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Abstract

Consider a make-to-order manufacturer that offers multiple products to a market of price

and delay sensitive users. This paper studies the problem of maximizing its long-run average

expected profits for a model that captures three aspects of particular interest: first, the joint use

of dynamic pricing and leadtime quotation controls to manage customer demand; second, the

presence of a dual sourcing mode that can be used to expedite orders at a cost; and third, the

interaction of the aforementioned demand controls with the operational decisions of sequencing

and expediting that the firm must employ to optimize revenues and satisfy the quoted leadtimes.

Using an approximating diffusion control problem we derive near-optimal dynamic pricing, lead-

time quotation, sequencing, and expediting policies that provide structural insights and lead to

practically implementable recommendations. A set of numerical results illustrates the value of

joint pricing and leadtime control, as well as the performance of the proposed set of policies.

Keywords: Revenue management, dynamic pricing, leadtime quotation, queueing, sequencing,

diffusion models.

1 Introduction

This paper considers a make-to-order production firm that offers multiple products to a market

of price and delay sensitive customers. The primary goal is to develop a tractable framework for

revenue optimization in such systems, capturing three features of particular interest: first, the joint

use of dynamic pricing and leadtime quotation controls to manage demand; second, the access to

a dual sourcing mode that can be used to expedite orders at a cost; and third, the interaction

between the demand controls with the operational ones of sequencing and expediting that the firm

employs to maximize its profitability.
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Starting with the airline industry, the adoption of tactical demand management or revenue

management strategies has transformed the transportation and hospitality sectors over the past

couple of decades. Broadly speaking, this involves the use of sophisticated information technology

systems and intense data processing to construct detailed and granular forecasts, quantitative mod-

els of consumer demand, and dynamic capacity allocation and/or pricing strategies to maximize

the expected revenues from a fixed set of resources, as for example, a network of flights oper-

ated by a certain carrier. Similar approaches are now becoming increasingly important in retail,

telecommunications, entertainment, financial services, health care and manufacturing. This paper

is motivated by the latter, a notable example of which comes from the automotive industry and

their push towards producing customized cars in a make-to-order fashion.1 A revenue management

strategy applied in such a setting would aim to dynamically choose the price, leadtime, rebate,

etc. for a new order as a function of their book of existing orders, and simultaneously select the

production schedule to optimize their profitability. Joint use of economic and operational con-

trols allows the manufacturer to be more responsive to changes in the market conditions, as well

as to fluctuations in the operating environment due to variability in the demand and production

processes. In addition, using both price and leadtime signals to manage demand, allows the firm to

achieve a form of dynamic product differentiation to exploit the customers’ heterogeneity in terms

of their price and delay sensitivities and drive higher profitability.

In more detail, the production system is modelled as a multi-class Mq/GI/1 queue – the first

subscript indicating that the arrival rate is state-dependent. The system manager can select the

product prices and quoted leadtimes dynamically, and can also choose to instantaneously expedite

existing orders at a cost that may depend on the type of product. Instantaneous expediting is, of

course, an idealization, which serves to model systems with significant surge capacity vis-a-vis their

nominal processing capability. Methodologically, it allows us to enforce the quoted leadtimes on

all accepted orders, e.g., by expediting whenever an order’s age in the system reaches its leadtime,

rather than having to add service level guarantees. In addition, the manager has discretion with

respect to the sequencing of orders at the server. Potential customers make their purchase decisions

by optimally trading off price and delay in conjunction to their private valuations for the offered

products. Broadly, the firm’s problem is to dynamically select its product differentiation strategy

(i.e., the optimal menu of (price, leadtime) combinations at which to offer each of its goods) to

maximize its profitability. In more detail, the firm should choose state-dependent pricing and

leadtime quotation strategies, as well as expediting and sequencing policies to maximize the long-

run average revenue minus expediting costs.

1For example, BMW claims that 80% of the cars sold in Europe and 30% of those sold in the US are built to
order. When a dealer inputs a potential order to BMW’s web ordering service, a target leadtime is generated within
five seconds. This is typically 11 to 12 days in Europe and about double that amount in the US [14].
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This paper strives to contribute in terms of modelling, analysis, and the derivation of structural

insights that may be useful in practical revenue management solutions for such systems. In terms

of modelling, this paper is one of the first to address the joint dynamic pricing and leadtime control

problem in a stochastic production environment, and it combines two novel features: first, the

incorporation of expediting decisions that both enriches the class of systems under consideration

and simultaneously simplifies the analysis of leadtime guarantees; and second, the particular way in

which we formulate the dynamic leadtime decisions. Specifically, instead of using dynamic leadtime

control, the firm commits to offer each “good” at multiple predetermined leadtimes, and focuses

on pricing for these products. Through dynamic pricing the firm can divert demand from one

leadtime to another, thereby exercising dynamic leadtime control over this discrete set of options.

Restricting the possible leadtime options (e.g., 1, 2 or 4 weeks) may be more practical. Also, the

customer choice behavior can now be captured through a relationship that is parametrized by the

given leadtime vector but only varies as a function of the price menu, and the joint pricing and

leadtime control problem reduces to one of pricing subject to leadtime guarantees, which is more

tractable. Developing a revenue management solution for such a manufacturer requires an accurate,

data-driven customer choice model, which leads to a tractable formulation. The third modelling

contribution of this paper pertains to the model of customer choice behavior outlined in §5, which

builds on extensive marketing research.

The multi-dimensional control problem described above could be tackled within the context

of Markov Decision Processes but this is analytically and numerically intractable. This paper

follows the general methodology proposed by Harrison [18, 19] that suggests studying the underlying

control problem in an operating regime where the processing resources are almost fully utilized.

The resulting formulation involves the control of a Brownian motion or a diffusion, and is often

simpler than the original problem at hand. Apart from this analytical simplification, this operating

regime can -at least, in some cases- be justified economically; see Maglaras and Zeevi [26] for such

a result in the context of revenue maximization for a single-product model using static pricing.

Adopting this approach, the key analytical results of this paper are the following. We propose an

approximating diffusion control problem in §4.1 that is based on a novel interpretation of the system

parameters that captures the tension between capacity and the potential demand, and leads to a

tractable but non-trivial limiting problem. This is solved by combining and extending results by

Plambeck et.al. [31] and Ata et.al. [4]. While neither of these two papers involved any consideration

of revenue maximization and/or pricing capability of some sort, our problem can be treated as a

combination of the underlying problems in [31, 4]. Specifically, imitating results from [31] we derive

the optimal sequencing and expediting controls (Proposition 1); the term optimal is used here in

the context of the approximating diffusion model. The resulting multi-dimensional drift control

problem is reduced to a one-dimensional one in terms of the workload process (Proposition 2),
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which is subsequently solved be specializing to our setting results from [4] (Theorem 1).

The solution of the approximating diffusion control problem leads to intuitive and practically

implementable policies for the original problem (see §3), as well as to several structural insights: i.

Pricing and expediting decisions depend on the aggregate system workload and not the product-

level queue lengths, and thus change on the slower time-scale on which the aggregate workload

evolves, which is practically appealing. ii. The system expedites according to a greedy priority

rule (from cheapest to most expensive) in order to keep the total workload below a certain level

that is selected in accordance to the predetermined leadtime bounds. iii. Sequencing is done

according to a dynamic rule that roughly speaking serves the order that is “closest” to violating

its leadtime. Finally, a set of numerical results illustrates the value of joint pricing and leadtime

quotation control, as well as the performance of the proposed set of policies.

The structure of the remaining paper is as follows. This section concludes with a literature

survey. §2 describes the mathematical model of this paper, and §3 summarizes our proposed

solution, which is then justified through the analysis of an approximating diffusion control problem

in §4. §5 describes a customer choice model that is suitable for the problem under consideration.

§6 summarizes a set of numerical experiments that illustrate the effects of dynamic pricing and

leadtime quotation on revenue performance, and offers some concluding remarks.

Literature survey. First, our paper is related to the literature on dynamic due-date and

sequencing control. Roughly, this is divided in papers that develop efficient algorithms for mathe-

matical programming formulations of such problems, and those emphasizing the stochastic nature

of the production dynamics and either evaluate heuristics via simulation or solve for optimal policies

in simple settings that often include probabilistic service level guarantees. Keskinocak and Tayur

[22] provide an extensive review of this literature, with more emphasis on the former, while Baker

[5] and Wein [37] review the literature emphasizing the latter. The majority of the work reviewed

above assumes that the demand process is independent of any pricing and/or due-date decisions.

Early work that incorporated the customer response to the firm’s leadtime policy in a stochastic

production setting was Duenyas and Hopp [13] and Duenyas [12], while Keskinocak et.al. [21] and

Charnsirisakskul et.al. [11] provide deterministic optimization models in settings with delay- and

price-sensitive demand, respectively.

The second body of research related to our paper focuses on static pricing and sequencing

in queueing systems. One stream of work initiated with Naor [30] that includes Mendelson [28],

Mendelson and Whang [29], and Van Mieghem [36] studies problems of social welfare optimization

for price and delay sensitive customers in single ([30, 28]) and multi-product settings ([29, 36]).

In an important recent paper, Afeche [1] considered the problem of revenue maximization for an
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M/M/1 queue using static pricing and sequencing control in a market with two types of price and

delay sensitive customers, and as such can be viewed as an analog to [29] in the context of revenue

maximization. In these papers, as well as Maglaras and Zeevi [26] that established the economic

optimality of the heavy-traffic regime in a single-product system under revenue maximization,

“delay” refers to the steady-state waiting time that customers experience in the equilibrium regime

that emerges given a set of prices, sequencing rule and a customer choice model.

Methodologically, our work builds on the literature on fluid and diffusion approximations of

queueing systems. The asymptotic approximations for queues with state-dependent parameters

that underlie our work were developed in Mandelbaum and Pats [27]. State-space collapse in

Brownian control problems is explained in Harrison and Van Mieghem [20], and Ata et.al [4] address

a class of diffusion control problems that includes the one we analyze in §4.3. The formulation of

leadtime constraints as upper bounds on the respective queue lengths is from Plambeck et.al. [31]

and Maglaras and Van Mieghem [25], and builds on Reiman’s “snapshot principle” [34]. Overall,

our formulation extends that in [31] to incorporate dynamic pricing (i.e., drift control) capability,

and is solved using results from [20, 31, 4].

Other related papers are Plambeck [32] that studied a problem of static pricing and leadtime

differentiation for two partially substitutable products, Maglaras [24] that looked at dynamic pricing

and sequencing for a multi-product queue with price sensitive customers and holding costs incurred

by the firm, and Ata [3] that focused on admission control for a multi-class system with leadtime

guarantees and thin arrival streams. While [3] does not involve any pricing decisions, similar to

our work its solution builds on [31] and [4]. Papers that include expediting or dual-source modes

include Plambeck and Ward [33] and Bradley [8, 7]. The demand model we propose in §5 borrows

from the marketing literature, see e.g., Bucklin and Gupta [10]; for an overview of demand models

for revenue management see Talluri and van Ryzin [35].

2 Model Formulation

We consider a make-to-order firm that offers multiple products, indexed by i = 1, . . . , I, to a

market of price and delay sensitive customers. The model described below aims to provide a

tractable framework for revenue optimization of such systems, combining the operational controls

of sequencing and expediting with the demand controls of pricing and leadtime quotation.

Leadtime guarantees. The firm will offer each “good” at multiple predetermined leadtimes,

whereby a “product” corresponds to a (type of good, leadtime) combination. By dynamically ad-

justing the product prices the firm can divert demand from one leadtime to another, thus effectively
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exercising dynamic leadtime control over this predetermined set of options. Specifically, product i

orders are quoted a leadtime “guarantee” of di time units, which serves as a reliable upper bound

for the time it takes from when the order is placed until its production is completed. In a stochastic

production setting such guarantees are typically stated as P(delay for a class i order > di) ≤ ǫi,

where ǫi ∈ (0, 1) is a desired service level, but the capability for instantaneous expediting allows us

to instead impose “hard” leadtime guarantees, i.e., ǫi = 0 for all i (explained later on).

Economic structure and demand model. The firm operates in a market with imperfect

competition, and has power to influence its vector of demand rates by varying its prices p; pi(t)

denotes the per-unit price for product i at time t. Potential customers arriving at the system at time

t observe the current menu of products, which is summarized by the pair (p(t), d) and make their

decision of which product to buy, if any. Given the vector of leadtime guarantees d and the selected

prices p, the resulting demand is assumed to be an I-dimensional non-homogeneous Poisson process

with instantaneous rate vector λ(p(t); d) determined through a demand function that maps a price

vector p ∈ P into a vector of demand rates λ ∈ L(d), where P ⊆ R
I is the set of feasible price vectors,

and L(d) = {x ≥ 0 : x = λ(p; d), p ∈ P, d ∈ R
I
+} ⊆ R

I
+ is the set of achievable demand rate vectors.

We assume that L(d) is a convex set for all d ∈ R
I
+, the demand function λ(p; d) is stationary,

continuously differentiable in both p and d, and bounded. In addition: (a) for each product

i, λi(p; d) is strictly decreasing in pi, (b) for each feasible p−i = (p1, . . . , pi−1, pi+1, . . . , pI) and

leadtime vector d, there exists a null price p∞i (p−i) ∈ P such that limpi→p∞i (p−i) λi(pi, p−i; d) = 0;

and (c) the revenue rate p · λ(p; d) =
∑

i piλi(p; d) is bounded for all p ∈ P and has a finite

maximizer. (For any two n-vectors, x · y will denote their inner product.)

Under these assumptions, there exists an inverse demand function p(λ; d), p : L(d) → P, that

maps an achievable vector of demand rates λ into a corresponding vector of prices p(λ; d). Following

a standard practice from revenue management, we may then view the demand rate vector as the

firm’s control, and once this is determined derive the corresponding prices using the inverse demand

function. In this case, the expected revenue rate will be denoted by r(λ; d), where r(λ; d) = λ·p(λ; d).

We will assume that r(λ; d) is bounded, strictly concave and twice continuously differentiable, and

denote its maximizer by λ̂(d) := argmax {r(λ; d) : λ ∈ L(d)}. §5 describes a choice model that

satisfies our assumptions and seems suitable for the type of problem considered in this paper.

The system model. The production facility is modelled as a multi-product (or multi-class)

single-server queue. Orders for each product arrive according to non-homogeneous Poisson processes

and upon arrival join dedicated, infinite capacity buffers associated with each product. For each

product i the number of orders that were placed in [0, t] is given by

Ni

(
∫ t

0
λi(s)ds

)

,
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where Ni(t) is a unit rate Poisson process. Service time requirements for product i orders are

independent identically distributed (i.i.d.), drawn from some general distribution with mean mi

(rate µi = 1/mi) and squared coefficient of variation ξi, and Si(t) will denote the number of class i

service completions if the server dedicates t time units in processing class i orders. The processes

Ni, Si are independent of each other and across products. The load or traffic intensity of the system

when the demand vector is λ is defined as ρ := m · λ.

In addition to pricing, the firm also controls the operational decisions of order sequencing at

the server, and order expediting. Within each product, orders are processed in First-In-First-Out

(FIFO), the server can only work on one job at any given time, and preemptive-resume type of

service is allowed. Under these assumptions, a sequencing policy takes the form of the I-dimensional

cumulative allocation process (T (t) : t ≥ 0) with T (0) = 0, where Ti(t) denotes the cumulative

time that the server has allocated to class i jobs up to time t. In addition, T (t) is continuous and

non-decreasing, and satisfies the capacity constraint

∑

i

Ti(t) −
∑

i

Ti(s) ≤ t− s for 0 ≤ s ≤ t <∞. (1)

The expediting policy captures actions such as the use of overtime, sub-contractors, etc. to increase

the firm’s short term production capacity, whenever necessary to meet its leadtime guarantees.

It is modelled as an I-dimensional process (B(t) : t ≥ 0) with B(0) = 0, where Bi(t) is the

cumulative number of product i orders that were expedited in [0, t]. We will make the simplifying

assumption that expedited orders are produced (and get removed from the corresponding queue)

instantaneously.2 The cost of expediting a class i order is ci, and without loss of generality we will

assume that products are so labelled that c1µ1 ≥ c2µ2 ≥ · · · ≥ cIµI . Finally, a control (λ, T,B)

will be admissible if in addition to all of the above conditions it is non-anticipating, i.e., decisions

at time t can only use information that has been made available up to that time.

Let Qi(t) denote the number of product i jobs in the system (i.e., in queue or in service) at

time t. The queue length dynamics are described through the following equations:

Qi(t) = Qi(0) +Ni

(
∫ t

0
λi(s)ds

)

− Si(Ti(t)) −Bi(t) for i = 1, . . . , I. (2)

Control problem formulation. The profit maximization problem for the stochastic queueing

model is the following: choose admissible demand, sequencing and expediting policies (λ, T, B),

2Alternatively, expediting could increase the capacity from µi to µ′
i and Bi(t) would then measure the time spent

expediting in [0, t]. In the context of the asymptotic analysis of §4, increasing the capacity to µ′
i would make the

queue under-loaded and result in instantaneous processing of class i jobs.
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respectively, to maximize the long-run average expected profit given by

lim
t→∞

1

t
E

[
∫ t

0
r(λ(s))ds− c ·B(t)

]

(3)

subject to the leadtime constraints specified above.3

Discussion of modelling assumptions. The Poisson nature of the demand processes is

needed to be able to justify the diffusion models used in §4 as appropriate limits under a broad class

of state-dependent demand policies [27]. The one on general service time distributions is innocuous,

since the diffusion analysis only uses its first and second moments. As in most papers on pricing in

queues and revenue management, our model assumes that self-interested customers decide whether

to place an order based solely on the price (and leadtime) vector at the time of their arrival; i.e.,

they are strategic in making purchase selections by explicitly or implicitly optimizing some form

of a personal utility function, but not strategic in selecting the timing of their arrival in response

to the firm’s pricing strategy. This reduces the firm’s pricing problem to one of optimal intensity

control not involving a game-theoretic analysis; see Lariviere and Van Mieghem [23] for a discussion

of this point and a justification of the Poisson arrival process assumption as the equilibrium of such

a game for a related model. Expediting control capability is a common business practice that fits

naturally within our tactical profit maximization problem. Analytically, it allows the firm to satisfy

its leadtime constraints, e.g., by expediting orders whenever their sojourn time reaches their quoted

leadtime; of course, this need not be optimal in terms of cost. In the context of the asymptotic

analysis of this paper this could also be achieved by ejecting orders from a queue, exercising “hard”

admission control (i.e., turn off a demand stream), or simply by a more “aggressive” use of pricing

– in all cases the goal is to maintain the queue length below a certain threshold. The latter is the

most complex case, since it is likely to involve discontinuous or infinite price controls.

3 The proposed solution

This section summarizes our proposed set of pricing, expediting and sequencing policies for the

problem described above, which is based on a direct interpretation of the solution to an approxi-

mating diffusion control problem that we derive and analyze in §4.

3The formulation in (3) is derived using a standard result for intensity control problems (see Brémaud [9,
§II.2]) from the primitive problem: choose p, T, B to maximize limt↑∞

1

t
E[
R t

0
p(s) · dA(s) − c · B(t)], where Ai(t) =

Ni(
R t

0
λi(s)ds). We will not justify this point, since our subsequent analysis will not address (3) directly.
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Given the original problem parameters, we first define

λ̄(d) := argmax {r(λ; d) :
∑

iλi/µi = 1, λ ∈ L(d)} (4)

to be the demand rate vector that maximizes the instantaneous revenue rate subject to the

constraint that the server is fully utilized.4 We assume that λ̄i(d) > 0 for all i, i.e., that it

is optimal to produce all products in this deterministic planning problem. Also, recall that

λ̂(d) := argmax {r(λ; d) : λ ∈ L(d)} maximizes the instantaneous revenue rate with unconstrained

capacity, and let Λ̂ =
∑

i λ̂i(d) act as proxy of the total market potential for our problem. The

vectors λ̄(d) and λ̂(d) play an important role in our subsequent analysis in a way that is reminis-

cent of other papers in revenue management; c.f., Gallego and van Ryzin [15] that show that the

optimal demand control in a deterministic single-product model is static and given by the mini-

mum between the rate that depletes capacity at the end of the planning horizon and the rate that

maximizes revenues in the absence of the capacity constraint (λ̄(d) and λ̂(d), respectively). Our

analysis focuses on optimizing the behavior of the second order stochastic fluctuations around the

deterministic and static solution in (4) (much like the Central Limit Theorem characterizes the

error term around the mean of i.i.d. random variables). Given that both λ̄(d) and λ̂(d) are of order

Λ̂, the magnitude of these fluctuations is proportional to
√

Λ̂ (cf. (5) and $ 4.1).

Pricing: Our analysis shows that the optimal demand control in the approximating diffusion

model is a function of the aggregate workload in the system W (t) = m · Q(t). Specifically, given

the workload position w, the manager computes the target resource utilization ρ∗(w) as

ρ∗(w) :=
[

1 −
(

1/
√

Λ̂
)

· ψ
(

w
√

Λ̂
)]+

, (5)

where ψ(·) is a monotonically increasing function specified in Theorem 1, and then selects the

demand rate vector

λ∗(w; d) = argmax {r(λ; d) : λ ·m ≤ ρ∗(w), λ ∈ L(d)} (6)

The corresponding pricing strategy can be inferred via the inverse demand relation p(λ; d).

Sequencing: Note that λ∗(0; d) = λ̄(d). For each product i, define a threshold

b′i = λ̄i(d)di − δi,

4We assume that this problem is feasible for the choice of leadtime vector d under consideration, i.e., that there
exists a vector of non-negative prices (including p = 0) for which the resulting demand will utilize all the capacity.
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for some δi ∈ R, and sequence orders according to the policy that gives priority to class

i∗ = argmax
i

Qi(t)

b′i
;

this is the “least relative slack” policy of Plambeck et.al. [31].

Expediting: Orders are expedited when the total workload reaches W̃ = m · b′ according to a

rule that gives priority to class I then class I− 1 (if no class I orders are in queue) and so on. This

is the natural interpretation of the diffusion policy derived in §4.2 in the context of the original

problem at hand, baring in mind that products are labelled in a way that c1µ1 ≥ c2µ2 ≥ · · · ≥ cIµI .

Before proceeding with the diffusion analysis of §4 to justify the above policy recommendation,

we conclude this section with a few comments on its structure and general properties.

i. Leadtime constraint formulation & sequencing: The parameter b′i serves as a proxy for the

number of class i arrivals in di time units, and thus maintaining the queue lengths below their

respective thresholds would tend to imply that the corresponding leadtime guarantees are met

with high probability; c.f., [25, 31]. The threshold b′i is derived from the diffusion model (see (19)),

appropriately adjusted through δi to correct for the stochastic variability of the arrival and service

time processes, and the state-dependent nature of the demand rate; i.e., since λ∗i (w; d) is decreasing

in the workload w, λ̄i(d)di is an overestimate of the number of arrivals in di time units.

ii. Workload dependence and time-scale of price changes: The proposed sequencing policy

tries to distribute the workload in fixed proportions across the various queues, therefore making

W (t) an accurate proxy for the system state; this equivalence is exact in the diffusion model. It

therefore suffices to restrict attention to pricing and expediting policies that are functions of the

workload. This simplifies analysis and has an important implication on the relative time-scale for

these decisions. Specifically, known results for queues operating in heavy-traffic predict that order

interarrival and service times are much shorter than the typical queueing times encountered in the

system, which in turn are much shorter than the time required for the workload (and the respective

queue lengths) to experience significant fluctuations. Pricing changes and expediting decisions occur

on the slowest time-scale on which the system workload evolves, which is practically appealing. As

an example, orders may be arriving every 30 minutes, queueing delays and leadtimes may be of

order of a week, and the workload (and the prices) may fluctuate on a monthly basis.

iii. Leadtime control: The dynamic leadtime control decisions are effectively captured in the

demand control λ(W (t); d) that specifies how to optimally divert demand from one leadtime class

to another. This will become clearer in §5 where we study in more detail a particular demand

model that is suitable for the problem under consideration.
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4 Justification of proposed policy via analysis of a diffusion model

We start by briefly developing the approximating diffusion control problem, referring the reader

to [18, 19] and Mandelbaum and Pats [27] for background and more detailed expositions. Next,

we show that this multi-dimensional formulation can be reduced to a one-dimensional problem in

terms of the aggregate system workload, which we solve in closed form.

4.1 Formulation of an approximating diffusion model

Parameter regime: In constructing the approximating control problem, we start by identifying

the appropriate parameter regime that gives rise to the diffusion model under the appropriate

heavy-traffic scaling. The first step is to extract a set of normalized parameters from the original

problem data (in (7)-(8)) that are then used in defining a sequence of systems in (9)-(10) that gives

rise to our diffusion approximation and is closely related to the original problem specified in §2.

Recall the definitions of λ̂(d), Λ̂ and λ̄(d) from §3. Let ρ̄i = λ̄i(d)/µi and define µ̂i := λ̂i(d)/ρ̄i

for all i to be the “nominal” processing rates required to serve the revenue maximizing demand

rate vector λ̂(d) according to the fractional allocations defined through ρ̄. The difference between

µ and µ̂ measures the “imbalance” between the firm’s capacity and the processing rate vector that

would be needed to maximize the instantaneous revenue rate. This is expressed in the form

µ = µ̂− β
√

Λ̂ where βi :=
λ̂i(d) − λ̄i(d)

ρ̄i
√

Λ̂
∀ i, (7)

where Λ̂ is used as a proxy for the “size” of the system.

The next step is to embed the original system in an appropriate sequence of systems whose

asymptotic behavior we will henceforth analyze. This is done as follows. First, we normalize the

demand function, leadtime bound, and the expediting cost according to

λ̃(·; ·) = λ(·; ·)/Λ̂, d̃ = d
√

Λ̂ and c̃ = c
√

Λ̂. (8)

Second, we define a sequence of systems indexed by n with parameters scaling according to

λn(·; ·) = nλ̃(·; ·), dn = d̃/
√
n, cn = c̃/

√
n, and µn = µ̂n − β

√

Λ̂n, (9)

where rn(·; ·) is the revenue function associated with the demand relation λn(·; ·), Ln(dn) = nL̃(dn)
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and L̃(·) = {x : xΛ̂ ∈ L(·)}, and

λ̂n(dn) := argmax{rn(λ; dn) : λ ∈ Ln(dn)}, µ̂ni = λ̂ni (d
n)/ρ̄i and Λ̂n =

∑

iλ̂
n
i (d

n). (10)

[A superscript n is attached to all quantities associated with the nth system; this notation is only

used in §4.1 in constructing the approximating diffusion model.] The above scaling is interpreted

as follows: we will consider a sequence of problems of increasing market size served by systems with

appropriately increasing processing capacity, where the latter is selected so as to keep the imbalance

between the processing capability vector and the (capacity unconstrained) revenue maximizing

demand rate vector constant as measured by the vector β. In addition, the leadtimes dn and

expediting costs cn are scaled in a way that is consistent with known insights from the behavior of

queues in heavy-traffic; see Plambeck et.al. [31] for a rigorous justification of these scalings, and

the first part of the appendix to this paper for some related commentary. Note that for n = Λ̂

we recover the parameters of the system of original interest; i.e, we have embedded the problem

described in the previous section to a sequence of problems described via (9)-(10). Finally, for

future reference, we define

λ̃ := lim
n↑∞

1

n
λ̂n(d̃/

√
n) = lim

n↑∞

ˆ̃
λ(d̃/

√
n), (11)

which is assumed to exist and be componentwise strictly positive, and set µ̃i = λ̃i/ρ̄i for all i. We

also let κni = βiρ̄i

√

Λ̂n/n and set

lim
n↑∞

κni = κi and lim
n↑∞

−1

2
∇2r̃(

ˆ̃
λ(dn); dn) = A, (12)

where A is assumed to exist and be a positive definite matrix (this follows from the strict concavity

assumption of the revenue function).

Formulation: The approximating diffusion model for our problem is that of Plambeck et.al. [31]

with two modifications to account for the dynamic pricing aspect of our model that makes the

demand rate state-dependent, and the fact that orders are not blocked but are expedited. The

former affects the dynamics of the diffusion model and the objective function of the associated

control problem, while the latter turns out to be inconsequential.

Focusing on the heavy-traffic regime outlined earlier, we consider demand controls of the form

λni (t) =
[

ρ̄iµ
n
i −

√
nθi(t)

]+
(13)

where θi(t) ∈ [−K,K] is the dynamic demand rate adjustment at time t, which to minimize

12



technical complexity and comply later on with the restrictions imposed in Ata et.al. [4] is assumed

to be bounded by a large constant K. Plugging into (2) we get that

Qni (t) = Qni (0) +Ni

(
∫ t

0
λni (s)ds

)

− Sni (Tni (t)) −Bn
i (t) for i = 1, . . . , I

where Sni (t) is the cumulative number of service completions if the server spends t time units

processing product i orders with a nominal service rate µni . The scaled service times can be obtained

from the original sequence of service time random variables with rescaling by the appropriate factor

implied by (9). For each product i, define V n
i (t) = ρ̄it − Tni (t) to measure the deviation between

the cumulative time allocated into processing class i orders up to time t and the nominal service

requirement for that product, and note that the cumulative idleness up to time t is In(t) =
∑

i V
n
i (t).

Building on knwon insights for the heavy-traffic behavior of the M/M/1 queue (see the appendix),

we define scaled copies of the system processes (Qn, V n, Bn) according to

Zn(t) :=
Qn(t)√

n
, Y n(t) :=

√
nV n(t) and Dn(t) :=

Bn(t)√
n
. (14)

For large n, the Strong Approximation Theorem for the cumulative arrival and service completion

processes [16, Theorem 5] gives that for all i

Ni

(
∫ t

0
λni (s)ds

)

= µni ρ̄it−
√
n

∫ t

0
θi(s)ds+

√
nσa,iXa,i(t) + o(

√
n),

and

Sni (Tni (t)) = µni ρ̄it− µni V
n
i (t) +

√
nσs,iXs,i(t) + o(

√
n),

where the notation f(x) = o(g(x)) denotes that f(x)/g(x) → 0 as x ↑ ∞, Xa,i and Xs,i are

independent standard Brownian motions, σ2
a,i = λ̃i and σ2

s,i = λ̃iξi. (Recall that the ξi’s are the

squared coefficients of variation of the service time random variables.) Adding terms and using the

definitions of (Zn, Y n, Dn) suggests the following diffusion model:

dZ(t) = −θ(t)dt+ ΣdX(t) +MdY (t) − dD(t), Z(0) = z (15)

L(t) =
∑

i Yi(t), L(·) is continuous, non-decreasing with L(0) = 0 (16)

D(·) is continuous, non-decreasing with D(0) = 0 (17)

Z(t) ≥ 0, ∀t ≥ 0 and Y,D are non-anticipating with respect to X (18)

where M = diag(µ̃1, . . . , µ̃I), X is an I-dimensional standard Brownian motion, Σ2 = diag((1 +

ξ1)λ̃1, . . . , (1+ξI)λ̃I), andX(0) = 0 almost surely on some filtered probability space (Ω,F ,P;Ft, t ≥

13



0). As in [31], the leadtime constraints take the form

Z(t) ≤ b for t ≥ 0, where bi = λ̃id̃i ∀ i. (19)

The interpretation of the various processes follows from the scalings in (14): Z represents the queue

length process, D is the expediting policy, Y is the allocation control (measuring deviations from

the nominal allocation), and L represents the scaled cumulative idleness.

To derive the appropriate performance criterion for this model, we note that the expediting

cost is given by cn ·Bn(t) = c̃ ·Dn(t), while to express the revenue term we rewrite λni (·) as

λni (t) =
[

ρ̄iµ
n
i −

√
nθi(t)

]+
=
[

λ̂ni (d
n) −

√
nκni −

√
nθi(t)

]+
.

Let r̃(·; ·) be the revenue function associated with the demand function λ̃(·; ·). Then,

rn(λn(t); dn) = nr̃

(

[

λ̃∗(dn) − κn + θ(t)√
n

]+

; dn

)

= nr̃(λ̃∗(dn); dn) +
1

2
[κn + θ(t)] · ∇2r̃(λ̃∗(dn); dn)[κn + θ(t)] + o(1),

where the second expression is obtained via a Taylor expansion of r̃(·; dn) around λ̃∗(dn), and

the first order term is missing since ∇r̃(λ̃∗(dn); dn) = 0 by the definition of λ̃∗(dn). Using the

definition of κ,A in (12), and restricting attention to Markovian, stationary, bounded drift controls,

the preceding analysis suggests the following diffusion control problem: choose a non-anticipating

measurable drift function θ(t) ∈ [−K,K]I for all t ≥ 0, and non-anticipating RCLL allocation and

expediting policies Y and D to minimize

lim sup
t→∞

1

t
E

[
∫ t

0
{2κ ·Aθ(s) + θ(s) ·Aθ(s)} ds+ c̃ ·D(t)

]

(20)

subject to (15)-(19).

4.2 Reduction to the equivalent workload formulation

The first step in analyzing (15)-(20) establishes that the optimal pair of allocation and expediting

policies (Y,D) derived in Plambeck et.al. [31] is also optimal for our problem that incorporates

dynamic drift rate control capability. [The model analyzed in [31] involved admission rather than

expediting decisions, but the two are analytically equivalent.] The optimal (Y,D) yield a one-

dimensional equivalent workload formulation for our problem (see Harrison and Van Mieghem [20]

for background), which will be used to derive the optimal dynamic drift control θ(·).
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We start with some background material. The system workload process is defined by W (t) :=

m̃ · Z(t), where m̃i = 1/µ̃i. The workload dynamics are given by:

dW (t) = −m̃ · θ(t)dt+ σwdXw(t) + dL(t) − dU(t) (21)

where L satisfies (16),

U(t) = m̃ ·D(t), U(·) is continuous and non-decreasing, U(0) = 0, (22)

D satisfies (17), Xw(t) is a standard Brownian motion, and σ2
w =

∑

i(1 + ξi)m̃
2
i λ̃i. Note that

Z(t) ≤ b implies that

W (t) ∈ [0, w̃] t ≥ 0 for w̃ := m̃ · b. (23)

The next result specializes some of the results of Plambeck et.al [31] to our model. Specifically,

we show that it is optimal to (i) only expedite orders of the cheapest class I when the workload

W (t) reaches its upper bound w̃ imposed by the leadtime constraints, and (ii) schedule orders

according to the “least slack policy” that maintains the relative backlogs defined as

ηi(t) :=
Zi(t)

bi
t ≥ 0, ∀ i, (24)

the same for all classes; i.e., this policy gives priority to the class that is closest to violating its

leadtime constraint (which in the diffusion model corresponds to Zi(t) > bi).

Proposition 1 Fix any admissible drift control (θ(t), t ≥ 0) and consider the problem of choosing

(Y,D) to minimize

lim sup
t→∞

1

t
E [c̃ ·D(t)] , (25)

subject to the constraints (15)-(19). Then, the following policy is optimal:

Yi(t) :=
m̃ibi
w̃

L(t), ∀ i, (26)

and

Di(t) = 0 ∀ i 6= I, DI(t) = µ̃IU(t), (27)

where L,U are continuous, non-decreasing processes, with L(0) = U(0) = 0 such that

∫ t

0
1{W (s)>0}dL(s) = 0 and

∫ t

0
1{W (s)<w̃}dU(s) = 0 t ≥ 0, (28)

where W (t) satisfies condition (21) and the constraint (23).
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Proof: We first establish the feasibility of Y,D. Straightforward algebraic manipulations involving

(15), (16) and (21) and (22) show that for the control Y (t) given in (26), ηi(t) = ν(t) for t ≥ 0 and

all products i, where

W (t) = m̃ · Z(t) = ν(t)(m̃ · b) = ν(t)w̃ ⇒ ν(t) =
W (t)

w̃
t ≥ 0. (29)

Given (24) and (29) and the fact that U(t) keeps W (t) ≤ w̃ it follows that Z(t) ≤ b for t ≥ 0. Also,

by construction of L(t) it follows that W (t) ≥ 0, and therefore that Z(t) ≥ 0 for t ≥ 0. Therefore,

Y,D are feasible for (15)-(19). Second, the minimality of D(t) follows from the properties of the

two-sided regulator (see Harrison [17, §2.4]).

Note that with θ(t) fixed, the first term in (20) is a constant, and thus the performance criterion

reduces to (25). Under the control (Y,D), Z(t) = b
w̃W (t) and c̃ · D(t) = c̃I µ̃IU(t), and the

approximating diffusion control problem reduces to one selecting the drift control θ to minimize

lim sup
t→∞

1

t
E

[
∫ t

0
{2κ ·Aθ(s) + θ(s) ·Aθ(s)} ds+ c̃I µ̃IU(t)

]

(30)

subject to (21), the workload constraint (23), conditions (28) that identify the processes L,U as the

associated unique two-sided regulator (see Harrison [17, §2.4]) and (26), (27) and (29) that specify

Y,D,Z, respectively.

Since the drift control θ only affects the system dynamics through its aggregate value ψ := m̃ ·θ,
the above problem can be further simplified to one expressed in terms of the one-dimensional control

ψ ∈ [−K ′,K ′]. Specifically, letting

θ∗ = argmin {2κ ·Aθ + θ ·Aθ : m̃ · θ = ψ} = f̃(ψ) :=
A−1m̃

m̃ ·A−1m̃
(ψ + m̃κ) − κ, (31)

the revenue loss at θ∗ becomes

2κ ·Aθ∗ + θ∗ ·Aθ∗ =
(ψ + m̃ · κ)2
m̃ ·A−1m̃

+ κ ·Aκ. (32)

Using these definitions and removing the constant term κ ·Aκ of (32) from the objective function,

we can rewrite the diffusion control problem in the form:

Proposition 2 The following control problem is equivalent to (15)-(20): choose a non-anticipating

measurable function ψ(t) ∈ [−K ′,K ′] for t ≥ 0 to minimize

lim sup
t→∞

1

t
E

[
∫ t

0

{

[ψ(s) + m̃ · κ]2
m̃ ·A−1m̃

}

ds+ c̃I µ̃IU(t)

]

; (33)
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subject to

dW (t) = −ψ(t)dt+ σwdXw(t) + dL(t) − dU(t), (34)

and (23) and (28). Conditions (26), (27), (29) and (31) define the optimal (Y,D,Z, θ), respectively.

4.3 Solution of the equivalent workload formulation

The equivalent workload formulation is a one-dimensional drift control problem for a diffusion

that is constrained to lie in the interval [0, w̃]. We will solve the problem described immediately

above using results derived in Ata et.al. [4], for which we need to restrict attention to Markovian,

stationary, and bounded controls of the form ψ : [0, w̃] → [−K ′,K ′]. To simplify notation in the

remainder of this section we let αw = (m̃ · A−1m̃)−1 > 0 and κw = m̃ · κ, which together with the

Markovian structure of the drift controls allows us to rewrite the objective as

lim sup
t→∞

1

t

[

E

∫ t

0

{

αw[ψ(W (s)) + κw]2
}

ds+ c̃I µ̃IU(t)

]

. (35)

Let

h(c̃I µ̃I , αw, κw, w̃, σw) := c̃I µ̃I −
[

2αwκw −
(

w̃

2αwσ2
w

+
1

2αwκw

)−1
]

.

Theorem 1 Consider the problem of selecting a non-anticipating measurable function ψ : [0, w̃] →
[−K ′,K ′] to minimize (35) subject to (34), (23) and (28). Then, if h(c̃I µ̃I , αw, κw, w̃, σw) = 0,

ψ∗(w) = −
(

w

σ2
w

+
1

κw

)−1

, (36)

if h(c̃I µ̃I , αw, κw, w̃, σw) > 0,

ψ∗(w) =

√

ζ1
αw

tan

[

w

σ2
w

√

ζ1
αw

− arctan

(

κw

√

αw
ζ1

)

]

, (37)

where ζ1 is the unique positive solution of (50), and otherwise if h(c̃I µ̃I , αw, κw, w̃, σw) < 0,

ψ∗(w) =

√

ζ2
αw

− 2

√

ζ2
αw

[

1 − exp

{

−2w

σ2

√

ζ2
αw

+ C

}]−1

, (38)

where C = ln

(√
ζ2/αw−κw√
ζ2/αw+κw

)

and ζ2 is the unique solution of (53) that lies in (0, αwκ
2
w). The

optimal product-level drift rate is given by

θ∗(w) = f̃(ψ∗(w)) = αwA
−1m̃(ψ∗(w) + m̃κ) − κ. (39)
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Remark: We note that ψ∗ is monotonically increasing in w in all three cases above. This implies

that θ(w) is increasing in w, and in light of (13) that the proposed demand control λ(Q(t)) is a

decreasing function of the system workload. We also note that the expression in (37) corresponds

to the case where the expediting cost c̃I µ̃I is large, whereas expression (38) is for the case where

expediting is cheap. Finally, it is now easy to connect the the optimal ψ, Y,D extracted above with

the proposed policy of §3. [The proof of the Theorem is relegated to the appendix.]

4.4 Optimal static pricing solution

The numerical experiments in §6 will contrast the proposed solution against one that uses static

pricing. This amounts to selecting the constant vector θ ∈ R
I to minimize

lim sup
t→∞

1

t

[

E

∫ t

0
{2κ ·Aθ + θ ·Aθ} ds+ c̃ ·D(t)

]

(40)

subject to (15)-(19). Using Propositions 1 and 2, this is reduced to the problem

min
ψ∈R

{

αw[ψ + κw]2 + c̃I µ̃I lim sup
t→∞

E

[

1

t
U(t)

]}

(41)

subject to (34), (23) and (28). That is, the optimal allocation and expediting policies Y,D are

the same with those for the dynamic drift control problem. The workload process evolves like a

Brownian motion with infinitesimal drift ψ and infinitesimal variance σ2
w in the interval [0, w̃], with

exponential steady-state distribution with mean σ2
w/(2ψ). This leads to the optimization problem

min
ψ∈R

{

αw[ψ + κw]2 +
c̃I µ̃Iψ

e2ψw̃/σ2
w − 1

}

, (42)

where the expression for the second term above is given in Harrison [17, pg.88-90]. This result is

summarized in the following theorem.

Theorem 2 Consider the problem of selecting a constant vector θ ∈ R
I to minimize (42) subject

to (15)-(19). Let ψ∗ be the minimizer of (42). The optimal drift vector is given by

θ∗ = αwA
−1m̃(ψ∗ + m̃κ) − κ.
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5 A choice model for joint pricing and leadtime control

This section proposes a customer choice model that satisfies the assumptions imposed in §2, but

more importantly seems suitable for the problem considered in this paper. Specifically, the model

described below builds on a framework that has been used extensively in the marketing literature

(see Bucklin and Gupta [10]), and postulates that customers make their purchase selection in

two stages: first, they decide whether to buy any of the products within a category or segment,

and second, if they choose to buy in the first stage, they then proceed to select a product from

that category – these are referred to as “purchase incidence” and “product or brand choice,”

respectively; see [10] for a discussion of such models and their practical use. From our viewpoint,

this model has the essential property to be able to capture the substitution effects among otherwise

identical products offered at different price and leadtime combinations, while maintaining analytical

and numerical tractability and being suitable for calibration using real data as indicated by the

associated voluminous marketing literature.

As explained in §2, a product corresponds to a (type of good, leadtime) combination. To

simplify the exposition we first describe the choice model for the case of one good offered at

multiple leadtimes, and then extend it to consider many goods offered at multiple leadtimes each.

One good offered at multiple (price, leadtime) combinations: Following Bucklin and

Gupta [10], we model the probability that a customer will buy one of the products (the “purchase

incidence”) using a binary logit function

P (inc) =
eV (p,d)

1 + eV (p,d)
, where V (p, d) = γ0 + γ1 log

(

∑

ie
−b1pi−b2di

)

. (43)

V (p, d) corresponds to the deterministic component of the purchase utility from all offered products

specified through p, d. The constants γ0, γ1, b1, b2 are meant to be calibrated from observed data

(see [10]). This purchase incidence probability is equivalent to saying that each arriving customer

assigns a utility V (p, d)+ ǫ to the offered group of products, where ǫ is an i.i.d. random component

that differentiates potential customers, and follows a logistic distribution with shape parameter

equal to one; the effect of different shape parameters can be rolled into γ0, γ1, b1, b2.

Each arriving customer also has a random delay sensitivity parameter χ for the offered good,

which is assumed to be drawn from a continuous distribution with finite support, is independent of

ǫ and i.i.d. across customers. Given that an arriving customer decides to purchase a product, she

makes her selection to minimize their cost given by pi + χdi, i.e.,

P(i | inc) = P (pi + χdi ≤ pj + χdj , ∀j 6= i) ; (44)
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the form of (44) captures the price-delay trade-off faced by each customer, and differs from the

Multinomial Logit model used in [10]. Assuming that potential customers arrive according to a

Poisson process with rate Λ, products are labelled in such a way that d1 < d2 < · · · < dI , and that

prices are ordered in reverse, i.e., p1 ≥ p2 ≥ · · · ≥ pI , we get that

λi(p; d) = Λ · P(inc) · P(i | inc) = Λ · eV (p,d)

1 + eV (p,d)
· P
(

max
j>i

pi − pj
dj − di

≤ χ ≤ min
k<i

pk − pi
di − dk

)

.

Many goods offered at multiple (price, leadtime) combinations: The above model can

be extended to allow for many goods offered at potentially multiple (price, leadtime) combinations

by incorporating the decision of which good to purchase in the incidence probability, leaving un-

changed the second decision stage where a customer selects which product option of a particular

good to purchase. Specifically, suppose that there are K goods, with K < I. Define a K × I

constituency matrix C such that C(k, i) = 1 if product i corresponds to good k, and C(k, i) = 0

otherwise, and let C(k) = {i : C(k, i) = 1} to be the set of products that correspond to good k. Let

V k(p, d) = γk0 + γk1 log
(

∑

i∈C(k)e
−bk

1
pi−b

k
2
di

)

,

denote the purchase utility from good k products, and the constants γk0 , γ
k
i , b

k
1, b

k
2 are meant to

have been calibrated from observed data. Assume that a customer’s net purchase utility for good

k products is V k(p, d) + ǫk, where the ǫk’s are i.i.d. across goods, Gumbell distributed random

variables with shape parameter one. The incidence probability, which now reduces to the decision

of which good to purchase, if any, is computed using the Multinomial Logit Model [35, §7.2]:

P (select good k) =
eV

k(p,d)

1 +
∑

j e
V j(p,d)

.

The product choice is done according to (44), specialized only to products in the set C(k).

A structural property of this demand model and its impact on leadtime control:

An important step in implementing the policy described in §3 is the computation of the optimal

demand vector given a target aggregate traffic intensity ρ∗ = 1 − ψ∗/
√

Λ̂; see §3 and Theorem

1. Simple but long algebraic manipulations show that in the parameter regime of interest in this

paper, i.e., where Λ and µ are large, the solution to the problem for the single good case

max
p

{

∑

ipiλi(p; d) :
∑

iλi(p; d) = µ(1 − ψ/
√

Λ̂)
}

,

is of the form

pi = p̄+
πi
√

Λ̂
+
z(ψ)
√

Λ̂
+ o(1/

√

Λ̂),
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where p̄ = p(λ̄(d); d), and πi, z(ψ) ∈ R. A similar result can be proved for multiple goods offered at

different price, leadtime combinations, in which case the terms zk(ψ) will depend on the good k.

This expression has an important implication on the firm’s “leadtime control policy.” Specifi-

cally, for such a pricing policy (pi − pj) = (πi − πj)/
√

Λ̂ for all ψ, which plugging into (44) gives

that P(i | inc) is independent of ψ! From a managerial perspective this provides a very insightful

result: the firm adjusts its nominal price level through z(ψ)/
√

Λ̂ to modulate the aggregate order

volume placed with the system, while keeping the fractions of the total order flow that choose

each leadtime option constant. That is, it does not choose to divert demand from one leadtime

to another as the system gets congested, but rather scale down the demand for all products by a

common factor by adjusting its price to affect the incidence probability.

Comments on modelling price and delay sensitive demand: An alternative to the two-

stage decision process of our model would consider customers arrive with a random valuation v and

delay sensitivity parameter χ, and make their purchase decisions in one stage according to

λi(p; d) = ΛP(v − pi − χidi ≥ 0, pi + χdi ≤ pj + χdj ∀ j 6= i).

While this may appear to be a more direct and natural model of demand, it is harder to analyze

because evaluating the above expression involves the joint distribution of (v, χ). Moreover, its

complexity increases significantly when one considers multiple goods offered in different (price,

leadtime) options, where customers arrive with different valuations for each of these goods. The

hierarchical decision approach of our model assumes that problem away by restricting attention to

a structure where the probability that a customer selects a particular service is given by the product

of two probabilities, where one depends on the valuation and the other on the delay sensitivity.

Apart from its inherent tractability, extensive studies reported in the marketing literature indicate

its versatility in capturing customer demand in diverse and complicated settings.

Instead of atomistic choice models, one could employ an aggregated demand relation, such as the

linear, λ(p; d) = Λ −Hp− Fd or the exponential, λi(p; d) = Λie
−hi·p−fi·d, for appropriate Λ, H, F ;

see Talluri and van Ryzin [35, §7.3]. In single-product settings with customers that either have

a random valuation or a random delay sensitivity parameter, but not both, there is a one-to-one

mapping between aggregate demand functions and distributional forms for the random customer

parameter; the linear model correspond to uniformly distributed parameters, the exponential model

corresponds to exponentially distributed parameters, and so on (see [35, §7.3.1.2]).

For customers that have two-dimensional types (i.e., two random parameters that characterize

them, such as their valuation and delay sensitivity) and in settings with multiple products that

complicate the choice behavior, such a connection is hard to establish. In part, such demand
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functions that are common practice in the revenue management literature, they seem to be better

suited in modelling demand for partially substitutable products, making them less suitable for our

problem. As an illustration of this point consider an example with two identical products offered

at different (price, leadtime) combinations as we vary the respective leadtimes. Assuming that all

customers are averse to delay (potentially to different degrees), one would expect that the more

expensive product option should have a shorter leadtime, and if we were to raise its leadtime to

be equal or greater to that of the cheaper product, then its demand would be zero. This behavior

that seems crucial in our model where price changes serve to divert demand from one leadtime to

another, cannot be captured by these aggregate demand relations. The same issue arises if the

product choice probability (44) was computed using the Multinomial Logit model [35, §7.2].

6 Numerical results and concluding remarks

This section reports on a set of numerical experiments that illustrate the effectiveness of dynamic

over static pricing, as well as the impact of leadtime control flexibility through the offering of

multiple (two in our experiments) leadtime options. We conclude with some closing remarks.

In the sequel, we adopt the following notation. E[π]: expected profit, E[ρ]: expected utilization

rate, E[EC]: expected cost of expediting, P(LT ): probability of violating the leadtime constraint,

P(exp): probability of expediting, TR: average tardiness, and E[TPT ]: expected sojourn time.

6.1 Single lead time

In order to isolate the effect of dynamic over static pricing, this subsection focuses on problems

of pricing and expediting for a single product offered with a leadtime guarantee. We consider the

following setup for these experiments. The demand model is that of §5, and unless otherwise stated,

its parameters will be as follows: the market potential is Λ = 10 and b1 = 1, b2 = 0.15, γ0 = 2, and

γ1 = 0.4 (cf. §5). Service times are i.i.d. exponentially distributed with rate µ. The expediting

cost is c = $5 per order, and expediting is used whenever the queue length reaches the threshold

µ ·d− δ, where δ ≥ 0 is a “tune”-parameter the effect of which will be studied in Table 1. In Tables

1 and 2, the offered leadtime is d = 4, which optimizes the profit rate under static pricing. For

these parameters, the capacity unconstrained revenue maximizing demand rate is λ̂(d) = 5.

Table 1: The effect of the expediting “tune”-parameter δ. (Typical standard deviations for the various

estimated performance measures were of the order of .1% of the estimated parameter value.)

The effect of the expediting “tune”-parameter δ: The first set of results focuses on the

22



Dynamic Static

δ E[π] E[ρ] P(exp) P(LT ) TR E[π] E[ρ] P(exp) P(LT ) TR

0 20.66 .98 .021 .097 .57 19.24 .93 .060 .0041 .29
1 20.40 .97 .030 .070 .48 18.99 .92 .068 .0018 .27
2 20.10 .97 .039 .046 .43 18.78 .92 .074 .0005 .22
3 19.83 .97 .046 .027 .38 18.53 .91 .080 .0002 .21
4 19.43 .97 .058 .014 .34 18.20 .91 .090 .0000 .10

efficiency of the proposed expediting policy. In these experiments, the service rate is µ = 4, which

gives that ρ∗(d) = λ̂(d)/µ = 1.25, or equivalently that κ = 0.45 (c.f., equations (7) and (12)). We

note that the gap between static and dynamic pricing was around 6.5%, providing an illustration

of the conservative nature of static pricing policies, which, in turn, lead to higher probabilities of

expediting (since price increases cannot be used to turn away orders) but lower probabilities of

leadtime violation. The average tardiness is also shorter under static pricing (recall that the target

leadtime is d = 4). The effect of the tune parameter δ on the probability of violating the leadtime

guarantee was as expected, and hereafter this parameter will be selected so that the probability

of an order violating its leadtime guarantee is no greater than 3%. (In almost all tests the static

pricing policy had a smaller parameter δ than the dynamic pricing one.)

The effect of capacity imbalance or load factor (ρ∗): The accuracy of the approximations

used in §4 is higher in systems where the capacity unconstrained revenue maximizing demand rate

λ̂(d) is close to the available capacity µ. This is best described by the load factor ρ∗(d) = λ̂(d)/µ,

although in the context of our analysis this distance is captured via the parameter κ which measures

the distance λ̂(d)−µ relative to

√

λ̂(d), the natural scale on which to study and control the second

order behavior of the system. Table 2 explores the dependence of our results with respect to this

parameter, and illustrates that the value of dynamic pricing is more pronounced for nominal loads

ρ∗(d) that are between .8 and 1.25. If the system is either significantly over- or under-capacitated

then the gap between dynamic and static pricing policies decreases. This agrees with what one

would expect from studying the functional forms for ψ∗(w) in Theorem 1 as |κ| grows large. It is

also consistent with the optimal policy that would emerge from a diffusion model formulation with

a linear profit loss function in (20), which would apply if λ̂(d)−µ was large and a first order rather

than second order Taylor expansion was more applicable.

Table 2: The effect of capacity imbalance (κ) or load factor (ρ∗).

The effect of the leadtime (d): Table 3 studies the system behavior under the dynamic and

static pricing heuristics derived in §4 as a function of the quoted leadtime. The main observation

is that the impact of dynamic pricing is more pronounced when leadtimes are shorter, since in such
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Dynamic Static
µ ρ∗(d) κ E[π] E[ρ] P(exp) Gap (%) E[ρ] P(exp)

3.5 1.43 .67 17.76 .99 .092 .26 .94 .090
4 1.25 .45 19.83 .97 .046 2.97 .93 .060

4.5 1.11 .22 21.30 .95 .014 4.52 .91 .039
5 1.00 .00 21.65 .92 .009 2.72 .88 .025

5.5 0.91 -.22 21.85 .88 .005 1.35 .85 .013
6 0.83 -.45 21.93 .82 .002 .53 .81 .006

6.5 0.77 -.67 21.96 .77 .001 .19 .76 .002
7 0.71 -.89 21.99 .71 .0005 .12 .71 .001

cases static prices have to be selected conservatively to avoid excessive use of expediting.

We also experimented with varying other parameters such as the market potential Λ and the

expediting cost c. The former has a similar effect to decreasing the capacity µ (c.f., Table 2), while

the latter had the expected effect that as c increases, prices increase so as to lower the probability

of expediting, and in such cases the benefits from dynamic pricing are more important.

Table 3: The effect of different leadtime guarantees.

Dynamic Static
d E[π] P(exp) P(LT ) E[TPT ] E[π] P(exp) P(LT ) E[TPT ]

2 18.63 .115 .030 .93 17.20 .152 .002 .62
3 19.65 .068 .028 1.46 18.83 .087 .004 1.10
4 19.83 .046 .027 2.00 19.24 .060 .004 1.56
5 19.62 .037 .026 2.59 19.21 .046 .004 2.02
6 19.30 .029 .024 3.15 18.97 .037 .005 2.51

6.2 Effect of leadtime flexibility: single good offered at two leadtimes

We adopt the same model parameters as for the experiments reported above, setting the service rate

at µ = 4, together with the specification that the delay sensitivity parameter χ used in selecting

a product in (44) is uniformly distributed in an interval [0, χm], and χm = 2 unless otherwise

specified. Since both products correspond to the same good, we will assume that ci = 5 for i = 1, 2.

Table 4: Performance measures for different leadtime combinations.

Our first set of results looks at the impact of leadtime flexibility on a baseline example that

was already analyzed in the previous subsection, for which µ = 4 and a single leadtime option
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Dynamic Static
d1, d2 ∆(π) (%) P(exp) ∆(π) (%) P(exp)

3, 4 9.65 .073 7.95 .085
3.5, 4 10.34 .065 8.88 .075

3.5, 4.5 12.00 .056 8.77 .078
3.5, 5 10.61 .066 9.02 .078
4, 4.5 12.71 .047 9.84 .067
4, 5 11.74 .056 10.21 .067

was offered at d = 4 (that corresponds to the second row in Table 2). The results in this table

study the performance of dynamic and static pricing for various pairs of leadtimes (d1, d2). The

profit gain reported in the table is in comparison to the system with the single leadtime d = 4

under static pricing. Recall that from Table 2 we know that even with a single leadtime the use of

dynamic pricing leads to a 3% profit gain. The results of this table offer a representative picture

of the type of performance gains observed in a variety of other examples we tested, as well as the

differences between dynamic and static pricing. [The latter, of course, depends on the parameter

κw as illustrated in Table 2, and are more significant whenever the system’s capacity is close to the

revenue maximizing demand rate λ̂(d).

We complement this table by reporting average results from a larger set of test problems where

we varied some of the demand model parameters as follows: Λ ∈ {8, 10, 12}, b1 ∈ {.8, 1, 1.2},
and b2 ∈ {.1, .15, .2}. For all possible parameter combinations, we first considered the problem of

offering one product option and searched for the optimal leadtime d∗ under the static pricing policy.

We then tested the performance of the dynamic and static pricing policies for the case where the

firm offered two leadtime options defined as d1 = (.8)d∗ and d2 = (1.2)d∗. Once again we report %

profit gains over the single-leadtime system under static pricing. We observed the following results:

i. Dynamic pricing: average profit gain was 13.97% with a standard deviation of 2.34%.

ii. Static pricing: average profit gain was 10.69% with a standard deviation of 2.99%.

iii. Dynamic versus static pricing: average gap 3.28% with a standard deviation of 2.03%. Actual

differences ranged in [1.06%, 10.30%].

6.3 Concluding remarks

This paper developed a framework for studying problems of joint dynamic pricing and leadtime

quotation in make-to-order queues. A key feature of our model was that it assumed that the firm

commits to a set of predetermined leadtime options at which to offer each good, and then focuses
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on dynamic pricing decisions to both manage the overall demand into the system as well as its split

across the different leadtime options. This reduced the joint control problem to one of dynamic

pricing subject to leadtime guarantees, which is more tractable. In parallel, we proposed a model

of purchase behavior for price and delay sensitive demand that seems suitable for problems with

perfectly substitutable products that are differentiated in terms of their prices and leadtimes. Our

analysis based on an approximating diffusion control problem led to several insights regarding the

structure of near-optimal sequencing, expediting and pricing policies, as well as to the value of

dynamic pricing and leadtime control in make-to-order environments.

Perhaps the most important issue for future work that is motivated by this paper would be to

study the extent to which the proposed demand model offers an accurate representation for actual

purchase behavior from price and delay sensitive customers selecting among products that are

differentiated in these dimensions. This practical concern lies at the core of revenue optimization

in make-to-order or stochastic service systems, and has important implications on the nature of the

decisions that one would make, the type of product differentiation that a firm may want to achieve,

and the market equilibrium that would emerge in a competitive environment. A related aspect of

demand modelling that needs to be studied is the long-run strategic interaction between the firm

and its customers when the firm adopts tactical demand management techniques.

Analytically, the model analyzed in this paper is fairly stylized and needs to be extended in order

to offer a more accurate representation of a production system, as well as to systems that either

exclusively or partly operate in a make-to-stock fashion. Another interesting problem would be to

optimize over the vector of leadtime options that the firm will choose to offer; this would use the

demand model proposed in §5 to optimally trade off revenues with expediting costs. Finally, from

a purely analytical viewpoint, our paper left unanswered the question of whether the proposed set

of policies is asymptotically optimal in the regime identified in §4.1. Addressing this point would

combine elements from Plambeck et.al [31] and Mandelbaum and Pats [27], with a significant

extension, however, to deal with the fact that the proposed policy is not pathwise optimal (which

is a property that simplifies such proofs allowing one to use sample path arguments).

A Appendix

Background on queues in heavy-traffic. We list below a few known results from heavy-traffic

theory for an M/M/1 queue that play a role in setting up our diffusion approximation. Specifically,

consider a sequence of single-product queues with no pricing or expediting control capability that

are indexed by n, where the nth system has Poisson demand with rate λn = µ(n− θ
√
n) for θ > 0

and service rate µn = nµ. This set of parameters gives rise to the so-called heavy-traffic regime,
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where ρn = 1 − θ/
√
n. Let Qn(t) denote the queue length process associated with that system.

Then, the following are true (see [27] for a derivation):

i. Qn(t)/
√
n converges weakly5 to a limit process Z(t) (i.e., Qn(t) is of order

√
n).

ii. Let wn(t) denote the virtual waiting time for an order arriving at time t. Then,
√
nwn(t)

converges weakly to Z(t)/µ (i.e., waiting times wn(t) are of order 1/
√
n).

From ii. we see that leadtime constraints of the form wn(t) ≤ dn, asymptotically reduce to an

upper bound on the queue length of the form Z(t) ≤ µd, where d = limn
√
ndn. With that in mind,

consider the same M/M/1 queue with order expediting whenever the queue reaches the threshold

Kn = µndn, noting that the magnitude of Kn =
√
n(µd) is consistent with point i.. This system

behaves like an M/M/1/Kn queue, for which one can show (see Plambeck et.al. [31] for an analysis

of a multi-product version of such a system) that i. - ii. above continue to hold and moreover:

iii. Bn(t)/
√
n converges weakly to a well defined continuous, non-decreasing limit process (i.e.,

the number of orders expedited in [0, t] is of order
√
n).

Sketch of proof of Theorem 1. In the sequel we will only provide a skeleton of the steps required

in the proof of this result with appropriate references to [4] for detailed arguments.

Step 1 – Characterization of the solution using results from [4]: The arguments of Propositions

3 and 4 in [4] suggest that the optimal policy can be characterized as a solution to the following

Bellman equation by finding a constant γ and a continuous, twice differentiable function V that

satisfy:

γ = min
ψ

{

σ2
w

2
V ′′(w) − ψV ′(w) + αw(ψ + κw)2

}

for w ∈ (0, w̃) (45)

with boundary conditions

V ′(0) = 0 and V ′(w̃) = c̃I µ̃I . (46)

The first order optimality conditions for (45) give that ψ∗(w) = V ′(w)/(2αw) − κw and that

γ =
σ2
w

2
V ′′(w) − 1

4αw
(V ′(w) − 2αwκw)2 + αwκ

2
w. (47)

This is, of course, a first-order differential equation, which can be summarized in the form:

σ2
w

2

(

v′(w)

γ − αwκ2
w + 1

4αw
(v(w) − 2αwκw)2

)

= 1 for w ∈ (0, w̃), (48)

5If (Xn(t) : t ≥ 0) and (X(t) : t ≥ 0) are continuous time stochastic processes with sample paths in Dm[0,∞),
the space of right-continuous functions with left limits (RCLL), then Xn(·) ⇒ X(·) denotes weak convergence in
Dm[0,∞) with respect to the Skorohod topology, see, e.g., [6, §3].
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for v(w) = V ′(w). The boundary conditions are v(0) = 0 and v(w̃) = c̃I µ̃I .

The solution to (48) can be obtained using the steps outlined in [4, §3.3-3.4]. Specifically, in

the notation of [4] we have that φ(v(w)) = 1/(4αw)(v(w) − 2αwκw)2 − αwκ
2
w, b = w̃ and p = c̃I µ̃I .

Corollary 1 from [4] ensures that this equation admits a unique solution (γ, v), with γ > 0, that

jointly satisfy (48) together with the two boundary conditions. In addition, the long-run profit loss

γ is strictly increasing in the expediting cost parameter c̃I µ̃I (see Ata [2, Proposition 12]).

For the particular cost structure of our problem, one can derive a closed form characterization

of the optimal (γ, v), and therefore of the optimal drift function itself, ψ∗(w). This is done in the

remainder of this proof that is divided in three cases covering the possible parameter combinations

where c̃I µ̃I − h(αw, κw, w̃, σw) is zero, positive, or negative, respectively.

Step 2 – Closed form characterization of the optimal drift function:

Case i. (h(c̃I µ̃I , αw, κw, w̃, σw) = 0): Let’s assume optimistically that γ = αwκ
2
w, in which case

(48) reduces to

2αwσ
2
w

v′(w)

(v(w) − 2αwκw)2
= 1 for w ∈ (0, w̃),

with the boundary conditions v(0) = 0 and v(w̃) = c̃I µ̃I . Making the change of variable u :=

(v(w) − 2αwκw), and integrating from w = 0 to w = y we transform the above equation to

2αwσ
2
w

∫ u2

u1

du

u2
= y for y ∈ (0, w̃),

where u1 = −2αwκw and u2 = (v(y) − 2αwκw), from which we get that

2αwσ
2
w

[

1

2αwκw − v(y)
− 1

2αwκw

]

= y for y ∈ (0, w̃).

and that

v(w) = 2αwκw −
(

w

2αwσ2
w

+
1

2αwκw

)−1

.

Note that v(0) = 0 and v(w̃) = c̃I µ̃I if and only if h(c̃I µ̃I , αw, κw, w̃, σw) = 0. From ψ∗(w) =

v(w)/(2αw) − κw we derive (36). Brute force verification shows that γ = αwκ
2
w and v(w) defined

above satisfy (48), and an application of Theorem 1 [4] establishes the optimality of (36).

Case ii. (h(c̃I µ̃I , αw, κw, w̃, σw) > 0): Given the monotonicity of γ as a function of c̃I µ̃I [2,

Proposition 12] and the result of case i., the parameter combinations considered in this case will

have γ > αwκ
2
w. With that in mind, we let ζ1 = γ −αwκ

2, and proceed under the assumption that

ζ1 > 0, making the change of variable u := (v(w)− 2αwκw)/(2
√
αwζ1), and integrating from w = 0
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to w = y we transform the above differential equation to

σ2
w

√

αw
ζ1

∫ u2

u1

du

1 + u2
= y for y ∈ (0, w̃),

where u1 = −κw
√

αw

ζ1
and u2 = (v(y)−2αwκw)/(2

√
αwζ1). Recalling from calculus that

∫ w
t

du
1+u2 =

arctanw − arctan t, leads to the following solution for the above equation:

σ2
w

√

αw
ζ1

[

arctan

(

v(y) − 2αwκw

2
√
αwζ1

)

+ arctan

(

κw

√

αw
ζ1

)]

= y for y ∈ (0, w̃) (49)

which should satisfy the boundary conditions at y = 0 and y = w̃. The condition at y = 0 is

satisfied since v(0) = 0. Using v(w̃) = c̃I µ̃I at y = w̃, the second boundary condition reduces to

σ2
w

√

αw
ζ1

[

arctan

(

c̃I µ̃I − 2αwκw

2
√
αwζ1

)

+ arctan

(

κw

√

αw
ζ1

)]

= w̃, (50)

which can be used to specify the positive constant ζ1, which is guaranteed to exist and is unique

[4, Corollary 1]. Using (49) we get that

v(w) = 2
√

αwζ1 · tan

[

w

σ2
w

√

ζ1
αw

− arctan

(

κw

√

αw
ζ1

)

]

+ 2αwκw, (51)

from which we derive the control ψ given in (37). Brute force analysis shows that (γ, v) with

γ = ζ1 +αwκ
2
w solve (48), and an application of Theorem 1 in [4] establishes the optimality of (37).

Case iii. (h(c̃I µ̃I , αw, κw, w̃, σw) < 0): As before, the monotonicity of γ as a function of c̃I µ̃I

[2, Proposition 12] and the result of case i. imply that the parameter combinations considered here

will have 0 < γ < αwκ
2
w. With that in mind, we let ζ2 = −(γ − αwκ

2
w), and rewrite (47) as:

− σ2

2ζ2

(

v′(w)

1 − 1
4αwζ2

(v(w) − 2αwκw)2

)

= 1 for w ∈ (0, w̃).

Proceeding under the assumption that ζ2 > 0, making the change of variable u := (v(w) −
2αwκw)/(2

√
αwζ2), and integrating from w = 0 to w = y we get that

−σ
2

2

√

αw
ζ2

[

ln

∣

∣

∣

∣

v(y) − 2αwκw + 2
√
αwζ2

−v(y) + 2αwκw + 2
√
αwζ2

∣

∣

∣

∣

− ln

∣

∣

∣

∣

∣

√

ζ2/αw − κw
√

ζ2/αw + κw

∣

∣

∣

∣

∣

]

= y for y ∈ (0, w̃), (52)

together with the boundary conditions v(0) = 0 and v(w̃) = c̃I µ̃I . Using (52) we get that

v(w) = (2αwκw + 2
√

αwζ2) − 4
√

αwζ2

[

1 − exp

{

−2w

σ2

√

ζ2
αw

+ C

}]−1
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where C = ln

(√
ζ2/αw−κw√
ζ2/αw+κw

)

, which in turn implies the functional form for ψ given in (38). It is

easy to verify that v(0) = 0, while v(w̄) = c̃I µ̃I reduces to

(2αwκw + 2
√

αwζ2) − 4
√

αwζ2

[

1 − exp

{

−2w̃

σ2

√

ζ2
αw

+ C

}]−1

= c̃I µ̃I , (53)

which can be used to define ζ2 as its unique positive solution, which from [4, Corollary 1] and

[2, Proposition 12] is guaranteed to lie in (0, αwκ
2
w). Proceeding as for the two previous cases for

γ = αwκ
2
w − ζ2 establishes the optimality of (38).
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