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Abstract

The problem of optimal mapping of multi-level gray sdaleges to a coarser gray scale is formu-
lated and explored. A distance between images havirgyaiff intensity ranges is introduced. Minimiza-
tion of such a distance can be viewed as least squapesxanation of a source high range image by the
best target image with a given number of levels of gifegllowing S.Lloyd [1], we proved that the latter
problem is equivalent to optimal partitioning of the sourcagenintensity range into a given number of
intervals, provided that the sum of intra-interval viaoigs reaches minimum. An efficient algorithm for
optimal partitioning based on dynamic programming is used, whitie isame in complexity as the ones
known from literature, but better in terms of required mgmodhe proposed approach is applied to visu-
alization of deep gray scale medical images. Advantagéseofmethod over linear mapping and histo-
gram equalization are demonstrated on the sample imagesotAdr application fields may include im-

age optimization for printing/faxing/copying.



1 Introduction

Medical imaging equipment (CT- and MRI-scanners, X-r&y,) @roduces images of intensity range
9 - 13 bits per pixel, while conventional image presentation devioe media provide a lower range.
Personal computers usually allow for only 8 bits, or 256 levelgraf. In this paper, we introduce a
problem statement for optimal mapping of deep gray scalgémto a coarser gray scale — optimal gray
scale requantizatiorOGSR. It is based on the best approximation of a fine sourcgdrg its coarser
version from a class of images with the limited numieshades of gray.

We prove that such an approximation is equivalent to opteditioning of the source intensity range
into a given number of intervals, provided that the averaga-interval scattering reaches minimum.
Thus, for our specific problem, we re-created a resuiveld earlier for a different data model in the sig-
nal quantization theory [1].

Sub-optimal heuristic partitioning procedures were proposediméoer of works (e.g., [1]-[6]). While
these procedures are usually simple, fast, and acceptatnesi of cases, they don't provide global opti-
mum, i.e. don’'t guarantee a reasonable output for any inpertsee [7]). On the other hand, a globally
optimal and efficient algorithm of scalar segmentatioseddaon dynamic programming, was proposed in
[8]-[10]. In our paper, we present an algorithm equivalerjL0] in terms of potential complexity and
performance, yet better in terms of required memory.

According to our method, intensity of each pixel in thrgetimage is equal to the ordinal number of
the interval containing intensity value of the correspongiixgl in the source image. As a result, the
variably spaced source intensity intervals are mappedjtally spaced destination intensity values. It is
not cleara priori whether such a non-linear transformation would yield itdbgnizable pictures; sample
images in Section V can be a cogent argurpemt The optimally mapped images are significantly more

realistic than those obtained by the histogram equalizétiBhtechnique.



Attention is also drawn to practical aspects of medicagj@nqaesentation. In order to take into account
contrast distortions due to non-linearity of intensigyking, we propose a “double-view” displaying:
linearly mappedl{M) image together with the one obtained by @@SRmethod; that makes it possible
to view maximum of image details while referring the troades of gray.

The method also can be used for pre-processing images airhggh quality printing or faxing.

2 Problem statement

Consider source image{ &,,...,&,, } as an ordered set dfl pixels; each pixe@, : {x,y.;a} is de-
fined by its coordinates and intensity valag The order of pixels is assumed fixed, so imAgsan be

identified by its intensity vectord,,...,a,, } in the M-dimensional space. Componerds are assumed,

for simplicity, real non-negative numbers, which defirsoarce intensity scale

Let B{b,...,.b,} denote another image — a vector with components evaluatdt target scale

which is a set of integers i, n—1.

Given source imagé, in order to find its best presentation in the targates we need to define dis-

tance between the two images with the intensity vade&mnging to different scales.

Consider a set oh monotonically increasing parametqt% - values in the source scale, such that:

0<pB°<pB'<.<pB"'< {Lnawﬁ(ai) = a™ (1)
<I<

Let D define distance betwe#énandB as follows:

D(A, B) = {Bomipnfl}Z(ai -B")? )

The major problem of this work is finding the best appration ofA in the target scale:

B, = argmin D(A, B) (3)
{8}



Let W' denote a class of all images that have equal or lass ttistinct levels of gray. Obviously
belongs to a certai?" , whereN < M , whileB 0 W"; it is assumech < N.

Let alsoB { b,,...,.b, } be an image in the source scale, defined by intaged parameter set*},
SO thatEi = ,8q . Note that although the absolute values of gray arerdiftén B andB, both belong to

Y" and theirequi-intensity region¢EIRs) are congruent.

From (2) and (3), obtain a simpler form d¢A, B, ) criterion value:

min i(ai -b)? (4)

{BOW"} =
Thus, optimal image mapping to a lower gray scale capliténto the two step® — B — B:
o For a given source imadefind the best (least squares) approximaﬁ)m W" according to (4);
o Sort the obtained distinct intensity values Bfin ascending order, starting frofi°, and define
B, (optimal B for a givenA) by settingb. = k, if 6| = B*.

Intensity values provide a two-fold differentiation of tharts of the whole image: first, they define
EIRs as disjoint regions in the pictuispétial detail}; second, they define a specific scalar attribute to
each EIR — absolute value of grayiftrast details During A — B step, we preserve as much spatial
and contrast details as possible. Durifg) - B step, we preserve all the spatial details but introduce

additional contrast distortion due to mapping the variapced values oB to equally spaced values

of B (only ordering of gray shades is conserved).

In the following two sections, we explore the — B step.

3 I mage appr oximation and partitioning of intensity range

Expression (4) defines a least squares image approximation praidbem to quantization of random
signal. If re-formulated in terms of our paper, it was sihdkat under certain conditions, problem (4)

could be reduced to the following one:



find (n-1) valuesd',...,a" "} and n values f3°,...,""} - totally (2n-1) values in the source scale,
0O=a’<p’<a'spi<.<a"™ <" <a" =max@,,....a, ) +1 (5)

provided:

{ar,ﬁrﬂi%,n_l}i{ 2. ‘5k)2} ©)

k=0 aksai<ak”
In other words, split the whole intensity rang& [a"), with a°inclusive, 8" non-inclusive, byr{-1)

points {a*; k Dl,n——l} into n semi-open intervals, and find certain valﬁé within each intervak, -
to provide minimum of intra-interval intensity variations

In [1], the “(4) = (6)” reduction was obtained under the different conditions:imoeotis space, prob-
abilistic model with additive noise. Even more importartha a heuristic algorithm used for quantiza-
tion did not require accurate treatment of what was \deage situations of probabilistic “measure zero”
(where pixel intensities fell into endpoints of the imgds). So some of the situations, common to our
problem, were ignored in [1].

In fact, reduction (4= (6) turns out to be true, as well, even if the mentioned sihsahave a non-

zero probability, like it is the case in the image approxonat moreovergquivalence (4) = (6).

Prior to formulating the equivalence theorem, we intredarcother definition. Given imagésand B,
define a set of disjunctive regions®{,...,A"*} of A, where A* is a set of all pixelsd. such that
a 0 A“ ifand only if b = B*:

A*:{a |b = g%;i01,M}, O<k<n @)
The following Theorem (proved in Appendix) can be viewed asoee accurate re-creation of the

S.Lloyd’s result [1], if applied to image approximation.

Theorem

If imageE [JW"is the best approximation of source imagéW" in terms of least squarég), then:

o Regions Adefined by7) are strictly ordered by intensities, i.e.



a <a, forany pixelsa OAP, & OA" (0< p<g<n).
a Forany k (0 k <n), value ,8k is an average of intensity values of pixels in regidn A

and there exists exactly n different intensity values iff 88tk = 0,n-1}:

0<B°<fB'<..<B"' < max(a) (8)

{1<isM}

Theorem states that there is a one-to-one correspondemazeheaegion®\ and intervals &, a**)

of the source scale - this is why expressions (4) anaré@&qual (which proves “(4x (6)"):

min Y(a -6 = min S 3 (a-p) ={a_ﬁr,qigw"2{ >(a —ﬂk)ﬂ ©)

R n r Al na
{BOW"} i=1 {A",5";r=0,n-1} k=0 4 A k=0| ak<a <ak*

Based on the Theorem and (9), it is easy to prove the corasssetion, “(6)= (4)”: if intervals

k+1

[a“,a"") and valuesg® (kO O,n—1) provide minimum (6), then the corresponding imagewith

componentd = 8% wherek is defined froma, O[ a*,a**),

- provides minimum (4).
Switching from (4) to (6) is a significant simplificatiobecause the number of unknown variables is

reduced fromM in (4) to 2-1 in (6), where usuallyn<<M.

Note that problem (6) may be interpreted as another $eaares approximation problerfind the best
approximation of the source image intensity histogram by the n-stepfuvistion[10]. It is different
from the original approximation problem (4); however, accordlinthe Theorem, both are equivalent in

the following sense: given a solution for one of them, weezssily get a solution for the other one.

4 Optimal partitioning by dynamic programming

Let m, be multiplicity of intensityg in the source image, i.e. a number of pixels witeristty g. In

order to simplify notation, from now, we will assume thatirce values of gray are integersOiN —1.



We also assume that although some of source “intensity’ shay be empty iy, = 0), the number of
distinct levels of gray (withm, > 0) is greater tham.

A sequence fn,,m,...,m,_; } defines the source image histogram; so the sum to be madnm (6)

can be reduced to:

nz_laz_lm{ [zmr/fm ]] -5 Zme’ _[zlm g] T, =3 f@ @,
g:ak k=0

kOga k=0 :a

(10)

where

f(g,r)zimppz—[impp] /Z_lmp, (0sg<r<N) (11)
p=9 p=9 p=g

By using three one-dimensional arrayd,, §,,Hy (0< g < N), which can be calculated in ad-

vance:
g-1 g-1 g-1
Qg: Zmp p2 , %:Zmpp, ngzmp , (O< g< N), Q0=SO=H0=0, (12)
p=0 p=0 p=0

we can avoid repetitive summation in (11) when calculatages of f (g,r), or avoid using a
large two -dimensional array diif(N-1)/2) double-precision humbers calculated in advance @ikg, in
[11]):

f(g,r) = (Q-Q) - (-9 (Hg-H), (Osg<r=sN), (13)

As a result, criterion (6) gets the following canonical form:

D: .m “Zf(a ,ah), (0=a’<a'<a’<..<a"*<a"=N) (14)

.....

Vector minimization in (14) can be split into a sequenceimpger scalar optimization procedures as

shown below. Instead of designati@h for the criterion value, we will use more generﬁo(ao) , -



indicate that the final criterion value is just a splecese of a whole family of similar criteriﬁk(ak),

which should be calculated in order to obtain the finaleaf D = D°(a°):

- n-1 n-1
D=D°@% = min_ > f(a“,a") = min{f(ao,al)+ min > f(ak,ak”)} =
{a",a%,..a" i {a} (a%a%..a" 15
= r{n!}n[f(ao,al) + ﬁl(al)J = r{nl}n[f(ao,al) + r{ni{l[f(al,az) + 52(a2)ﬂ =... (15)

To resolve (15), we can use the following system of recuftemtional equations of dynamic pro-

gramming (starting from the last one):
D"*(g) =f(g,N) | (O<g<N), (16)

D*(g) = f (g.a5™") + 5k*1(ag*l) , wherea/™ = arg{jr}nin[f (g,r)+ Sk*l(r)J 17)

By tabulating (17) fok=n-2,...,1 g=0,...,N-k-2 and populating arrayig, we getD = 50(0). Then,

starting fromg=0, k=0, and using arrayag , - all the end points of optimal intervals can be restor

The basic time-consuming part of this algorithm is takrain (17), requiringCnN  operations, - the
same as in [8]-[10], wher€ is a constant, which depends on implementation. MappiagémfroniN=

2048 ton=256 levels of gray took several seconds on t&i2 PC.

5 Examples

The OGSRmethod preserves maximum of spatial image details at thesxpé contrast distortion. In
medical applications, the absolute levels (or, at least, pheportions) are usually important and cannot
be changed or ignored. To reconcile both requirements ¢tmteast and high image detail resolution),
we propose the followindouble-viewpresentation (i.e. show pairs of pictures):

(a) the view obtained by simple linear mappibiylj,

(b) the view obtained b GSRas described in this paper.
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The first one is a referential view: it provides true skaafegray but lacks spatial details; the second
one makes it visible spatial details by using artificialdég

Below, we present two deep gray scale medical images dasaddrom the Web site tdallinckrodt
Institute of Radiology of Washington University, St. Louis, Missdvé do not discuss medical interpre-
tation of images, — that might be a topic of the spaesdarch. Instead, we demonstrate general capa-
bilities of the method, drawing attention to additional geaetails that become visible.

The results are presented in the target scale 0..288dition to the recommended "Double-view)-(
(b), we also for comparison, demonstrate one more {Ggvwbtained by optimaHE [12].

Fig. 1 shows sample medical imag&k-ANGI O. View (b) provides significantly higher quality of im-
age details, than vieva), Not only is the vascular net better visible ), fout also more details in the
major vessels’ walls are resolved. Viegy hides image details in the brightest (white) area, whieh ar
clearly visible in view If), and even in viewd). That is becauselE maps the sparse brightest intensity
values into to a single target intensity value — to prowdeally populated intensity intervals in the
equalized image. Fig. 2 provides more insight by showingdniains for this image.

In Fig. 2a, the original intensity range of imag®-ANGIOis split into 256 optimal intervals (in terms
of (6)). The intervals are shown as alternating white lgght gray vertical stripes; each interval starts
from the first gray value falling in the interval, and spantil the next interval starts. The top half of the

diagram presents the original image histogram; the botw@i(\With the vertical axis directed down-

wards) presents the 256 peaks-wise histogram of the porndisig best approximation imag@. The
peak-wise nature of the bottom histogram is clearly \@sibithe right part, where the resolution is suffi-
cient to identify a single peak in each interval.

In Fig. 2b, the top part is the same source image histogvhite, the bottom part is a peak-wise histo-
gram corresponding to theE view (each peak is positioned at the interval's averagmsity). The al-

ternating vertical white and light gray stripes show theespronding intensity intervals built BiE.
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Comparing the bottom histograms in Fig. 2a and Figori can see that thdE peaks are virtually
equal in size, while th®GSRpeaks closely follow the shape of the source histogrdnis. i$ why the
OGSRimage in Fig. b looks more realistic than th¢E image in Fig. t.

Also note that the brightest, poorly populated intengtyels are resolved in Figady about 20 inter-
vals, while in Fig. B, all the values of the right half of the intensitygarfall into only 3 intervals. This
is why the brightest image details in the equalized imagéginic are lost.

These observations are typical. Fig. 3 presents anothenpée, MR-SHOULDER. The source image
intensity values fall into range 0..595. (Since image & 10241024, only a part of it is shown in the
frame window 25& 256; however, the whole range of gray is presented in thidevigart). The source
intensity range is only twice as wide as the targegeathat is why simple linear mapping in viesyj (
provides sufficient display quality. Vievb) provides further visualization improvement, e.g., some de-
tails surrounding the bone head are better visible thaiein (a). It is more realistic compared to view

(c) where details in the brightest area are lost.

6 Conclusion

A method of mapping a deep gray scale image to a lowemntesokcale is proposed. The method
makes it possible to display images with thousands lefajgay on the regular monitors. It is a fully
automatic and image content independent technique, free dstiteatements, providing the best image
presentation in terms of the explicitly formulated anditively justified criterion. Computational com-
plexity of the mapping algorithm is @), whereN is the source image intensity range, arislthe tar-
get intensity range.

The presented image examples demonstrate high quality obthimexd views. Despite the essential
non-linearity of the method, it causes less “non-linear distts” than, e.g.HE. It provides a robust and
virtually realistic view, which appears rather close to lthear mapping while significantly richer in

terms of general appearance and detail resolution.
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Appendix

Proof of Theorem.
Let A* stand for a group of pixels (7), corresponding to intgnsilue ,8“ in B.
1). First, show that optimal ima@ has exactly different levels of gray. If minimum in (4) is reached

with only m levels (n<n), then at least one aA* contains pixels with different intensities. By sttit

this group, we can further lessen the criterion- in cdidti@an with (4).

Second, X must be an  average intensity in A*. Let D
=HA—§H=(a1“—,8“)2+...+(a‘;Jk -[*)?’+ R, where R is independent of S*, hence from
dD/0f* =0, obtain 5* = (af +..+2" )/ p, .

2). Now, prove that based on (4), pixel grouﬁ% define disjoint semi-open intervals of the source in-

tensity range, which have empty intersections with edoér.

Consider any two intensity levels of imagB , - for a certainty, S°and 8", (B8°<f") .

Without limitation of generality, we can assume that gixeleach of groupsA’, A' are ordered by

intensity values: a; <a; <...<a;

; ay<a;<..sa;, (to simplify notation, we usep instead of
P,, and q instead of p,).

We need to prove thaag< all We will show that any alternative would result in cadictions.

2a). The first opposite casa‘;> all can be excluded in a similar way as in [1], as follows

Let D=|A-B|=(a) - B°)°+...+(a) - B°)? +(a - ) +..+(a; - B')°+S

where S stands for all the terms in the sum that are indepémddroth 3°and B*. If we just inter-

change pixelsa) and a;, which means replacing by B’ so that by = i b= [S°, - the new

criterion value is: D'=HA—§H =(a, = B°)*+.+(a), — B°)’+(al - B°)*+
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(ay = £ +(a; = f1)*+...+(a ~ f')* +S and D'-D=2(5" - 5°)(a; - ay).

The last expression is negative, which means tBatis the better approximation tha® , in contra-
diction with our basic assumption.
1

2b). Consider the second alternativag =a.

This is the situation, which was assumed in [1] to be obglilistic measure 0, hence it was ignored.

In our problem - in probabilistic terms - it is a regulase, which can’'t be ignored. The following
Lemma is used to prove that sﬁiﬁz all is not possible, - however, for quite different reason.

Lemma.

Adding one pixel of intensity x to a group of p pixe45é< (for a certainty, A°) causes a non-
negative change of this group’s contributi to the distanc)%— EH by valueA:

A= (S - pxf/ [p(p+1)], where 8= a’ +..+a).
Indeed, letQ°= (a/)? +...+(a))?, thenD°=(a; - B°)*+...+ (a; - B°)* =Q° - (S°)?/ p.
After adding a pixel with intensity, obtain D°= Q°+ x?- (S°+ x)?/ (p + 1); by subtractingD°

from D° getA.

The following two corollaries result from the Lemma:

C1). Adding a pixel to a group never reduces the group’s contribution to the distdine increase i@
only if the added intensity is equal to the mean:SO/p .

C2). Removing pixelk 7 A° from group A° (if it is not a single member iA’) never increases the
group’s contribution; the decrease iS{- pxf / [p(p-1)] , and itis0 only if x = So/p.

Using these corollaries, we can make sure that by movingigeefromA°® to A* (or from A' to

A®), the presumably minimal distance can be further decreesich is absurd. Several cases should be
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considered:; for the sake of brevity, we omit trivial caseg, when one of the group&®, A* does not
contain pixels with intensity different froragz all - these cases can be excluded easily.

0

S = as..<..<a

Consider more typical situatiortaiJ <..<..<a q

(both groups have members
with intensity values different frona? = a;), and try to moved; from A" to A°. Increase of distance
due to adding&! to A® is AD°= (S°- pa;)?/ [p(p+1)] ; decrease of distance due to removijgrom
A' is AD'= (S'- ga})® / [q(g-1)]. If AD°<AD' then we obtained contradiction; so suppose
AD® = AD*. We will show that in this case, moving? from A° to A' would reduce the distance,
which is absurd. Consider the following chain of estimations

(S°-pag)®/ [p(p-L)] = (S°- pay)®/ [p(p-L)] > (S° - pay)*/ [p(p+1)] = (S~ q&y)*/ [a(a-L)] =
(S'-qap)’/[a(@-D)] > (S'-qay)®/ [a@+1)], -

it results in S°-pay)¥[p(p-1)] > (S'-gay)¥[q(g+1)], which means that movingd? from A’ to

A" would decrease the value of criterion, - in contramfictvith the initial assumptiorQ.E.D.
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Fig. 1. ImageMR-ANGIO(Source:

ftp://ftp.erl.wustl.edu/pub/dicom/images/version3/other/philipsamgio.dcm.Z)
a. Linear mapping
b. Optimal gray scale reduction

c. Histogram equalization
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Fig. 2. Intensity histograms for imalyR-ANGIOfrom Fig. 1

a. OGSRimage versus source imageHE image versus source image



Fig. 3. ImageMR-SHOULDERSource:
ftp://ftp.erl.wustl.edu/pub/dicom/images/version3/other/philipsghoulder.dcm.zZ)

a. Linear mapping

b. Optimal gray scale reduction

c. Histogram equalization
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