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Abstract 
 
 

The problem of optimal mapping of multi-level gray scale images to a coarser gray scale is formu-

lated and explored.  A distance between images having different intensity ranges is introduced. Minimiza-

tion of such a distance can be viewed as least squares approximation of a source high range image by the 

best target image with a given number of levels of gray.  Following S.Lloyd [1],  we proved that the latter 

problem is equivalent to optimal partitioning of the source image intensity range into a given number of 

intervals, provided that the sum of intra-interval variations reaches minimum.  An efficient algorithm for 

optimal partitioning based on dynamic programming is used, which is the same in complexity as the ones 

known from literature, but better in terms of required memory. The proposed approach is applied to visu-

alization of deep gray scale medical images. Advantages of the method over linear mapping and histo-

gram equalization are demonstrated on the sample images.  The other application fields may include im-

age optimization for printing/faxing/copying. 
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1 Introduction 

Medical imaging equipment (CT- and MRI-scanners, X-ray, etc.) produces images of intensity range 

9 - 13 bits per pixel, while conventional image presentation devices and media provide a lower range.  

Personal computers usually allow for only 8 bits, or 256 levels of gray.  In this paper, we introduce a 

problem statement for optimal mapping of deep gray scale images to a coarser gray scale – optimal gray 

scale requantization (OGSR). It is based on the best approximation of a fine source image by its coarser 

version from a class of images with the limited number of shades of gray.   

We prove that such an approximation is equivalent to optimal partitioning of the source intensity range 

into a given number of intervals, provided that the average intra-interval scattering reaches minimum. 

Thus, for our specific problem, we re-created a result derived earlier for a different data model in the sig-

nal quantization theory [1].  

Sub-optimal heuristic partitioning procedures were proposed in a number of works (e.g., [1]-[6]). While 

these procedures are usually simple, fast, and acceptable in most of cases, they don't provide global opti-

mum, i.e. don’t guarantee a reasonable output for any input image (see [7]). On the other hand, a globally 

optimal and efficient algorithm of scalar segmentation, based on dynamic programming, was proposed in 

[8]-[10].  In our paper, we present an algorithm equivalent to [10] in terms of potential complexity and 

performance, yet better in terms of required memory. 

According to our method, intensity of each pixel in the target image is equal to the ordinal number of 

the interval containing intensity value of the corresponding pixel in the source image. As a result, the 

variably spaced source intensity intervals are mapped to equally spaced destination intensity values. It is 

not clear a priori whether such a non-linear transformation would yield still recognizable pictures; sample 

images in Section V can be a cogent argument pro. The optimally mapped images are significantly more 

realistic than those obtained by the histogram equalization (HE) technique. 
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Attention is also drawn to practical aspects of medical image presentation. In order to take into account 

contrast distortions due to non-linearity of intensity ranking, we propose a “double-view” displaying: 

linearly mapped (LM) image together with the one obtained by the OGSR method; that makes it possible 

to view maximum of image details while referring the true shades of gray.  

The method also can be used for pre-processing images aimed at high quality printing or faxing. 

2 Problem statement 

Consider source image A:{ Maa ˆ,...,ˆ1 }  as an ordered set of  M pixels; each pixel };,{:ˆ iiii ayxa  is de-

fined by its coordinates and intensity value ia . The order of pixels is assumed fixed, so image A can be 

identified by its intensity vector { Maa ,...,1 } in the M-dimensional space. Components ia  are assumed, 

for simplicity, real non-negative numbers, which define a source intensity scale.  

Let  B:{ Mbb ,...,1 } denote another image – a vector with components evaluated in the target scale, 

which is a set of integers in 1,0 −n . 

Given source image  A, in order to find its best presentation in the target scale, we need  to define dis-

tance between the two images with the intensity values belonging to different scales. 

Consider a set of  n  monotonically increasing parameters kβ  - values in the source scale, such that: 

)(max...0
}1{

110
i

Mi

n a
≤≤

− ≤≤≤≤≤ βββ  =  (max)a     (1) 

Let  D define distance between A and B  as follows: 

D(A, B) = 2

1},...,{
)(min

10

i

n

b
M

i
ia β

ββ
−∑

=
−

      (2) 

The major problem of this work is finding the best approximation of A in the target scale: 

AB = ),(minarg
}{

BAD
B

        (3) 
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Let rΨ  denote a class of all images that have equal or less than r distinct levels of gray. Obviously, A 

belongs to a certain NΨ , where MN ≤ , while B ∈ nΨ ; it is assumed  n < N.  

Let also B :{ Mbb ,...,1 } be an image in the source scale, defined by image B and parameter set {kβ }, 

so that ib
ib β= . Note that although the absolute values of gray are different in B  and B, both belong to 

nΨ , and their equi-intensity regions (EIRs) are congruent.  

From (2) and (3), obtain a simpler form for D(A, AB ) criterion value:  

2

1}{
)(min i

M

i
i

B
ba

n
−∑

=Ψ∈
        (4) 

   Thus, optimal image mapping to a lower gray scale can be split into the two steps BBA →→ : 

� For a given source image A find the best (least squares) approximation B nΨ∈  according to (4); 

� Sort the obtained distinct intensity values of B in ascending order, starting from 0β , and define 

AB  (optimal  B for a given A) by setting ib = k,  if   ib = kβ . 

Intensity values provide a two-fold differentiation of the parts of the whole image: first, they define 

EIRs as disjoint regions in the picture (spatial details); second, they define a specific scalar attribute to 

each EIR – absolute value of gray (contrast details). During  BA → step, we preserve as much spatial 

and contrast details as possible.  During  BB →  step, we preserve all the spatial details but introduce 

additional contrast distortion due to mapping the variably spaced values  of B  to equally spaced values 

of B (only ordering of gray shades is conserved).  

In the following two sections, we explore the BA →  step. 

3 Image approximation and partitioning of intensity range  

Expression (4) defines a least squares image approximation problem, close to quantization of random 

signal. If re-formulated in terms of our paper, it was shown that under certain conditions, problem (4) 

could be reduced to the following one:  
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find  (n–1)  values { 11,..., −naa } and n values { 10 ,..., −nββ } - totally (2n–1) values in the source scale, 

1),...,max(...0 1
111100 +=<≤<<≤<≤= −−

M
nnn aaaaaa βββ   (5) 

provided: 

∑ ∑
−

= <≤−∈ 










−

+

1

0

2

}1,0;,{ 1

)(min
n

k aaa

k
i

nra k
i

k
rr

a β
β

      (6) 

In other words, split the whole intensity range [ naa ,0 ), with 0a inclusive, na  non-inclusive, by (n-1) 

points { ka ;  1,1 −∈ nk } into n semi-open intervals, and find certain value kβ  within each interval k, - 

to provide minimum of intra-interval intensity variations.  

In [1], the “(4) ⇒  (6)” reduction was obtained under the different conditions: continuous space, prob-

abilistic model with additive noise. Even more important is that a heuristic algorithm used for quantiza-

tion did not require accurate treatment of what was viewed as situations of probabilistic “measure zero” 

(where pixel intensities fell into endpoints of the intervals). So some of the situations, common to our 

problem, were ignored in [1]. 

In fact, reduction  (4) ⇒  (6) turns out to be true, as well, even if the mentioned situations have a non-

zero probability, like it is the case in the image approximation; - moreover, equivalence:  (4)⇔ (6).  

Prior to formulating the equivalence theorem, we introduce another definition. Given images A and B , 

define a set of disjunctive regions { 10 ,..., −nAA } of  A, where kA  is a set of all pixels iâ  such that  

iâ ∈ kA  if and only if  k
ib β= : 

  },1;|ˆ{: MibaA k
ii

k ∈= β ,   0≤ k<n       (7) 

The following Theorem (proved in Appendix) can be viewed as a more accurate re-creation of the 

S.Lloyd’s result [1], if applied to image approximation. 

Theorem  

If imageB ∈ nΨ is the best approximation of source image A∈ NΨ in terms of least squares (4), then:  

� Regions  Ak defined by (7) are strictly ordered by intensities,  i.e.  
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ji aa <  for any pixels  p
i Aa ∈ˆ ,   q

j Aa ∈ˆ  (0 ≤  p<q < n). 

� For any  k  (0 ≤  k < n),  value   kβ   is an average of intensity values of  pixels in  region  Ak , 

and there exists exactly n different intensity values in set { 1,0; −= nkkβ } : 

)(max...0
}1{

110
i

Mi

n a
≤≤

− ≤<<<≤ βββ       (8) 

Theorem states that there is a one-to-one correspondence between regions Ak and intervals [ 1, +kk aa ) 

of the source scale - this is why expressions (4) and (6) are equal (which proves “(4) ⇒  (6)”): 

2
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 (9) 

Based on the Theorem and (9), it is easy to prove the converse assertion, “(6) ⇒  (4)”: if intervals 

[ ka , 1+ka ) and values kβ  (k∈ 1,0 −n ) provide minimum (6), then the corresponding image B  with 

components k
ib β=  where k  is defined from ∈ia [ ka , 1+ka ), - provides minimum (4). 

Switching from (4) to (6) is a significant simplification, because the number of unknown variables is 

reduced from  M  in (4) to 2n-1 in (6), where usually  n<<M.  

Note that problem (6) may be interpreted as another least squares approximation problem:  find the best 

approximation of the source image intensity histogram by the n-step-wise function [10]. It is different 

from the original approximation problem (4); however, according to the Theorem, both are equivalent in 

the following sense: given a solution for one of them, we can easily get a solution for the other one.  

4 Optimal partitioning by dynamic programming  

Let  gm  be multiplicity of intensity g in the source image, i.e. a number of pixels with intensity  g.  In 

order to simplify notation, from now, we will assume that source values of gray are integers in 1,0 −N . 
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We also assume that although some of source “intensity slots” may be empty ( gm = 0), the number of 

distinct levels of gray (with  gm > 0)  is greater than  n.   

A sequence { 110 ,...,, −Nmmm } defines the source image histogram; so the sum to be minimized in (6) 

can be reduced to: 
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            (10) 

where 

),( rgf = ∑∑∑
−

=

−

=

−

=










−
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p mpmpm ,   ( Nrg ≤<≤0 )  (11) 

By using three one-dimensional arrays   Qg , Sg , Hg  ( Ng ≤≤0 ), which can be calculated in ad-

vance: 

Qg=∑
−

=

1

0

2
g

p
p pm ,  Sg=∑

−

=

1

0

g

p
p pm ,  Hg=∑

−

=

1

0

g

p
pm ,   ( Ng ≤<0 ); Q0=S0=H0=0,   (12) 

we can avoid repetitive summation in (11) when calculating values of ),( rgf , or avoid using a 

large two -dimensional array of (N*(N-1)/2) double-precision numbers calculated in advance (like, e.g., in 

[11]):   

),( rgf  =  (Qg - Qr)  -  (Sg - Sr)
2 /  (Hg -Hr),  ( Nrg ≤<≤0 ), (13) 

As a result, criterion (6) gets the following canonical form: 

D = ∑
−

=

+
−

1

0

1

},...,,{
),(min
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n

k

kk
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n
,  (0= nn aaaaa <<<<< −1210 ... =N)  (14) 

Vector minimization in (14)  can be split into a sequence of simpler scalar optimization procedures as 

shown below. Instead of designation  D  for the criterion value, we will use more general   )(
~ 00 aD , - to 
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indicate that the final criterion value is just a special case of a whole family of similar criteria )(
~ kk aD , 

which should be calculated in order to obtain the final value of  D = )(
~ 00 aD :  

 D = )(
~ 00 aD  = ∑

−
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}{ 21
aDaafaaf

aa
 = . . .   (15) 

To resolve (15), we can use the following system of recurrent functional equations of dynamic pro-

gramming (starting from the last one): 

)(
~ 1 gD n−  = ),( Ngf  ,   ( Ng <≤0 );    (16) 

)(
~

),()(
~ 111 +++ += k

g
kk

g
k aDagfgD ,  where [ ])(

~
),(minarg 1

}{

1 rDrgfa k

r

k
g

++ +=   (17) 

By tabulating (17) for k=n-2,…,1; g=0,…,N-k-2, and populating array kga , we get D = )0(
~0D . Then, 

starting from g=0, k=0, and using array  kga , - all the end points of optimal intervals can be restored. 

The basic time-consuming part of this algorithm is tabulation in (17), requiring CnN2   operations, - the 

same as in [8]-[10], where C is a constant, which depends on implementation. Mapping images from N= 

2048 to n=256 levels of gray took several seconds on the 2 GHz  PC. 

5 Examples 

The OGSR method preserves maximum of spatial image details at the expense of contrast distortion. In 

medical applications, the absolute levels (or, at least, their proportions) are usually important and cannot 

be changed or ignored. To reconcile both requirements (true contrast and high image detail resolution), 

we propose the following double-view presentation (i.e. show pairs of pictures):  

(a) the view obtained by simple linear mapping (LM),  

(b) the view obtained by OGSR as described in this paper.  
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The first one is a referential view: it provides true shades of gray but lacks spatial details; the second 

one makes it visible spatial details by using artificial shading. 

Below, we present two deep gray scale medical images downloaded from the Web site of Mallinckrodt 

Institute of Radiology of Washington University, St. Louis, Missouri.  We do not discuss medical interpre-

tation of images, — that might be a topic of the special research.  Instead, we demonstrate general capa-

bilities of the method, drawing attention to additional image details that become visible.  

The results are presented in the target scale 0..255. In addition to the recommended "Double-view" (a)-

(b), we also for comparison, demonstrate one more view (c), obtained by optimal HE [12]. 

Fig. 1 shows sample medical image MR-ANGIO. View (b) provides significantly higher quality of im-

age details, than view (a).  Not only is the vascular net better visible in (b), but also more details in the 

major vessels’ walls are resolved.  View (c) hides image details in the brightest (white) area, which are 

clearly visible in view (b), and even in view (a). That is because HE maps the sparse brightest intensity 

values into to a single target intensity value — to provide equally populated intensity intervals in the 

equalized image.  Fig. 2 provides more insight by showing histograms for this image.   

In Fig. 2a, the original intensity range of image MR-ANGIO is split into 256 optimal intervals (in terms 

of (6)). The intervals are shown as alternating white and light gray vertical stripes; each interval starts 

from the first gray value falling in the interval, and spans until the next interval starts.  The top half of the 

diagram presents the original image histogram; the bottom half (with the vertical axis directed down-

wards) presents the 256 peaks-wise histogram of the corresponding best approximation image B . The 

peak-wise nature of the bottom histogram is clearly visible in the right part, where the resolution is suffi-

cient to identify a single peak in each interval.  

In Fig. 2b, the top part is the same source image histogram, while the bottom part is a peak-wise histo-

gram corresponding to the HE view (each peak is positioned at the interval’s average intensity). The al-

ternating vertical white and light gray stripes show the corresponding intensity intervals built by HE. 
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Comparing the bottom histograms in Fig. 2a and Fig. 2b one can see that the HE peaks are virtually 

equal in size, while the OGSR peaks closely follow the shape of the source histogram. This is why the 

OGSR image in Fig. 1b looks more realistic than the HE image in Fig. 1c. 

Also note that the brightest, poorly populated intensity levels are resolved in Fig 2a by about 20 inter-

vals, while in Fig. 2b, all the values of the right half of the intensity range fall into only 3 intervals.  This 

is why the brightest image details in the equalized image in Fig. 1c are lost.  

These observations are typical. Fig. 3 presents another example, MR-SHOULDER.  The source image 

intensity values fall into range  0..595. (Since image size is 1024×1024, only a part of it is shown in the 

frame window 256×256; however, the whole range of gray is presented in this visible part).  The source 

intensity range is only twice as wide as the target range; that is why simple linear mapping in view (a) 

provides sufficient display quality.  View (b) provides further visualization improvement, e.g., some de-

tails surrounding the bone head are better visible than in view (a).  It is more realistic compared to view 

(c) where details in the brightest area are lost. 

6 Conclusion 

A method of mapping a deep gray scale image to a lower resolution scale is proposed.  The method 

makes it possible to display images with thousands levels of gray on the regular monitors.  It is a fully 

automatic and image content independent technique, free of heuristic elements, providing the best image 

presentation in terms of the explicitly formulated and intuitively justified criterion. Computational com-

plexity of the mapping algorithm is O(nN2), where N is the source image intensity range,  and n is the tar-

get intensity range.  

The presented image examples demonstrate high quality of the obtained views. Despite the essential 

non-linearity of the method, it causes less “non-linear distortions” than, e.g., HE.  It provides a robust and 

virtually realistic view, which appears rather close to the linear mapping while significantly richer in 

terms of general appearance and detail resolution.  
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Appendix 

Proof of Theorem. 

Let kA  stand for a group of pixels (7), corresponding to intensity value kβ  in  B .  

1). First, show that optimal imageB  has exactly n different levels of gray. If minimum in (4) is reached 

with only m levels (m<n), then at least one of kA  contains pixels with different intensities. By splitting 

this group, we can further lessen the criterion- in contradiction with (4). 

Second, kβ  must be an average intensity in kA . Let D 

= BA− = ...)( 2
1 +− kka β 2)( kk

pk
a β−+ + R, where  R  is independent of  kβ , hence from 

0/ =∂∂ kD β , obtain  k
k
p

kk paa
k

/)...( 1 ++=β  . 

 2).  Now, prove that based on (4), pixel groups kA  define disjoint semi-open intervals of the source in-

tensity range, which have empty intersections with each other. 

Consider any two intensity levels of  image   B , - for a certainty,   0β and 1β ,  ( 0β < 1β ) . 

Without limitation of generality, we can assume that pixels in each of groups 0A , 1A  are ordered by 

intensity values:  00
2

0
1 ... paaa ≤≤≤ ;  11

2
1
1 ... qaaa ≤≤≤  ,  (to simplify notation, we use  p instead of  

0p , and  q  instead of  1p ).  

We need to prove that  0pa < 1
1a . We will show that any alternative would result in contradictions.   

2a). The first opposite case  0pa > 1
1a   can be excluded in a similar way as in [1], as follows.   

Let  D= BA− = 200
1 )( β−a +…+ 200 )( β−pa 211

1 )( β−+ a +…+ 211 )( β−qa + S, 

where  S  stands for all the terms in the sum that are independent of both 0β and 1β .  If we just inter-

change pixels  0
pa  and 1

1a ,  which means replacing  B  by B′   so that  10
β=′ pb ,   01

1 β=′b , - the new 

criterion value is:   D′ = BA−  = 200
1 )( β−a +…+ 200

1 )( β−−pa + 201
1 )( β−a + 
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210 )( β−pa + 211
2 )( β−a +…+ 211 )( β−qa  + S,   and  D′ -D=2 ))(( 01

1
01

paa −− ββ .  

The last expression is negative, which means that  B′  is the better approximation than  B , in contra-

diction with our basic assumption. 

2b). Consider the second alternative:  0
pa = 1

1a .  

This is the situation, which was assumed in [1] to be of probabilistic measure 0, hence it was ignored. 

In our problem - in probabilistic terms - it is a regular case, which can’t be ignored. The following 

Lemma is used to prove that still 0pa = 1
1a  is not possible, - however, for quite different reason. 

Lemma.   

Adding one pixel of intensity x  to a group of  p  pixels  kA   (for a certainty, 0A )  causes a non-

negative change of this group’s  contribution 0D  to the distance BA−   by value ∆ :  

∆ = (S0  - px)2 / [p(p+1)] ,  where   S0 = 00
1 ... paa ++ .   

Indeed, let  Q0
 =  2020

1 )(...)( paa ++ , then 0D = 200
1 )( β−a +…+ 200 )( β−pa  = pSQ /)( 200 − . 

After adding a pixel with intensity x, obtain  0D = 0Q + x2 - ( 0S + x)2 / (p + 1) ; by subtracting  0D  

from  0D  get ∆ . 

The following two corollaries result from the Lemma: 

C1). Adding a pixel to a group never reduces the group’s contribution to the distance;  the increase is 0 

only if the added intensity is equal to the mean: pSx 0=  . 

C2). Removing pixel x̂ ∈ 0A  from group 0A  (if it is not a single member in 0A ) never increases the 

group’s contribution; the decrease is (0S - px)2 / [p(p-1)] ,  and it is 0  only if pSx 0= . 

Using these corollaries, we can make sure that by moving one pixel from 0A  to 1A  (or from 1A  to 

0A ), the presumably minimal distance can be further decreased, which is absurd. Several cases should be 
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considered; for the sake of brevity, we omit trivial cases, e.g. when one of the groups 0A , 1A  does not 

contain pixels with intensity different from 0pa = 1
1a , - these cases can be excluded easily. 

Consider more typical situation  00
1 ...... paa ≤<≤  = 11

1 ...... qaa ≤<≤   (both groups have members 

with intensity values different from 0pa  = 1
1a ), and try to move 1

1â  from 1A  to 0A . Increase of distance 

due to adding  1
1â  to 0A  is 0D∆ = ( 0S - p 1

1a )2 / [p(p+1)] ; decrease of distance due to removing 1
1â  from 

1A  is 1D∆ = ( 1S - q 1
1a )2 / [q(q-1)].  If  0D∆ < 1D∆  then we obtained contradiction; so suppose 

0D∆ ≥ 1D∆ . We will show that in this case, moving  0ˆ pa  from 0A  to 1A  would reduce the distance, 

which is absurd. Consider the following chain of estimations:   

( 0S - p 0
pa )2 / [p(p-1)] = ( 0S - p 1

1a )2 / [p(p-1)]  > ( 0S  - p 1
1a )2 / [p(p+1)] ≥  ( 1S - q 1

1a )2 / [q(q-1)]  = 

( 1S - q 0
pa )2 / [q(q-1)]  > ( 1S - q 0

pa )2 / [q(q+1)],  - 

it results in ( 0S -p 0
pa )2/[p(p-1)] > ( 1S -q 0

pa )2/[q(q+1)], which means that moving   0ˆ pa   from 0A  to 

1A  would decrease the value of criterion, - in contradiction with the initial assumption, Q.E.D. 
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Fig. 1.  Image MR-ANGIO (Source:  

ftp://ftp.erl.wustl.edu/pub/dicom/images/version3/other/philips/mr-angio.dcm.Z) 

a. Linear mapping 

b. Optimal gray scale reduction  

c. Histogram equalization 
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Fig. 2.  Intensity histograms for image MR-ANGIO from Fig. 1 

a. OGSR image versus source image; b. HE image versus source image 
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Fig. 3.  Image MR-SHOULDER (Source: 

 ftp://ftp.erl.wustl.edu/pub/dicom/images/version3/other/philips/mr-shoulder.dcm.Z) 

a. Linear mapping 

b. Optimal gray scale reduction  

c. Histogram equalization 

 


