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ABSTRACT

In Approximation Theory, the fundamental problem is to reconstruct a signal A ∈ Rn from
linear measurements 〈A, ψi〉 with respect to a dictionary Ψ for Rn. Recently, there has
been tremendous excitement about the novel direction of Compressed Sensing [10] where
the reconstruction can be done with very few—Õ(k)—linear measurements over a modi-
fied dictionary Ψ′ if the information of the signal is concentrated in k coefficients over an
orthonormal basis Ψ. These results have reconstruction error on any given signal that is
optimal with respect to a broad class of signals. In a series of papers and meetings over the
past year, a theory of Compressed Sensing has been developed by mathematicians.

We develop an algorithmic perspective for the Compressed Sensing problem, showing that
Compressed Sensing results resonate with prior work in Group Testing, Learning theory and
Streaming algorithms. Our main contributions are new algorithms that present the most
general results for Compressed Sensing with 1 + ε approximation on every signal, faster
algorithms for the reconstruction, as well as succinct transformations of Ψ to Ψ′.



1 Introduction

The dictionary Ψ denotes an orthonormal basis for Rn, i.e. Ψ is a set of n real-valued vectors
ψi each of length n and ψi ⊥ ψj.

1 A signal vector A in Rn is transformed by this dictionary
into a vector of coefficients θ(A) formed by inner products between A and vectors from Ψ.
That is, θi(A) = 〈A, ψi〉 and A =

∑
i θi(A)ψi by the orthonormality of Ψ. 2 By Parseval’s

equality,
∑

i θ
2
i = 〈A,A〉 = ‖A‖2

2, i.e. the “energy” (sum of squares of values) of the signal is
preserved under transformation by an orthonormal basis. In the area of sparse approximation
theory [9], one seeks representations of A that are sparse, ie., use few coefficients. Formally,
R =

∑
i∈K θiψi, for some set K of coefficients, |K| = k � n. Clearly, R(A) cannot exactly

equal the signal A for all signals. The error is typically taken as ‖R−A‖2
2 =

∑
i(Ri−Ai)

2.
By Parseval’s equality, this is equivalently ‖θ(A)− θ(R)‖2

2. The optimal k representation of
A under Ψ, Rk

opt takes k coefficients with the largest |θi|’s. From now on (for convenience
of reference only), we reorder the vectors in the dictionary so |θ1| ≥ |θ2| ≥ . . . ≥ |θn|. The
error is ‖A−Rk

opt‖2
2 =

∑n
i=k+1 θ

2
i . Study of sparse approximation problems under different

dictionaries is a mature area of Mathematics. There are three interesting cases:

• k-support case. If the signal has at most k non-zero coefficients3 under Ψ, Rk
opt will

have zero error (‖Rk
opt −A‖2

2 = 0) and hence, A can be exactly reconstructed.

• p-Compressible case. In the area of sparse approximation theory, one typically studies
functions that are compressible wrt Ψ. Specifically the coefficients have a power-
law decay: for some p ∈ (0, 1), |θi| = O(i−1/p) for a constant C. Consequently,
‖A−Rk

opt‖2
2 ≤ C ′k1−2/p for some constant C ′ = C ′(C, p).

• General case. If A is arbitrary, for a given k, Rk
opt will have some arbitrary error.

Recently, there has been excitement in the area of Sparse Approximation Theory regard-
ing what is called Compressed Sensing. The classical theory above says we should seek all
linear measurements 〈A, ψi〉’s so that the signal can be reconstructed. But if most of the
“information” in A is concentrated in only a small number k of these, could one take fewer
linear measurements? A priori we do not know which of the i’s will be of our interest without
looking at the signal. The recent excitement arises from several independently discovered
results that show that Ψ can be transformed into a smaller dictionary Ψ′ of O(k log n) vectors
in Rn so that ‖A−R‖2

2 ≤ C ′k1−2/p, for p-compressible signals. The error is within constant
factors of the optimal k-term representation over the class of all such compressible signals.
Donoho [10] called this Compressed Sensing since the size of the dictionary Ψ′ (number of
vectors in Ψ′) is significantly smaller than n; it is also near-optimal in terms of the size of Ψ′

since one needs at least k linear measurements to measure even the k non-zero coefficients
in a signal with k-support. In a series of papers by three groups of researchers—Donoho,

1Examples of such basis are standard where ψi,j = δi,j where δi,j is the Kronecker delta function; discrete
Fourier where ψi,j = 1√

n
exp(−2π

√
−1ij/n); and Haar wavelet where every ψi is a scaled and shifted copy

of the same step like function. By applying an appropriate rotation, all these bases can be thought of as the
standard basis.

2We refer to θi where A is implicitly clear.
3 That is, for some K ⊂ [n], |K| = k, i 6∈ K ⇒ θi = 0. In this case, we say θ has support k.



Candes and Tao, Rudelson and Vershynin—together with others, the theory of compressed
sensing has been developed during the past year. The words they use to describe the results
are “surprising”, “remarkable”, etc. The website [17] tracks the rapidly growing number of
followup papers, both experimental and mathematical. These results have numerous appli-
cations to signal processing, error correction, and other fundamental areas, which adds to
the tremendous excitement that is brewing [19].

We visit the problem of compressed sensing as algorithmicists. From an algorithmicist’s
point of view, one may wonder how the results above in Sparse Approximation Theory are
reflected in prior work in Algorithms. There are three concrete directions that provide po-
tential precursors. Finding the k non-zero coefficients among n in the k-support case reminds
one of “group testing” to find k defective items from n identical-looking items that has been
extensively studied in Discrete Mathematics and Algorithms [11] and is intimately related
to Combinatorial Designs. Finding k representations optimally wrt an orthonormal basis
such as the discrete Fourier basis reminds one of sampling for Fourier transform estimation
in Learning and Complexity theory [16, 1, 14]. Finally, finding k representations using few
linear measurements reminds one of work on data stream algorithms that use few inner
products and small space for finding k-piecewise constant histograms [13] and finding top
k elements [6, 7]. Still, it is difficult to pin down exactly the relationship between these
results from different communities because there are a number of different aspects to these
problems, and each community has its own concerns and style. What is needed is a more
systematic formulation of the problems and results.

Further, viewed as an algorithmicist, the nature of results in Compressed Sensing seem
unusual. One would seek a representation R(A) for the signal A that is provably accurate
for the A (eg., ‖A − Rk‖2

2 ≤ f‖A − Rk
opt(A)‖2

2 for some factor f), rather than having
accuracy relative to the optimal over the class of all signals with some property (eg., ‖A−
Rk‖2

2 ≤ C ′k1−2/p) since for a given signal A, ‖A − Rk
opt(A)‖2

2 may be much smaller than

C ′k1−2/p. Finally, as algorithmicists, one quantitatively cares about a systematic study of the
resources—space and randomness used and running time—needed for Compressed Sensing.

In this paper, we attempt to formalize the different algorithmic aspects of the Compressed
Sensing problem. As it turns out, the problem is related to all of the three directions—group
testing, Fourier transform estimation and data stream algorithms—we mentioned above and
partial results may be obtained from using prior work. In addition, our main contributions
are new algorithms for compressed sensing. They are the most general algorithmic results
known for the compressed sensing problem, since they focus on obtaining error bounds for
the instance of the signal, rather than a whole class.

2 The Compressed Sensing Problem

The compressed sensing problem can be thought of as having three parts.
1. Dictionary Transform. From the orthonormal basis Ψ, build a set Ψ′ (m vectors of

length n).
2. Encoding. Vectors A are “encoded” by Ψ′, to give a set of coefficients θ′i = 〈ψ′

i,A〉.
3. Decoding. Given the m values θ′i, recover a representation of A under Ψ.

In evaluating the quality of such a scheme, we can focus on the following attributes:



• Size of Ψ′: This goes to the heart of the Compressed Sensing problem: given a desired
accuracy, how many measurements are required to give an accurate reconstruction of A.
This is lower bounded by the information needed to do the reconstruction even if we do
not consider the computational requirements of doing the transformation or decoding.
At least k measurements are necessary to compute the best k term representation,
and even for k-support signals, a k log(n/k) lower bound follows from group testing.
Consequently, one asks how close can we come to these bounds?

• Error guarantee: What is the error guarantee: is it with respect to the optimal for the
given instance of the signal (called instance-optimal) or is it optimal wrt to the worst
case error over a class of functions (class-optimal) such as the error C ′k1−2/p for the
p-compressible class of functions. From an algorithmicist’s point of view, one prefers
instance-optimal solutions since any given signal could have a best representation with
much smaller error than the worst case over its entire class. For the k-support case,
these notions coincide since the class-optimal error is zero.

• Reconstruction cost: how much time is needed for reconstruction? This is in particular
critical in applications. For example, there is no requirement in the specification of the
problem that the output be a sparse representation of A (i.e. with bounded support).
This is because we only seek the representation to be close to optimal in error and
there is no prescribed requirement on the sparseness of the output. Thus, decoding
may even take Ω(n) time. However, since the signal has sparse representation, it is
desirable to be efficient and have decoding only depend on the size (number of vectors)
of Ψ′.

• Failure model: With what probability does the construction fail to give the required
accuracy? Does the success depend on the signal, or will Ψ′ work for all possible sig-
nals? Although all constructions of Ψ′ are probabilistic, if the failure probability is
exponentially small in n and k then, for a sufficiently restricted class of signals, there
must exist Ψ′ that works for any signal in the class. Such “non-adaptive” transforma-
tions are desirable and have led to some wonderment in the Compressed Sensing field.
Otherwise, the failure probability is typically polynomially small (i.e. n−c for some
constant c).

• Transformation cost: What are resource bounds for the transformation? How much
time is needed for the transformation and how succinctly can Ψ′ be described. “Suc-
cinctness” depends on how many bits are needed to write down Ψ′ when Ψ is the
standard basis. Notice that one does not need O(mn) bits since Ψ′ can be implicitly
specified, e.g. using hash functions. The minimum number of bits needed is log(mn).

Fundamentally, most algorithms proposed so far for Compressed Sensing are identical:
they rely on the Basis Pursuit (BP) method, which is simply to solve the linear program to
find the vector A′ minimizing ‖Ψ′A′ − Ψ′A‖1. Further, Ψ′ is typically chosen as a random
matrix, whose entries are indepent and identically distributed (iid) as Gaussian, Bernoulli
or ±1 [21]. Where the results vary is in the analysis showing the failure model and the size
of Ψ′ needed. In contrast, our main results are as follows:



Ref. Signal Error Size of Ψ′ Reconstruct Time Succinctness Failure model
[5] k-sparse class O(k log n) Ω(nk) LP solve O(kn log n) probabilistic
[20] k-sparse class O(k log n) Ω(k2) O(kn log n) probabilistic
[18] k-sparse class O(k log n/k) Ω(nk) LP solve O(kn log n/k) non-adaptive
Here k-sparse class O(k log2 n) O(k log2 n) O(log n) probabilistic
Here k-sparse class O(k2 log n log n/k) O(k2 log n log n/k) O(k log n/k) non-adaptive
[4] p-compressible class O(k log n) Ω(nk) LP solve O(kn log n) probabilistic
[10] p-compressible class O(k log n) Ω(nk) LP solve O(kn log n) non-adaptive
[18] p-compressible class O(k log n/k) Ω(nk) LP solve O(kn log n/k) non-adaptive

Here p-compressible instance O(k
3−p
1−p log2 n) O(k

4−2p
1−p log3 n) O(k

2−p
1−p log n) non-adaptive

[13] general instance Ω( 1
ε3
k log n) Ω( 1

ε3
k2 log n) O(log2 n) probabilistic

Here general instance O(k
ε log5/2 n) O(k

ε log5/2 n) O(log2 n) probabilistic

Table 1: Comparison of prior and current work. “LP Solve” denotes the time requires to
solve a linear program on Ω(nk) variables.

• For arbitrary signals, we show a new randomized construction that produces a Ψ′ with

O(k log5/2 n
ε

) vectors and present an algorithm that recovers a representation Rk with
k non-zero coefficients of vectors from Ψ so that ‖Rk − A‖2

2 ≤ (1 + ε)‖Rk
opt − A‖2

2

with high probability. Our results are thus instance optimal. Reconstruction is linear
in the number of measurements (up to constant factors), and the cost depends only
logarithmically on n.

• For p-compressible and k-sparse signals, we go further and show the existence of a
single transformation that will work for all inputs in Section 4. This matches Donoho’s
results in that the dictionary is nonadaptive, but our construction is also instance-
optimal and hence requires more measurements. Further, it is easy to verify that the
generated matrix has the nonadaptive property. These results are naturally resilient
to error: provided at most a small fraction of measurements are corrupted, we can
still recover a representation of the signal to the same error bounds as before. This
complements the most recent compressed sensing results [3], which show similar results
for the Basis Pursuit methods.

Our results improve on prior results in compressed sensing in that they work for non-
compressible (general) signals: they are instance optimal, in contrast to all prior compressed
sensing results, which are class optimal over the restricted classes. But our results are
weaker since they require more inner products than the O(k log n/k) obtained in prior work
for compressible signals. We significantly improve results in running times since previous
works mostly rely on solving a linear program of size Õ(nk) 4 which in general takes time
cubic in the program size. Even for the k support case (only k non-zero coefficients) the
previous results rely on Orthogonal Matching Pursuit [20] (which is at least quadratic in k
from preliminary empirical analysis) and the explicit group testing construction in [12] takes

4The notation Õ(·) and Ω̃(·) supresses factors of log n when these are small in comparison to other factors



time Ω(k4). Another result [8] is similar, but does not provide any bounds on the error.
Lastly, we show that we need only polylogarithmic bits of randomness to construct Ψ′ (i.e.
it has a very succint representation) so construction of Ψ′ is fast.

The Fourier transform estimation results [14, 15] can be applied to the Compressed Sens-
ing Problem to get a result similar to above, but our result has much improved bounds
in terms of k, ε−1, log n, and works for any orthonormal dictionary. Similarly, the his-
togram/wavelet data stream algorithm in [13] can be applied to get a similar result, but
the dependency on parameters is polynomially higher than here: the dependency on ε, for
example, is at least cubic. Here, we improve the running time by polynomial factors in
k, ε, and our algorithm avoids the “greedy pursuit” method required to decode and identify
the coefficients: a single pass over the measurements suffices to reconstruct. Similarly, some
frequent element algorithms on data streams [6, 7, 8] can get similar results by combining es-
timation techniques there with the lemmas we prove here. But still, our results here give the
stronger bounds on the accuracy of recovered coefficient values, and much reduced decoding
time than the Ω(n) cost of directly applying these methods.

Our results are obtained by matrix transformations that are at the heart of group testing
algorithms, Fourier sampling methods and data stream algorithms. But besides extracting
all the ingredients needed for out result here, our main result is achieved by an improved
analysis of these ingredients. For example, we estimate coefficients where the prior methods
show accuracy depending on ‖A‖, but we prove it in terms of the norm of the error ‖A−Rk

opt‖
which is significantly tighter and the basis for all our results here.

Comparison of existing methods and the results we present here on each of the main at-
tributes is given in Table 1. We consider which of the three models of signals is assumed, and
whether the error is class- or instance-optimal. We then report the number of measurements
(i.e. size of Ψ′), the reconstrucion time (which is either the time to solve a linear program
which is at least linear in n, or sublinear in n), and the succinctness of Ψ′ in bits.

3 Our Algorithms

The goal is to produce a set of m (row) vectors Ψ′. We treat Ψ′ as an m× n matrix whose
ith row is Ψ′

i. When given the vector of measurements Ψ′A we must find an approximate
representation of A. Ψ′ is a function of Ψ, and more strongly (as is standard in compressed
sensing) we only consider matrices Ψ′ that can be written as a linear combination of vectors
from the dictionary Ψ, ie, Ψ′ = TΨ, for some m × n transform matrix T . Thus Ψ′A =
T (ΨA) = Tθ. Recall that the best representation under Ψ using k coefficients is given by
picking k largest coefficients from θ. We use T to let us estimate k large coefficients from θ,
and use these to represent A; we show that the error in this representation can be tightly
bounded.

3.1 Defining the Transform Matrix

Observe that we could trivially use the identity matrix I as our transform matrix T . From
this we would have Tθ = θ, and so could recover A exactly. However, our goal is to use
a transform matrix that is much smaller than the n rows of I. We will define a transform



T whose goal is to recover k coefficients approximately so that the error from using these
k coefficients is within a (1 + ε) factor of using the k largest coefficients from θ. Later, we
use standard repetition techniques to boost this to arbitrarily high probability for all large
coefficients.

We expose the key conditions we use to be able to find and estimate the necessary
coefficients. These are macroseparation: that the coefficients get spread out from one another
so we can identify one without “interference” from others; microseparation: in order to
identify a coefficient, we use a standard Hamming code-like structure to find its identity, akin
to non-adaptive group testing [11]; and estimation: to get a good estimate of the coefficient,
we need to show an accurate estimator for this quantity. We build the transformation matrix
T from the linear combination of three pieces, each of which achieves one of the above goals.

• Macroseparation matrix S. S is a 0/1 s × n matrix with the property that for
every column, exactly one entry is 1, and the rest are zero. We will define S based on
a randomly chosen function g : [n] → [s], where Pr[g(i) = j] = 1/s for i ∈ [n], j ∈ [s].
Hence, Si,j = 1 ⇐⇒ g(i) = j, and zero otherwise. The effect is to separate out the
contributions of the coefficients: we say i is separated from a set K if ∀j ∈ K.g(i) 6=
g(j). For our proofs, we require that the mapping g is only three-wise independent,

and we set s = 16k log1/2 n
ε

. This will ensure sufficient probability that any i is separated
from the largest coefficients.

• Microseparation matrix H. H is the 0/1 (1 + 2dlog2 n)e × n matrix derived from
the (1 + dlog2 n)e × 2dlog2 ne Hamming code matrix by taking the first n columns5. Let
M denote the Hamming matrix, we now set H2i = Mi and H2i−1 = H0−Mi (recalling
that H0 is a row of all ones). Define bit(i, j) as the function that returns the jth
bit of i in the binary representation of i. Formally, H0,j = 1, H2i,j = bit(i, j), and
H2i−1,j = 1− bit(i, j) for i = 1 . . . log n.

• Estimation vector E. E is a ±1 valued vector of length n so Pr[Ei = 1] = Pr[Ei =
−1] = 1

2
. We will use the function h : [n] → {−1,+1} to refer to E, so that Ei = h(i).

For our proofs, we only require h to be four-wise independent.

To build T from S,H and E, we combine them with tensor product-like linear operator
⊗.

Definition 1. Given matrices V and W of dimension v × n and w × n respectively, define
the matrix (V ⊗W ) of dimension vw × n as (V ⊗W )iv+l,j = Vi,jWl,j. We compose T from
S, H and E by: T = S ⊗H ⊗ E.

We will let m = s(2 log n+ 1) and observe that T is an m× n matrix.

Lemma 1 (Encoding cost and succinctness). T can be specified in O(log n) bits. The set of
m vectors Ψ′ = TΨ can be constructed in time O(n2 log n).

5From now on, we will drop base and ceiling notation, and let log n stand for dlog2 ne.



Proof. Observe that T is fully specified by g and h. Since both of these hash functions
are four-wise independent, they can be specified with O(log n) bits. Näıvely, one could
construct Ψ′ by constructing T explicitly, and then multiplying T by Ψ to get Ψ′. Using the
best known matrix multiplication algorithms, this would take time superquadratic in n and
log n. However, we can use the sparsity and structure of T to allow us to construct Ψ′ faster.
Consider each entry of Ψ in turn. This contributes to O(log n) entries in Ψ′: S ensures that
each entry is picked once, and then (H ⊗ E) splits this into O(log n) inner products. Given
Ψi,j, we know this can contribute to Ψ′

l,j for l in the range (2 log n + 1)g(i) . . . (2 log n +
1)g(i) + 2 log n, and for each of these entries we add one of {−Ψi,j, 0,+Ψi,j}, depending on
the values of h(j) and Hi. Hence, by taking a linear pass over Ψ, we can construct Ψ′ = TΨ,
using O(log n) time for each entry in Ψ. This gives the overall running time.

For more structured dictionaries Ψ which are themselves sparse (e.g. Haar wavelet basis),
or highly structured (e.g. Discrete Fourier basis) one could improve this running time further,
nearly linear in the dimensions of Ψ′ and hence almost optimally; we omit full details.

3.2 Reconstruction of Coefficients

Decoding Procedure. We consider each set of inner-products generated by the row Sj.
When composed with (H⊗E), this leads to 1+2 log2 n inner products, (TΨA)j(1+2 log n) . . . θ

′
(j+1)(1+2 log n)−1

which we denote x0 . . . x2 log n. From this, we attempt to decode a coefficient by comparing x2
2l

with x2
2l−1: if x2

2l > x2
2l−1 then we set bl = 1; else we set bl = 0. We then find i =

∑log n
l=1 bl2

l−1,

and add i to our set of approximate coefficients, θ̂. We estimate θ̂i = h(i)x0, and finally
output as our approximate k largest coefficients those obtaining the k largest values of |θ̂i|.

Lemma 2 (Coefficient recovery). For every coefficient θi with θ2
i >

ε
2k
‖Rk

opt −A‖2
2, there is

constant probability that the decoding procedure will return i.

Proof. Consider some θi = (ΨA)i satisfying the stated condition. Each test between x2
2l

and x2
2l−1 is an attempt to probe the lth bit of the binary represenation of i: if bit(i, l) is

1, then x2l is a linear combination of θi and some other coefficients, while x2l−1 is a linear
combination of other coefficients. If the contributions of other coefficients are sufficiently
small in comparison to θi, then x2

2l will be larger than x2
2l−1, and so we will correctly recover

the lth bit of i. If bit(i, l) = 0, then the argument is symmetric. We repeat this procedure
for all log n values of l to recover the full binary description of i. Our argument is that the
separation matrix causes the contribution of other coefficients to x2l and x2l−1 is small; in
particular, we argue that there is constant probability that none of the k largest coefficients
contribute to these values.

In order to formalize this intuition, we consider the contribution of θi to the results of
the inner products. Let x denote the vector of results of the inner-products involving θi,
i.e. xl = θ′g(i)(1+2 log n)+l. Formally,

xl = (Ψ′A)g(i)(1+2 log n)+l = ((S⊗H⊗E)θ)g(i)(1+2 log n)+l = (Sg(i)⊗Hl⊗E)θ =
∑

g(j)=g(i)

Hj,lh(j)θj

Consider x2l and x2l−1, and assume that bit(i, l) = 1 (the other case is symmetric). We
consider the probability that x2

2l < x2
2l−1. That is, the probability that we fail to recover the



lth bit of i correctly. First, we define a random variable X = x2
2l−θ2

i and analyse expectation
and variance of this variable.

E(X) = E(
∑

g(j)=g(i)Hj,2lh(j)θj)
2)

= E(
∑

g(j)=g(i),j 6=iHj,2lh
2(j)θ2

j +
∑

g(j)=g(q)=g(i),j 6=q 6=iHj,2lHq,2lh(j)h(q)θjθq)

= E(
∑

g(j)=g(i),j 6=iHj,lθ
2
j ) = 1

s

∑
j 6=iHj,2lθ

2
j = ε

16k log1/2 n

∑
j 6=iHj,2lθ

2
j

Var(X) = E(
∑

g(j)=g(i)Hj,2lh(j)θj)
4)− E(X)2

= E(
∑

g(j)=g(q)=g(i) 6Hj,2lHq,2lh
2(j)h2(q)θ2

jθ
2
q)− E(

∑
g(j)=g(i)Hj,2lθ

2
j )

2

≤ E(
∑

g(j)=g(q)=g(i),j 6=q 6=i 4θ
2
jθ

2
q)

This relies on the independence properties of g and h so that terms with odd powers
of h are zero in expectation (eg for j 6= q, E(h(j)h(q)) = 0), and that g distributes values
uniformly. Further, we argue that, with at least constant probability, none of the k largest
coefficients are mapped to the same value as i under g (unless θi itself is one of the k largest
coefficients). By the pairwise independence of g, Pr[g(i) = g(j), i 6= j] = 1

s
= ε

16k log1/2 n

and so the probability of this event not happening for 1 ≤ j 6= i ≤ k is 1 − ε

16 log1/2 n
by

the union bound. For reasonable values of ε ≤ 1 and log n ≥ 4, this is at least 31
32

. Under
the assumption that this condition holds, we can write the expectation and variance of X
in terms of the optimal error ‖Rk

opt −A‖2
2 (under direct application of prior works in small

space representations, the bound would instead be in terms of ‖A‖2
2).

E(X) =
ε

P
j>k,j 6=i Hj,2lθ

2
j

16k log1/2 n
≤ ε‖Rk

opt−A‖22
16k log1/2 n

and Var(X) ≤
∑

g(j)=g(q),j,q≥k 4θ2
jθ

2
q ≤

ε2·2‖Rk
opt−A‖42

162k2 log n
.

Applying the Chebyshev inequality, we obtain

Pr

[
|(x2

2l − θ2
i )− E(X)| > 3ε

16k
‖Rk

opt −A‖2
2

]
≤

ε2

128k2 log n
‖Rk

opt −A‖4
2

( 3ε
16k
‖Rk

opt −A‖2
2)

2
≤ 2

9 log n
.

Rearranging, we have Pr[|θ2
i −x2

2l| > ε
4k
‖Rk

opt−A‖2
2] ≤ Pr[x2

2l < θ2
i − ε

4k
‖Rk

opt−A‖2
2] ≤ 2

9 log n
.

By a virtually identical analysis, one can compute that Pr[x2
2l−1 >

ε
4k
‖Rk

opt −A‖2
2] ≤ 2

9 log n
.

Combining these two results, and using the fact that θ2
i >

ε
2k
‖Rk

opt −A‖2
2, we have that

Pr[x2
2l < x2

2l−1] = Pr[x2
2l − x2

2l−1 < 0] < Pr[x2
2l − x2

2l−1 < θ2
i −

ε

2k
‖Rk

opt −A‖2
2]

≤ Pr[x2
2l < θ2

i −
ε

4k
‖Rk

opt −A‖2
2] + Pr[x2

2l−1 >
ε

4k
‖Rk

opt −A‖2
2] ≤

4

9 log n

Hence, testing whether x2
2l > x2

2l−1 in order to discover which contains θi gives the correct
answer with probability at least 1 − 4

9 log n
. Combining the results of log n tests to get the

full identity i therefore succeeds with at least constant probability (5
9
), using the union

bound. The total probability of success is constant, since the probability of failing is at most
1
32

+ 4
9

= 137
288

for each i (there is a collision with one of the k largest coefficients, or one of
the comparisons gives the wrong answer).

Lemma 3 (Accurate estimation). We obtain an estimate of θi as θ̂i such that |θ2
i − θ̂2

i | ≤
ε
2k
‖Rk

opt −A‖2
2 and (θi − θ̂i)

2 ≤ ε
k
‖Rk

opt −A‖2
2 with constant probability.



Proof. Once we have identified i, we must additionally return an estimate of θi with the
correct bounds. We now show that we can estimate θi from the results of the inner products

so that |θi−θ̂i| ≤
√

ε
k
‖Rk

opt −A‖2
2. For this we need only the macroseparation and estimation

properties of T . We return to the vector x of values that contain a contribution from θi, and
consider x0 =

∑
g(j)=g(i) h(j)θj. Recall that we set θ̂i = h(i)x0. One can easily verify that

E(θ̂i) = θi and Var(θ̂i) = E(
∑

g(j)=g(i),j 6=i θ
2
j ). Again, we argue that with constant probability

none of the k largest coefficients collide with i under g, and so in expectation assuming this
event Var(θ̂i) = ε

16k log1/2 n
‖Rk

opt−A‖2
2. Applying the Chebyshev inequality to this, we obtain

Pr[|θ̂i − θi| >
√

ε
k
‖Rk

opt −A‖2] <
Var(θ̂i)

ε
k
‖Rk

opt−A‖22
= 1

16 log1/2 n
.

For the second accuracy bound, observe that if θ̂i = h(i)x0 then θ̂2
i = x2

0. We have already
shown that Pr[|x2

2l − θ2
i | > ε

2k
‖Rk

opt −A‖2
2] ≤ 2

9 log n
. This also holds for x0 using the same

proof. Provided log n ≥ 4, both properties hold simultaneously with probability at least
1− ( 1

32
+ 1

18
) = 263

288
.

Lemma 4 (Failure probability). By taking O( ck log5/2 n
ε

) measurements we obtain an estimate

of θi as θ̂i for every coefficient 1 ≤ i ≤ n, such that |θ2
i − θ̂2

i | ≤ ε
2k
‖Rk

opt − A‖2
2 and

(θi − θ̂i)
2 ≤ ε

k
‖Rk

opt −A‖2
2 with probability at least 1− n−c.

Proof. In order to increase the probability of success from constant probability per coefficient
to high probability over all coefficients, we will repeat the construction of T several times
over using different randomly chosen functions g and h to generate the entries. We take
O(c log n) repetitions: this guarantees that the probability of not returning any i with θ2

i >
ε
2k
‖Rk

opt−A‖2
2 is n−c, polynomially small. We also obtain O(c log n) estimates of θi from this

procedure, one from each repetition of T . Each is within the desired bounds with constant
probability at least 7

8
; taking the median of these estimates amplifies this to high probability

using a standard Chernoff bounds argument. Lastly, note that if θ2
i <

ε
2k
‖Rk

opt −A‖2
2 then

(notionally) setting θ̂i = 0 satisfies both conditions on the estimate θ̂i, so the accuracy

bounds hold for all coefficients 1 ≤ i ≤ n. T has m = s(log n + 1) = O(k log3/2 n
ε

) rows,
O(c log n) repetitions gives the stated bound.

Lemma 5 (Reconstruction accuracy). Given θ̂(A) = {θ̂i(A)} such that both |θ̂2
i − θ2

i | ≤
ε
2k
‖Rk

opt−A‖2
2 and (θ̂i− θi)

2 ≤ ε
k
‖Rk

opt−A‖2
2 for all i, picking the k largest coefficients from

θ̂(A) gives a (1 + ε) approximation of the optimal k term representation of A.

Proof. As stated in the introduction, the error from picking the k largest coefficients exactly
is ‖θ(A) − θ(Rk

opt)‖2
2 =

∑n
i=k+1 θ

2
i (where we index the θis in decreasing order of size). We

will write φ̂i for the i largest approximate coefficient, and φi for its exact value. Let π(i)
denote the mapping such that φi = θπ(i). Picking the k largest approximate coefficients has
energy error

‖R−A‖2
2 =

k∑
i=1

(φi − φ̂i)
2 +

n∑
i=k+1

φ2
i =

∑
i≤k

(φi − φ̂i)
2 +

∑
i>k,π(i)≤k

φ2
i +

∑
i>k,π(i)>k

φ2
i

=
∑
i≤k

ε

k
‖Rk

opt −A‖2
2 +

∑
i>k,π(i)≤k

φ2
i +

∑
i>k,π(i)>k

θ2
π(i)



Consider i such that i > k but π(i) < k: this corresponds to a coefficient that belongs
in the top k but whose estimate leads us to not choose it. The threshold for being included
in the top-k coefficients is φ̂2

k. So we have φ̂2
i ≤ φ̂2

k ≤ φ̂2
π(i), since φ̂2

π(i) corresponds to some
item that is in the top-k approximate coefficients. But using our bounds on estimation and
rearranging: φ2

i ≤ φ2
π(i) + ε

k
‖Rk

opt − A‖2
2. So the missing coefficient cannot be very much

larger than one that is included.

‖R−A‖2
2 ≤

∑
i≤k,π(i)≤k

ε

k
‖Rk

opt −A‖2
2 +

∑
i>k,π(i)≤k

(θ2
i +

ε

k
‖Rk

opt −A‖2
2) +

∑
i>k,π(i)>k

θ2
i

≤
∑

π(i)≤k

ε

k
‖Rk

opt −A‖2
2 +

∑
i>k

θ2
i ≤ ε‖Rk

opt −A‖2
2 +

∑
i>k

θ2
i

= (1 + ε)‖Rk
opt −A‖2

2

Lemma 6 (Reconstruction cost). The decoding process takes time O( c2k log5/2 n
ε

).

The proof of the lemma is straightforward: we just need to generate the set of |K| =

O( ck log3/2 n
ε

) coefficients from running the first part of the decoding process (taking time
linear in m), then find an accurate estimate of each decoded coefficient by taking the median
of O(c log n) estimates of each. We note that one can trade off a O(log3/2 n) factor in the
number of inner products taken if we allow the decoding time to increase to O(cn log n), by
using the macro-separation and estimation matrices to iteratively estimate all n coefficients,
and taking the k largest of them.

Finally, we combine the preceding series of lemmas to get the main theorem:

Theorem 1. With probability at least 1 − n−c, and in time O(c2 k
ε
log5/2 n) we can find a

representation R of A under Ψ such that ‖R − A‖2
2 ≤ (1 + ε)‖Rk

opt − A‖2
2 and ‖R‖ has

support k. The dictionary Ψ′ = TΨ has O( ck log5/2 n
ε

) vectors, and is constructed in time
O(cn2 log n); T is represented with O(c2 log n) bits.x

Corollary 1. If A has support k under Ψ then we can find a representation R under Ψ
where the size of Ψ′ is O(k log2 n) so that with probability at least 1 − n−c, we find the
exact representation R of A. If A is p-compressible under Ψ then we can build Ψ′ of size
O(k log5/2 n) so that with probability at least 1 − n−c, we can find a representation R of A
under Ψ such that ‖R−A‖2

2 ≤ (1 + ε)C ′k1−2/p.

The corollary follows almost immediately from Theorem 1 by substituting the bounds
for ‖Rk

opt −A‖2
2 for the two cases and setting ε = O(1). For the k-sparse case, we can shave

the log1/2 n factor off the size of s, because there are no coefficients causing collisions beyond
the k largest.



4 Non-adaptive Dictionary Transformation

p-Compressible case. In the p-compressible case the coefficients (sorted by magnitude
and normalized) obey |θi| = O(i−1/p) for appropriate scaling constants and some parameter
p. Previous work has focused on the cases 0 < p < 1 [4, 10]. Integrating shows that∑n

i=k+1 θ
2
i = ‖Rk

opt −A‖2
2 = O(k1−2/p).

Because this model essentially states that distribution of coefficients has a tail of small
weight, we can use this to create a matrix T which is good for any signal A obeying this
property (our previous results were with high probability). The intuition is that rather than
ensuring separation for just the k largest coefficients, we will guarantee separation for the
top k′ coefficients, where k′ is chosen so that the remaining coefficients are so small that
even if taken all together, the error introduced to the estimation of any coefficient is so small
that it is still within our allowable error bounds.

Theorem 2. There exists a set of O(k
3−p
1−p log2 n) vectors Ψ′ so that any p-compressible signal

can be recovered with error O(‖Rk
opt−A‖2

2). Moreover, there is a Las Vegas-style randomized
algorithm to find such a set of inner products.

Proof. We use the same construction of T and decoding procedure as before, but we change
the parameters and take advantage of the information from the p-compressible case about
the guaranteed decay in size of the coefficients to be able to guarantee accurate recovery
of the original signal. Observe that the square of the (absolute) sums of coefficients after
removing the top k′ is (

∑n
i=k′+1 |θi|)2 = O(k′2−2/p). We set this equal to θ2

k = O(k−2/p) and

so k′ = O(k
1

(1−p) ) Having chosen k′, we choose s = Ω(k′) so that the probability of any of
the top k′ coefficients colliding with any θi for i ∈ K ⊂ [n] (where |K| = kk′) under g is at
most a small constant (1

8
, say). We take enough repetitions of T so that in at least half the

repetitions i is not separated from any of the top-k′ coefficients with probability o(n−kk′).
This can be done using O(log nkk′) repetitions, using a standard Chernoff bounds argument.
Now consider the number of ways of picking K and the top-k′ coefficients: there are O(nkk′)
such possibilities. The probability of failure on any of these choices is O(n−kk′nkk′) = O(1).
Consequently, there must exist a set of repetitions of T with this property (moreover, drawing
such a set randomly succeeds with at least constant probability). Hence, we can give a Las
Vegas algorithm to find such a set: build one and test whether, for all choices of K and the
top-k′ coefficients that it has this “deterministic strong separation” property. If so, accept
it, else repeat until one is found. (This is in contrast to previous work where it is unclear
how to check whether a given transform matrix has the necessary non-adaptive properties).

We can now state a deterministic version of Lemma 2: given a set of inner products
with the deterministic separation property, we can guarantee to recover the top-k coeffi-
cients. The observation is that for each of the top-k coefficients, there is now guaranteed
to be a set of (1 + 2 log n) inner products x (as in Lemma 2) such that none of the top-k′

coefficients collide under g. Hence, the only way we could fail to recover a coefficient i is if
(
∑

g(j)=g(i),j>k′ h(j)θj)
2 > θ2

i : if the items from the k′ tail colliding with i under g are enough

to give the wrong answer in comparison to θ2
i . But this sum is at most (

∑n
j=k′+1 |θj|)2, which

by our choice of k′ is less than θ2
k, so for i ≤ k this event cannot happen, no matter what

values g and h take.



This ensures that we can recover the identity of the top k coefficients. However, in total
we recover a set K of coefficients, with |K| ≤ kk′, and we need to estimate the size of
each of these coefficients accurately, using a deterministic version of Lemmas 3 and 4. The
error in estimation each such coefficient can be bounded to 1

k
‖Rk

opt −A‖2
2 if in at least half

of the estimates of θi we avoid the top k′ coefficients, since k′ satisfies (
∑n

j=k′+1 |θi|)2 ≤
1
k
‖Rk

opt−A‖2
2 = O(k−2/p). Since the maximum error in estimation is bounded as |θ̂2

i − θ2
i | ≤

O( 1
k
‖Rk

opt −A‖2
2) and (θ̂i − θi)

2 ≤ O( 1
k
‖Rk

opt −A‖2
2), we can apply Lemma 5 in conjunction

with the fact that we have the true top-k coefficients amongst our set K, and conclude that
we recover a representation of A as R with error O(‖Rk

opt −A‖2
2).

The overall number of inner products needed is O(kk′2 log2 n): O(k′ log n) to guarantee
constant probability of separation for each repetition of T , and O(kk′ log n) repetitions of
T to give deterministic strong separation. Thus the overall number of inner products is

O(k1+ 2
1−p log2 n) = O(k

3−p
1−p log2 n).

k-support case. When θ has support k, we can apply the above analysis more tightly, since
estimation can be done exactly.

Corollary 2. There exists a set of O(k2 log n log n/k) vectors Ψ′ so that any signal with
support k can be recovered exactly, and there exists a Las Vegas-style randomized algorithm
to find such a set in expected time Õ(k3nk).

Proof sketch. Since there are only k non-zero coefficients, we only have to ensure that there
is at least one repetition of k where each coefficient does not collide with any of the others.
When this happens, we can decode i and θi exactly, since we can verify that x2l = θi and
x2l−1 = 0 or vice-versa for each l. If there is a collision, then there will be some value of l for
which both x2l and x2l−1 are non-zero. So we need s = O(k) to ensure constant probability
of separation in each repetition, H and E as before, and O(k log n/k) repetitions, for a total
dictionary size of O(k2 log2 n). As before, not only does the exponentially small probability
of failure ensure that there must exist a construction with the necessary separation property
for all possible signals with support k, but we can generate and test randomly generated
instances in order to find one.

5 Concluding Remarks

There has been tremendous excitement in the Mathematics community for compressed sens-
ing since its christening in [10]. We have taken an algorithmicist’s view and proposed new
algorithms for compressed sensing that are instance-optimal, have fast reconstruction and
are quite simple. In Mathematics the momentum seems to indicate even more interest in
Compressed Sensing in the future and application of those ideas to foundations (eg, error
correction as in [3]) or to practice (as explored in experimental studies of [21, 2]). Our al-
gorithmic results here will be of interest to them. A natural set of open problems is to find
the tightest bounds for compressed sensing under the set of metrics we have formalized here
(size of Ψ′, reconstruction cost, error guarantee etc.).



One of the interesting lively directions in Compressed Sensing is working error-resiliently [3,
18]. Several recent works have shown that compressed sensing-style techniques allow accu-
rate reconstruction of the original signal even in the presence of error in the measurements
(i.e. omission or distortion of certain θ′is). We adopt the same model of error as [3, 18] in
order to show that a certain level of error resilience comes “for free” with our construction.

Lemma 7. If a fraction ρ = O(log−1 n) of the measurements are corrupted in an arbitrary
fashion, we can still recover a representation R with error ‖R−A‖2

2 ≤ (1 + ε)‖Rk
opt −A‖2

2.

Proof. Consider the recovery of θi from T . We will be able to recover i provided the previous
conditions hold, and additionally the log n measurements of θi are not corrupted (we may
still be able to recover i under corruption, but we pessimistically assume that this is not the
case). Provided ρ ≤ 1/(3 log n) then all log n measurements are uncorrupted with constant
probability at least 2/3 and hence we can recover i with constant probability. Similarly,
estimating θi takes the median of O(log n) estimates, each of which is accurate with constant
probability. If the probability of an estimate being inaccurate or an error corrupting it is still
constant, then the same Chernoff bounds argument guarantees accurate reconstruction. As
long as ρ is less than a constant (say, 1/10) then this also holds with constant probability.
Combining these, we are able to recover the signal to the same level of accuracy using

O(k log5/2

ε
) measurements, if ρ ≤ 1/(3 log n).

We can strengthen the bounds on ρ to O(1), at the expense of higher decoding cost, by
directly estimating all θi as suggested after Lemma 6.

The construction is also resilient to other models of error, such as the measurements
being perturbed by some random vector of bounded weight. Provided the weight of the per-
turbation vector is at most e‖Rk

opt−A‖2
2, for some constant e, say, then it is straightforward

to modify the earlier proofs to tolerate such error, since in expectation one can argue that
the error introduced into each measure is bounded by (1+e)ε

k log3/2 n
‖Rk

opt−A‖2
2, and so the overall

accuracy will be (1 + (1 + e)ε)‖Rk
opt −A‖2

2.
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