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ABSTRACT

A common task in Bioinformatics is the search of sequence databases for matching sequences.
In protein sequence databases, searching is hindered by both the increased amount of data
and the complexity of sequence similarity metrics. Protein similarity is not simply a matter
of character matching, but rather is determined by a matrix of scores assigned to every
match and mismatch [5]. One strategy to increase search speed is to map sequences into a
binary space where the Hamming distance between strings is comparable to the similarities
of the original sequences [4]. Within binary Hamming spaces, statistically proven sampling
methods can be used for fast, reliably sensitive searches [2]. However, mapping the protein
alphabet to a binary Hamming space often comes with a certain level of distortion. We have
employed Linear Programming techniques to model and study the nature of these mapping
schemes. Specifically, we have found the theoretically minimum distortion achievable for
several biological scoring matrices, as well as corresponding optimal encoding weights. We
have also analyzed the use of these encoding weights to generate pseudo-random binary
encodings that approach the theoretically minimum distortions.



1 Introduction

A precise method for encoding symbols in the protein alphabet to binary strings is useful
for faster, more accurate searches of protein databases [4]. Similarity of Protein Strings is
based on summing the scores of each corresponding pair. Each score comes from a matrix
of scores acquired from biological data. The most used scoring matrices are the PAM Series
and BLOSUM Series [5]. Due to the size of Protein Databases and the complexity of looking
up the score of each corresponding pair, searching Protein Databases is an exhaustive task.

A general concept for more efficient searches is to map each symbol in the protein alphabet
to a binary string of constant length `. Through such a mapping, an entire database of
protein strings can be encoded into binary strings. The Hamming distances between these
binary strings can be reliably approximated by using appropriate sampling methods [3].
However, these mappings are only useful if the Hamming distances between binary strings
are representative of the similarity scores from a scoring matrix. An exact representation is
not always possible, but those with less distortion should provide more accurate searches [4].

We have created a precise mathematical model that covers all possible encoding schemes
and used it to solve for a scheme with the least distortion possible. In this report, we will
discuss our model in precise terms. We will then discuss our analysis work done to observe
its effectiveness. The rest of the paper describes our exact implementation of the model and
some future work.

2 Encoding model

Let Σ = {a1, ..., an} denote a finite alphabet of size n, and let us assume that a symmetric
“similarity” matrix M ∈ Rn×n is given. We shall view the entries Mij = Mji of this matrix
as a measure of similarity of symbols ai and aj. In particular, in the biological application
we consider in this paper, we have n = 20 and each symbol in the alphabet Σ correspond to
an amino acid. Among the similarity scoring matrices, known and used in the literature, we
shall consider the PAM and BLOSUM series (see e.g., [5]).

Following the methodology proposed in [4], we shall consider the problem of representing
the given alphabet Σ by a set of n binary vectors, i.e., a mapping

φ : Σ −→ {0, 1}`, (1)

called an encoding scheme. For the sake of simplicity, we shall use the notation φ(ai) = φi =
(φi1, φi2, . . . , φi`) ∈ {0, 1}`, and let us recall that the Hamming distance

H(φi, φj) = |{k | φik 6= φjk}|

is simply the number of coordinates in which the two binary vectors differ.
Our goal is to find an encoding scheme φ for which ` is as small as possible, and for which

the pairwise Hamming distances H(φi, φj), 1 ≤ i < j ≤ n represent the similarities of the
corresponding symbols, as given in the scoring matrix M .
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To be able to formulate this problem, and in particular our objective, more precisely,
let us convert the similarity scores in a given scoring matrix M to distance values, i.e., we
consider

Dij = Mii + Mjj − 2Mij, (2)

for 1 ≤ i, j ≤ n, as proposed in [4]. Since M can be assumed to be symmetric (this
assumption holds true for both the PAM and BLOSUM series), we obtain a symmetric
distance matrix D ∈ Rn×n (i.e., in which Dij = Dji holds for all i 6= j). Let us note
that we have Dii = 0 for all i = 1, ..., n, that is that the “distance” of a symbol from
itself is zero, which is a quite natural assumption, on the one hand. On the other hand
however, the similarity scores Mii are not all the same in the PAM or BLOSUM matrices,
thus transforming these possibly different values all to zero seem to lead to a slight loss of
information (in [2] a double encoding scheme was proposed to compensate for this information
loss, leading to substantially larger formulations – in this paper we followed the approach
proposed in [4], and leave it for future research to develop computationally efficient methods
to handle the computationally more difficult double encoding scheme). Let us also note that
in all considered scoring matrices (in the PAM and BLOSUM series) we have nonnegative
diagonal entries, and all off-diagonal entries are either nonpositive, or have smaller absolute
value than the diagonal entry, resulting in nonnegative “distance” values by (2).

To eliminate redundancies, we shall represent D by the so called Real Distance Vector d,
defined by

d = (Dij | 1 ≤ i < j ≤ n).

Note that d ∈ R(n
2).

Analogously, let us introduce the notation Hij = Hji = H(φi, φj) for i 6= j for a given
encoding scheme (1), and consider the so called Hamming Distance Vector defined by

h(φ) = (Hij | 1 ≤ i < j ≤ n).

An encoding scheme φ of (1) is said to represent the similarity matrix M with distortion
ε (see [4]) for some 0 ≤ ε ≤ 1, if there exists a positive scalar λ such that the inequalities

d(1− ε) ≤ λh(φ) ≤ d(1 + ε) (3)

hold, where the inequalities above are meant componentwise (i.e., where Dij(1−ε) ≤ λHij ≤
Dij(1 + ε) hold for all 1 ≤ i < j ≤ n).

Ideally, we would like h(φ) to be scalable to d by a single real value λ ≥ 0, or in
other words, we would prefer a solution with ε = 0 distortion. In practice this may not
be achievable however, since H represents a distance matrix, corresponding to Hamming
distances between binary vectors, while D is derived from a given scoring matrix M , and
may not necessarily correspond to any reasonable notion of “distance”. Let us add that
for the scoring matrices considered in this paper, in fact D satisfies the triangle inequalities
Dij + Djk ≥ Dik for almost all triples i, j, k of indices, indicating that we should be able to
obtain encoding schemes with small distortion values (see also [4]).
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It is also clear intuitively that allowing longer binary vectors in our encoding (larger `
values), we should be able to achieve better representation (smaller ε values in (3)), implying
that the goal of minimizing both ε and ` is perhaps contradictory.

In this paper we study the problem of determining the smallest possible value for ε, when
no limit on ` is imposed. Furthermore, we also study techniques to approximate the best
possible value for ε when some limits are imposed on `.

Our approach is based on a linear programming reformulation of (3), presented in the
next section.

3 A linear programming reformulation

To arrive to a mathematical programming formulation of our problem, let us consider an
encoding scheme φ, and associate to it the binary vectors

bk = (φik | i = 1, ..., n), (4)

for k = 1, ..., `. Let us observe that given the ordered collection of binary vectors B = {bk ∈
{0, 1}n | k = 1, ..., `}, we can reconstruct in a unique way from B the mappings φi ∈ {0, 1}`,
i = 1, .., n such that (4) hold for all k = 1, ..., `. Let us also note that in fact the order of
these binary vectors can be changed arbitrarily, without changing their Hamming distances.
In other words, if B′ = {bπ(k) | k = 1, ..., `} for some permutation π of {1, ..., `}, and φ′i,
i = 1, ..., n are the binary mappings corresponding to B′, then we have H(φi, φj) = H(φ′i, φ

′
j)

for all 1 ≤ i < j ≤ n. Thus, we can equivalently specify (an equivalent class of) the mappings
φi, i = 1, ..., n, by specifying the number of occurrences of each binary vector b ∈ {0, 1}n in
the ordered collection B.

Let us also notice that if we replace a binary vector b ∈ B by its componentwise comple-
ment (i.e., the vector b = (b1, b2, ..., bn) by b = (b̄1, b̄2, ..., b̄n), where x̄ = 1−x), then again the
pairwise Hamming distances between the corresponding mappings remain the same. Hence,
we can also assume, without any loss of generality that only one of any complementary pair
of vectors occur with a positive multiplicity in the collection B. For instance, we can assume
that the multiplicity of b ∈ {0, 1}n in B can be positive only if b1 = 1. Furthermore, since
the vector b = (1, 1, ..., 1) does not contribute anything to the pairwise Hamming distances
in the corresponding encoding scheme, we can also assume without any loss of generality
that the multiplicity of this vector in B is zero.

Since the vectors of b ∈ {0, 1}n can equivalently be described by the associated sets

S = S(b) = {i | bi = 1} ⊆ [n],

we can reformulate our problem in terms of integer multiplicities associated to subsets S ⊆ [n]
for which 1 ∈ S and S 6= [n]. Let us denote by

Ω = {S ⊆ [n] | 1 ∈ S, S 6= [n]}.
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To every such set S ∈ Ω, let us associate a binary vector aS = (aij | 1 ≤ i < j ≤ n) where

aij =

{
1 if |S ∩ {i, j}| = 1,
0 otherwise.

Clearly, the component aij represent exactly the contribution of vector b (with S(b) = S)
to the Hamming distance of φi and φj in the corresponding encoding scheme. Let us denote
by A the matrix, the columns of which are the vectors aS, for S ∈ Ω. Let us also denote
by y = (yS | S ∈ Ω) the vector of multiplicities of the corresponding binary vectors in the
collection B, which according to the above, defines the encoding scheme. Then problem (3)
can be reformulated as the problem of finding reals ε, λ > 0 and integers yS for S ∈ Ω
satisfying the inequalities

d(1− ε) ≤ λAy ≤ d(1 + ε) (5)

For any solution of this problem, we have the corresponding value of ` defined uniquely by

` =
∑
S∈Ω

yS.

More specifically, the problem of finding the smallest distortion, assuming that ` ≤ L,
where L is a given upper bound, can be formulated as the mathematical programming
problem

min ε

subject to the constraints

d(1− ε) ≤ λAy ≤ d(1 + ε)∑
S∈Ω

yS ≤ L

λ > 0, and yS ∈ Z+ for S ∈ Ω.

(6)

This formulation has several drawbacks, including the large number of integer variables
(2n−1 − 1), and the nonlinearity in its constraint set (both the yS variables and λ are un-
knowns). Even though, in the considered application we have only n = 20, the number of
variables is “only” about 500, 000. This fact coupled with the integrality of these variables
and the nonlinearity in the constraint set, results in a problem which is perhaps still too
difficult to solve exactly with currently existing techniques and software.

In this paper we study a relaxation of this problem, in which we disregard the upper
bound on the value of ` and the integrality of the yS variables. Noticing that λ appears only
in products with the yS variables, let us introduce

xS = λyS for S ∈ Ω,

and denoting by x = (xS | S ∈ Ω) the vector of the variables defined in this way, we can
formulate a linear programming relaxation of problem (6) as follows:
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min ε

subject to the constraints

Ax + εd ≥ d

−Ax + εd ≥ −d

xS ∈ R+ for S ∈ Ω.

(7)

Let us note that (7) is a relaxation of (6), i.e., from any solution of the latter we can
get a solution for the first one having the same objective function value, by simply defining
xS = λyS for all subsets S ∈ Ω. Thus, the optimum value of (7) is a lower bound of the
optimum value of (6), regardless of the limit L. Denoting by ε∗ the optimum value of (7),
and by ε̂(L) the optimum of (6) as a functions of L, we can thus claim

ε∗ ≤ ε̂(L) for all L ∈ Z+. (8)

Let us remark that we can also claim that

ε∗ = lim
L−→∞

ε̂(L). (9)

To see this latter claim, let us note first that by the definition of problem (6), we have

ε̂(k + 1) ≤ ε̂(k) for all integers k = 1, 2, ...

from which, together with (8) the existence of the limit in (9) follows, together with the
inequality ε∗ ≤ limL−→∞ ε̂(L). To see the equality, let us note that in problem (7) we have
ε∗ ≥ 0, implying the existence of a finite optimum. Since in the problem the matrix A
has integral coefficients and the real distance vector d can also be assumed to have rational
entries, the optimum of (7) is attained by a rational assignment x∗S for S ∈ Ω. Denoting
by Q a common multiple of the denominators in the rational expressions of these variables,
it follows then that the equations y∗S = QxS for S ∈ Ω define an integral solution of (5)
with some appropriate value of λ and with ε = ε∗. Hence, we can construct an encoding
scheme achieving ε∗ distortion from these y∗S values, implying that for L ≥

∑
S∈Ω y∗S we have

ε̂(L) ≤ ε∗ which together with (8) proves (9).

4 Encoding schemes of given dimension

The above arguments show that from the optimal solution of the linear programming for-
mulation (7) we can arrive to an encoding scheme achieving the theoretically best possible
distortion ε∗. However, in practice Q might be way too large, resulting in a very high di-
mensional binary encoding, negating the practical usefulness of the approach. We shall show
below some possible approaches to derive from the optimal solution of (7) encoding schemes
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of some prescribed dimensionality `. Let us denote, as above, by x∗S, S ∈ Ω the optimal
solution of problem (7) and let ε∗ be its optimum value.

In the first approach, we set X =
∑

S∈Ω x∗S, and for a fixed value of ` we set y1
S = b `

X
x∗Sc

for all S ∈ Ω. These integer multiplicities yield an encoding scheme φ1
i , i = 1, ..., n of

dimension `′ =
∑

S∈Ω y1
S. Let us denote by ε1(`) the distortion achieved by this encoding

scheme. Since the number of non-zero values in the optimal solution of (7) is limited by the
rank of the system, i.e., by 2

(
n
2

)
= n(n− 1), we have

`− n(n− 1) ≤ `′ ≤ `.

We claim that
ε∗ = lim

k→∞
ε1(k),

which follows readily from the proof of (9), since whenever `/X is an integer multiple of Q,
the obtained integral assignment y1

S = `
X

x∗S for S ∈ Ω yields an encoding scheme achieving
the best possible ε∗ distortion.

The drawback of this approach is that `′ may be different from ` (by at most n(n− 1)),
implying that ε1(k) is not necessarily a monotone function of k.

As a second approach, we may try to fix the above problem, by introducing independent
random binary parameters zS ∈ {0, 1} for S ∈ Ω, such that Prob(zS = 1) = `

X
x∗S − b `

X
x∗Sc,

and setting y2
S = y1

S + zS for all S ∈ Ω. This approach results in an encoding length `′′ =∑
S∈Ω y2

S. Clearly, we have `− n(n− 1) ≤ `′′ ≤ ` + n(n− 1) as worst case bounds. However,
we also have that `′′ itself is a random variable, and its expected value is `, suggesting that
the corresponding distortion value, which we denote by ε2(`) behaving more smoothly, as a
function of `, than ε1(`). Similarly to the previous case, it can be seen that

ε∗ = lim
k→∞

ε2(k).

Finally, in a third approach we choose everything randomly, and only the distribution of
the random variables depend on the optimal solution of (7). More precisely, let us generate
a random sequence (S1, S2, ...) of subsets from Ω, such that for each k the set Sk is chosen

independently from the previous ones, and such that Prob(Sk = S) =
x∗S
X

for all S ∈ Ω. Let
us then define for every given value ` the integer variables

y3
S = |{k | S = Sk, 1 ≤ k ≤ `}| for S ∈ Ω,

i.e., the frequency of the set S in the subsequence (S1, S2, ..., S`). Let us further denote
by ε3(`) the distortion achieved by the corresponding encoding scheme. The advantage of
this approach is that the obtained encoding scheme has exactly ` as its dimension. The
drawback of the approach is that ε3(`) may be even less monotone, as a function of `, than
those obtained by the previous approaches. Still, it can be shown easily that we have

ε∗ = lim
k→∞

ε3(k).



– 7 –

5 Computational results

We have tried the approach described above with various scoring matrices available online
or from other publications, including the BLOSUM series (40,45,62 and 80) and the PAM
series (40,120 and 250) (see e.g., the web-site [1]).

5.1 Solving the linear programming problem (7)

For all seven data sets we have computed first the real distance matrix by (2), and then
solved the linear programming problem (7). Since in all these data sets we have n = 20,
the number of variables in each of these LP-s is N = 1 + |Ω| = 2n−1 = 524, 288, while the
number of constraints is M = 2

(
n
2

)
= n(n − 1) = 380. For our computations we have used

a Linux system with two Xeon 3.06GHz processors (though our computations utilized only
one of those processors) and with 3GB RAM. All codes were developed in C++, and for
solving the LP-s we used the CPLEX 8.1.1 library.

Let us remark that due to the large number of the columns in these problems, originally
we considered applying a column generation technique. It can be seen that despite the very
structured nature of the coefficient matrix, the column generation subtask is equivalent with
an unconstrained binary optimization problem, which is an NP-hard optimization problem
in general. Even though in this particular case we would have needed to solve such problem
in n = 20 binary variables (a certainly tractable task computationally), it still could imply a
lengthy computation due to the possibly large number of columns to be generated. Since we
had access to a computer with appropriate memory, we decided rather to generate the whole
coefficient matrix of (7) at once, and solve the linear programming problem in one round.

As expected, just generating this 380 × 524, 288 matrix and saving it in MPS format
required typically about 20min of computing time. The first surprise for us was that after
this, reading this matrix from an auxiliary file, and solving the LP (7) by CPLEX took only
a few (always less than 5) minutes. A second and even less expected surprise was that for

Table 1: Optimal distortion values.
Data Set Distortion values from the LP optima

Maximum=ε∗ Median Average
BLOSUM 40 0.07692 0.07692 0.06829
BLOSUM 45 0.00000 0.00000 0.00000
BLOSUM 62 0.00000 0.00000 0.00000
BLOSUM 80 0.00000 0.00000 0.00000

PAM 40 0.05797 0.05797 0.05505
PAM 120 0.16667 0.16667 0.13030
PAM 250 0.25000 0.21719 0.17958

several of these seven data sets we got ε∗ = 0 as an optimum value, i.e., many of these distance
matrices can be embedded into a Hamming space (of appropriately large dimension) with
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zero distortion, see Table 1. We also included in this table the median and average distortions
over the 190 =

(
20
2

)
pairs of distances, computed from the LP optima. These results confirm

the findings of [4], in which a semidefinite programming based approximation was used to
construct binary embeddings, and in which the obtained distortion values were unpractically
high for some of the data sets, in particular for PAM 120 and PAM 250. Our results show
that for these data sets even the theoretically best distortion values are high.

On a companion web-site [6] we provide the used distance matrices (derived from the
similarity scores by (2)), and the non-zero components of the optimal basic solution to (7).

To test the sensitivity of this approach, since the used similarity scores are themselves
debated in the literature, we decided to apply random perturbation to the distance ma-
trix entries (generating randomly those entries within α% of the original values, for α =
1, 2, 5, 10, 25, ...) and applied the same model for this perturbed matrices. The results, which
also can be found on the companion web-site [6], show a reasonably large robustness, and
even 5-10% perturbation did not change much of the optimum value.

5.2 Maximum distortion rates of obtained binary encodings

We have computed from the obtained optimal solutions the corresponding binary encodings
by all three methods described in the previous section. All results in excel files and graphs
of the εi(`) functions, for i = 1, 2, 3 can be found at the web-site [6].

Figure 1: Maximum distortion values ε1, ε2 and ε3, as functions of encoding length `, obtained
from the LP optimum for the BLOSUM 40 data set.

To compare the three methods for deriving an encoding scheme from the LP optimum,
we included, as illustrations in Figures 1, 2 and 3, the graphs εi(`), i = 1, 2, 3 for data
sets BLOSUM 40, 80 and PAM 120. It can be seen from these (and from all other results,
included at the companion web-site) that the fully randomized third method produces the
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slowest converging series, and even for large values of ` the actual value of ε3(`) is still
significantly larger than ε∗. On the other hand, both of the first two methods produce about
the same, fast converging series, and we have ε1(`) ≈ ε2(`) ≈ ε∗ already for ` ≥ 4000. In
fact, the fully deterministic first method seem to to produce the best results (though the
difference between the first and second approach is not significant), and certainly it is the
simplest and fastest to compute. Based on these results, the fully deterministic first approach
can perhaps be recommended for practical use.

Table 2: Maximal distortion values for various encoding lengths, obtained by the fully de-
terministic approach.

δ1(`)
` BLOSUM PAM

40 45 62 80 40 120 250
500 0.1037 0.0585 0.0461 0.0561 0.0955 0.2101 0.2923
1000 0.0946 0.0274 0.0202 0.0158 0.0712 0.1779 0.2672
2000 0.0833 0.0136 0.0107 0.0085 0.0638 0.1727 0.2577
3000 0.0819 0.0093 0.0063 0.0055 0.0633 0.1715 0.2552
4000 0.0802 0.0058 0.0056 0.0053 0.0616 0.1703 0.2535
5000 0.0795 0.0044 0.0041 0.0036 0.0609 0.1692 0.2535
6000 0.0792 0.0039 0.0032 0.0032 0.0598 0.1684 0.2527
7000 0.0788 0.0034 0.0022 0.0025 0.0598 0.1683 0.2527
8000 0.0787 0.0029 0.0022 0.0019 0.0596 0.1683 0.2516
9000 0.0785 0.0026 0.0019 0.0019 0.0596 0.1680 0.2516
10000 0.0781 0.0025 0.0019 0.0019 0.0593 0.1678 0.2516

...
...

...
...

...
...

...
...

∞ 0.0769 0.0000 0.0000 0.0000 0.0580 0.1667 0.2500

In Table 2 we included the maximum distortion values, ε1(`), obtained by the first en-
coding method, for various encoding lengths. Since we computed these values for all values
of ` in the range 100 ≤ ` ≤ 10, 000 (and the excel files at the web-site include those values
for all multiples of 100), we included in this table

δ1(`) = min
100≤k≤`

ε1(k)

as the best achieved distortion value for an encoding not longer than `, for ` = 500, 1000,
..., 10, 000. We can see that for all data sets an encoding length of ` = 1000...4000 achieves
a very close approximation of the theoretically best possible value, e.g., we have

δ1(4000)− ε∗ ≤ 0.006

for all seven data sets.
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Finally, comparing the obtained results to the results of [4] in Table 3, we can con-
clude that the LP based model produces better embeddings into Hamming space than the
semidefinite programming based model. We obtain uniformly better maximum rates using
substantially shorter binary encodings.

Table 3: Comparison to earlier results: Maximum distortion rates

Results from this paper Results from [4]
Data set δ1(500) δ1(1000) δ1(4000) Maximum distortion Encoding length

BLOSUM 40 0.1037 0.0946 0.0802 0.1000 100,000
BLOSUM 45 0.0585 0.0274 0.0058 (not studied)
BLOSUM 62 0.0461 0.0202 0.0056 0.0660 25,000
BLOSUM 80 0.0561 0.0158 0.0053 0.0390 100,000

PAM 40 0.0955 0.0712 0.0616 0.1610 100,000
PAM 120 0.2101 0.1779 0.1703 0.3010 100,000
PAM 250 0.2923 0.2672 0.2535 0.4260 100,000

5.3 Average distortion rates of obtained binary encodings

It is interesting to note that we get a quite different picture when looking at the average
distortion rates. For each binary encoding we can define the average distortion rate as the
average of the actual distortions of the

(
n
2

)
= 190 different distances.

As we can see e.g., from Figures 4 and 5 (or more from the web-site [6]), all three methods
produce a faster converging average rate, than the corresponding maximum distortion rates.
Similarly to maximum distortion rates, the first method seems to produce for all data sets
the best average rates. However, as we can see from the last column of Table 1, the average
distortion rates obtainable from the LP optima are not much better than the best maximum
rates! Of course, these values are not a theoretical lower bound on the achievable average
rates, but as we can see from Table 4, our methods do not produce much better results.

Denoting by δ̃1(`) the average distortion rate realized by the first method, we compare
the achieved average rates to those from [4] in Table 4. As this comparison shows, the
semidefinite programming based approximation technique in [4] seem to focus much better
on minimizing the average distortion rate, a practically important parameter, than our LP
based approach.

On a theoretical level, this is quite understandable. Our objective focuses exclusively on
the maximum rate, and it is not influenced at all by the differences in average rate. Even
if there are alternative optima with a much better average rate corresponding, our method
may not discover that. It is also quite conceivable that by accepting solutions with somewhat
worse maximum rate, we can decrease substantially the corresponding average rate (as the
results of [4] seem to suggest).
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Table 4: Comparison to earlier results: Average distortion rates

Results from this paper Results from [4]

Data set δ̃1(4000) Average distortion Encoding length
BLOSUM 40 0.0640 0.0320 100,000
BLOSUM 45 0.0016 (not studied)
BLOSUM 62 0.0013 0.0240 25,000
BLOSUM 80 0.0013 0.0190 100,000

PAM 40 0.0537 0.0870 100,000
PAM 120 0.1249 0.1230 100,000
PAM 250 0.1720 0.1310 100,000

To address this shortcoming, we propose as future research the following model, still
based on linear programming:

min γε0 + (1− γ) 2
n(n−1)

et(ε+ + ε−)

subject to the constraints

Ax + Diag(d)(ε+ − ε−) = d

ε0e− (ε+ + ε−) ≥ 0

x ∈ RΩ
+, and ε+, ε− ∈ R+,

(10)

where ε+ = (ε+
ij | 1 ≤ i < j ≤ n) and ε− = (ε−ij | 1 ≤ i < j ≤ n) correspond to the distortions

of the individual distances, ε0 is the maximum distortion, Diag(d) is the diagonal matrix,
in which the main diagonal elements are the coefficients of the vector d, and the off-diagonal
elements are all equal to zero, and where e = (1, 1, ..., 1) is the full one vector of dimension
n(n− 1)/2.

In this model γ is a parameter. If we choose γ = 1, then we get a model fully equivalent
with (7), i.e., which computes the theoretically best possible maximum distortion rate.

If we choose γ = 0, then we get a model in which the maximum distortion rate does
not play any role, and the optimum value will be the theoretically best achievable average
distortion rate.

Finally, if we choose γ = 0.9999, then we get a lexicographic model, which tries to
minimize the maximum distortion rate, and among the optimal solutions for that objective,
gives preference to those with a smaller average rate.
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Figure 2: Maximum distortion values ε1, ε2 and ε3, as functions of encoding length `, obtained
from the LP optimum for the BLOSUM 80 data set.

Figure 3: Maximum distortion values ε1, ε2 and ε3, as functions of encoding length `, obtained
from the LP optimum for the PAM 120 data set.
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Figure 4: Average distortion values ε̃1, ε̃2 and ε̃3, as functions of encoding length `, obtained
from the LP optimum for the BLOSUM 80 data set.

Figure 5: Average distortion values ε̃1, ε̃2 and ε̃3, as functions of encoding length `, obtained
from the LP optimum for the PAM 120 data set.


