I., Hudry, O., and Lobstein, A. Minimizing the size of an identifying
or locating-dominating code in a graph is NP-hard. Theoretical Computer Science 290
(2003), 2109–2120.

5⊥ means “undefined.”



– 16 –

[8] Cohen, G., Gravier, S., Honkola, I., Lobstein, A., Mollard, M., Payan,
C., and Zemor, G. Improved identifying codes for the grid. Electronic Journal of
Combinatorics 6 (1999). R19.

[9] Cohen, G., Honkala, I., Lobstein, A., and Zemor, G. On identifying codes. In
Codes and Association Schemes, A. Barg and S. Litsyn, Eds. American Mathematical
Society, Providence, RI, pp. 97–109. DIMACS Series Volume 56, 2001.

[10] Cohen, G., Honkala, I., Lobstein, A., and Zemor, G. New bounds for codes
identifying vertices in graphs. The Electronic Journal of Combinatorics 6 (1999). R14.

[11] Cohen, G., Honkala, I., Lobstein, A., and Zemor, G. Bounds for codes identi-
fying vertices in the hexagonal grid. SIAM Journal on Discrete Mathematics 13 (2000),
492–504.

[12] Cohen, G., Honkala, I., Lobstein, A., and Zemor, G. On codes identifying
vertices in the two-dimensional square lattice with diagonals. IEEE Transactions on
Computers 50 (2001), 174–176.

[13] Colbourn, C. J., Slater, P. J., and Stewart, L. K. Locating-dominating sets
in series-parallel networks. In Proceedings of the 16th Annual Conference on Numerical
Mathematics and Computing (Winnipeg, Manitoba, 1986), pp. 135–162.

[14] Daniel, M. Codes identifiants. Rapport pour le DEA ROCO, Grenoble, June 2003.

[15] Gravier, S., and Moncel, J. Construction of codes identifying sets of vertices.
Electronic Journal of Combinatorics 12 (2005). R13.

[16] Gravier, S., Moncel, J., and Semri, A. Identifying codes of cycles. European
Journal of Combinatorics 27 (2006), 767–776.

[17] Honkala, I., Laihonen, T., and Ranto, S. On locating-dominating codes in
binary hamming spaces. Discrete Mathematics and Theoretical Computer Science 6
(2004), 265–282.

[18] Honkala, I., and Lobstein, A. On the density of identifying codes in the square
lattice. Journal of Comb. Theory B 85 (2002), 297–306.

[19] Karpovsky, M. G., Chakrabarty, K., and Levitin, L. B. On a new class of
codes for identifying vertices in graphs. IEEE Transactions on Information Theory 44
(1998), 599–611.

[20] Lobstein, A. Codes identifiants et localisateurs-dominateurs dans les graphes: Une
bibliographie. http://www.infres.enst.fr/ lobstein/bibLOCDOMetID.html, November
2005.

[21] Rall, D. F., and Slater, P. J. On location-domination numbers for certain classes
of graphs. Congr. Numer. 45 (1984), 97–106.



– 17 –

[22] Slater, P. J. Domination and location in acyclic graphs. Networks 17 (1987), 55–64.

[23] Slater, P. J. Dominating and reference sets in a graph. Journal of Math. Phys. Sci.
22 (1988), 445–455.

[24] Slater, P. J. Fault-tolerant locating-dominating sets. Discrete Mathematics 249
(2002), 179–189.


