Introduction	Model	Outcome Measures	Results	Conclusions
00	0 000 00	0000	000 0000 000	00

Optimizing Influenza Vaccine Distribution

Jan Medlock

Clemson University Department of Mathematical Sciences

03 August 2009

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction • 0

Outcome Measures

Results
000
0000
0000

Conclusions

Who Should Get Influenza Vaccine When Not All Can?

Ezekiel J. Emanuel* and Alan Wertheimer

The potential threat of pandemic influenza is staggering: 1.9 million deaths, 90 million people sick, and nearly 10 million people hospitalized, with almost 1.5 million production is just 425 million doses per annum, if all available factories would run at full capacity after a vaccine was developed. Under currently existing capabilities for manufacturing

Science 2006

Rather than thinking only about saving the most lives when considering vaccine rationing strategies, a better approach would be to maximize individuals' life span and opportunity to reach life goals.

beds despite the presentation of another patient who is equally or even more sick; "Save the most quality life years" is central to cost-effectiveness rationing. "Save the worst-off"

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Should value people "on the basis of the amount the person invested in his or her life balanced by the amount left to live."
- Then vaccinate the most-valued people!
- Misses epidemiology: Transmission, Case mortality, Vaccine efficacy

Introduction • 0

Outcome Measures

Results
000
0000
0000

Conclusions

Who Should Get Influenza Vaccine When Not All Can?

Ezekiel J. Emanuel* and Alan Wertheimer

The potential threat of pandemic influenza is staggering: 1.9 million deaths, 90 million people sick, and nearly 10 million people hospitalized, with almost 1.5 million production is just 425 million doses per annum, if all available factories would run at full capacity after a vaccine was developed. Under currently existing capabilities for manufacturing

Science 2006

Rather than thinking only about saving the most lives when considering vaccine rationing strategies, a better approach would be to maximize individuals' life span and opportunity to reach life goals.

beds despite the presentation of another patient who is equally or even more sick; "Save the most quality life years" is central to cost-effectiveness rationing. "Save the worst-off"

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Should value people "on the basis of the amount the person invested in his or her life balanced by the amount left to live."
- Then vaccinate the most-valued people!
- Misses epidemiology: Transmission, Case mortality, Vaccine efficacy

Introduction • 0

Outcome Measures

Results
000
0000
0000

Conclusions

Who Should Get Influenza Vaccine When Not All Can?

Ezekiel J. Emanuel* and Alan Wertheimer

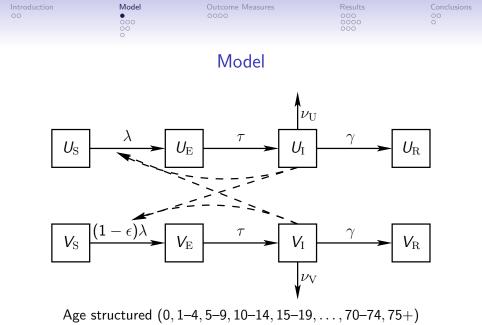
The potential threat of pandemic influenza is staggering: 1.9 million deaths, 90 million people sick, and nearly 10 million people hospitalized, with almost 1.5 million production is just 425 million doses per annum, if all available factories would run at full capacity after a vaccine was developed. Under currently existing capabilities for manufacturing

Science 2006

Rather than thinking only about saving the most lives when considering vaccine rationing strategies, a better approach would be to maximize individuals' life span and opportunity to reach life goals.

beds despite the presentation of another patient who is equally or even more sick; "Save the most quality life years" is central to cost-effectiveness rationing. "Save the worst-off"

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

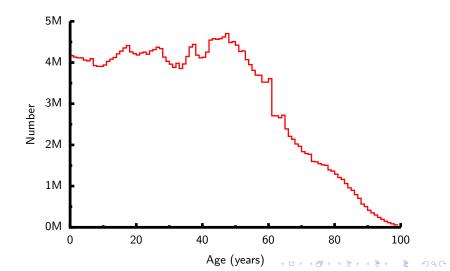

- Should value people "on the basis of the amount the person invested in his or her life balanced by the amount left to live."
- Then vaccinate the most-valued people!
- Misses epidemiology: Transmission, Case mortality, Vaccine efficacy

Introduction	Model	Outcome Measures	Results	Conclusions
0•	0 000 00 0	0000	000 0000 000	00

Problem Setup

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- For influenza
- Age structure but not risk or occupation
- Given an outcome measure
- How to distribute limited vaccine doses?
- Nonlinear constrained optimization



No birth or natural death

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへ⊙

Introduction	Model	Outcome Measures	Results	Conclusions
00	0	0000	000	00
	000		0000	0
	00		000	
	0			

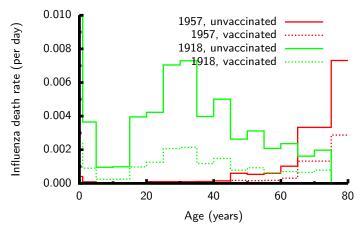
2007 US Population Age Structure

Introduction 00

Outcome Measures

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Conclusions


Parameters

Parameter	Ages	Value	Ref
Latent period, $1/ au$	all	1.2 d	[1]
Infectious period, $1/\gamma$	all	4.1 d	[1]
Vaccine efficacy	0–64	0.80	[2, 3]
against infection, ϵ_a	65+	0.60	
Vaccine efficacy	0–19	0.75	
against death	20–64	0.70	[4, 2]
	65+	0.60	

[1] Longini et al, *Science*, 2005; [2] Galvani, Reluga, & Chapman, *PNAS*, 2007; [3] CDC, ACIP, 2007; [4] Meltzer, Cox, & Fukuda, *Emerg Infect Dis*, 1999.

Introduction	Model	Outcome Measures	Results	Conclusions
00		0000	000 0000 000	00 0

Death Rate

Sources: Serfling, Sherman, & Houseworth, Am J Epidemiol, 1967; Luk, Gross, & Thompson, Clin Infect Dis, 2001; Glezen, Epidemiol Rev, 1996.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

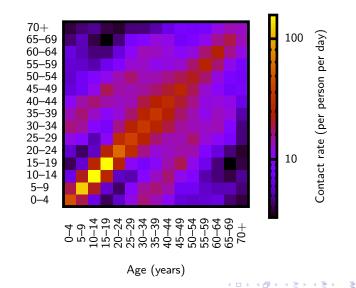
Introduction 00	Model ○ ○○○ ●○ ○	Outcome Measures	Results 000 0000 000	Conclusions 00 0

Contacts

OPEN a ACCESS Freely available online

PLOS MEDICINE

Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases


Joël Mossong^{1,2*}, Niel Hens³, Mark Jit⁴, Philippe Beutels⁵, Kari Auranen⁶, Rafael Mikolajczyk⁷, Marco Massari⁸, Stefania Salmaso⁸, Gianpaolo Scalia Tomba⁹, Jacco Wallinga¹⁰, Janneke Heijne¹⁰, Malgorzata Sadkowska-Todys¹¹, Magdalena Rosinska¹¹, W. John Edmunds⁴

PLoS Med 2008

Surveyed 7,290 Europeans for daily contacts

Introduction	Model	Outcome Measures	Results	Conclusions
00		0000	000 0000 000	00

Contacts

Age (years)

- $R_0 = 1.4$ for Swine Flu (Fraser et al, Science, 2009)
- R₀ = 2.0 for 1918 Pandemic (Mills et al, Nature, 2004)
- We considered $R_0 = 1.4$ and also $R_0 = 1.2, 1.6, 1.8, 2.0$

Introduction	Model	Outcome Measures	Results	Conclusions
00	0 000 00 0	0000	000 0000 000	00

Outcome Measures

Map outcome (number infected, dead, etc) to objective

- Total Infections
- Total Deaths
- Years of Life Lost: Using expectation of life (NCHS, US Life Tables, 2003)
- Contingent Valuation: Indirect assessment of value of lives of different ages

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

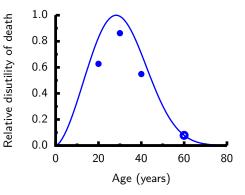
• Total Cost: Converts deaths, infections, etc into dollars

Introduction 00

Outcome Measures

Results
000
0000
000

Conclusions


Contingent Valuation

 Survey asked about 20, 30, 40, 60 year olds and fit

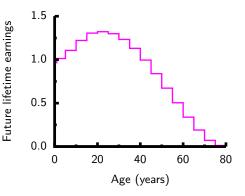
$$v_a = a^{\omega - 1} \exp\left(-\psi a^{\omega}\right)$$

(Cropper et al, *J Risk Uncertain*, 1994)

 Alternative: wage-risk market data, but only for working-aged adults

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

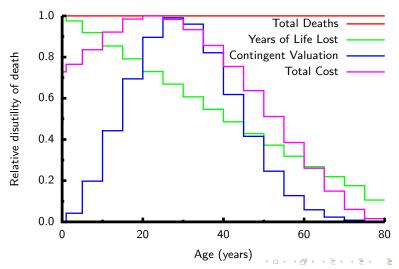
ntro	du	ctic	n	
00				


Outcome Measures

Results
000
0000
000

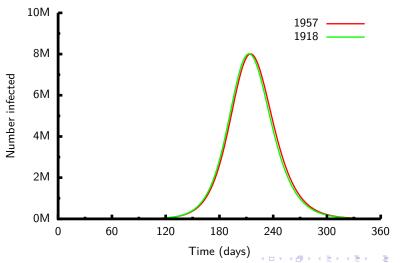
Conclusions

Total Cost


- Monetary cost of illness (Meltzer, Cox, & Fukuda, Emerg Infect Dis, 1999)
- Monetary cost of death
 - Future lifetime earnings (Haddix et al, 1996)
 - Alternatives: Include value of non-work time

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

Introduction	Model	Outcome Measures	Results	Conclusions
00	0 000 00	000●	000 0000 000	00


Outcome Measures

900

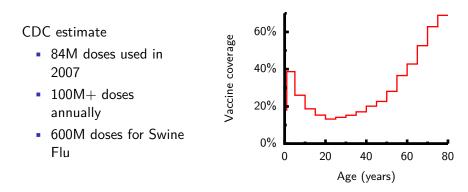
Introduction	Model	Outcome Measures	Results	Conclusions
00	0 000 00	0000	• 00 0000 000	00 0

No Vaccination

~ ~ ~ ~

ntro	lucti	ion
0		

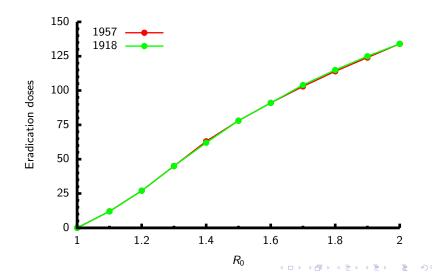
Outcome Measures


Results

イロト 不得 トイヨト イヨト

3

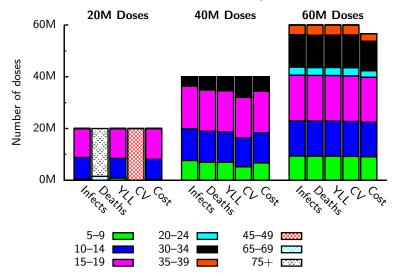
Conclusions


Current Vaccination

Sources: CDC, ACIP, 2008; NHIS, 2007.

Introduction	Model	Outcome Measures	Results	Conclusions
00	0 000 00 0	0000	○○● ○○○○ ○○○	00

Eradication


Introd	uction
00	

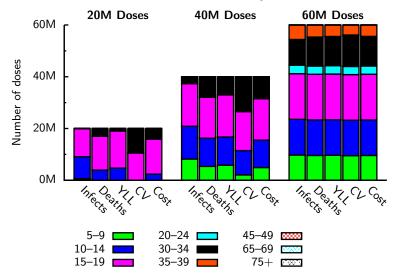
Outcome Measures

Results

Conclusions

1957-like Mortality

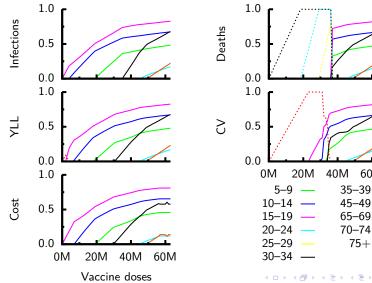
▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

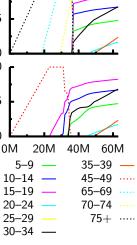

Introd	uction
00	

Outcome Measures

Results

Conclusions

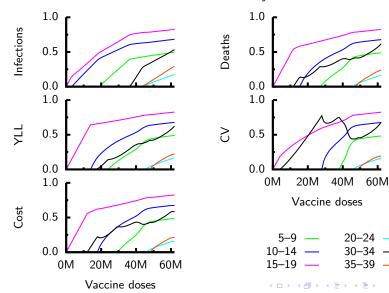

1918-like Mortality



▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

Introduction	Model	Outcome Measures	Results	Conclusions
00	0 000 00 0	0000		00

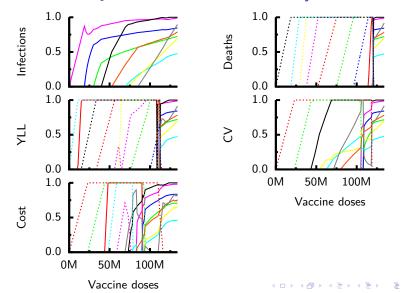
1957-like Mortality



æ

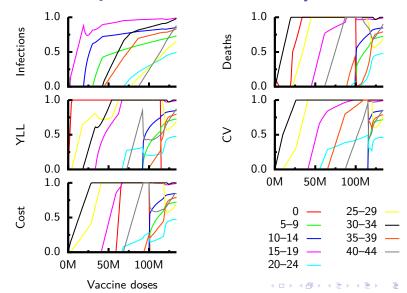
Introduction	Model	Outcome Measures	Results	Conclusions
00	0000	0000	000	00
	00		000	

1918-like Mortality



SAC

æ


Introduction	Model	Outcome Measures	Results	Conclusions
00	0 000 00 0	0000	000 0000 •00	00

 $R_0 = 2.0$, 1957-like Mortality

ntroduction	Model	Outcome Measures	Results	Conclusions
00	0	0000	000	00
	000		0000	0
	00		000	
	0			

 $R_0 = 2.0$, 1918-like Mortality

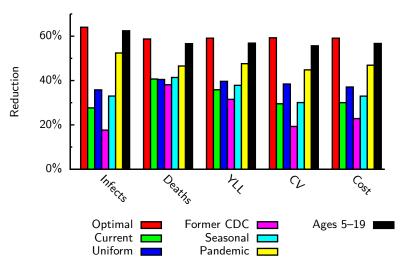
900

Introd	uction
00	

Outcome Measures

Results 000 0000 00●

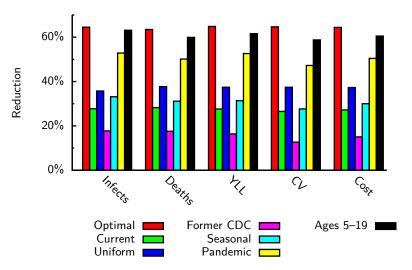
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @


Conclusions

Sensitivity Analysis

- Reduced vaccine efficacy against infection Shifts to protecting at risk
- Reduced vaccine efficacy against death Reduced susceptibility in elderly Reduced infectious period for vaccinees Reduced infectiousness for vaccinees Little change for 50% reduction

ntroduction	Model	Outcome Measures	Results	Conclusions
00	0	0000	000	•0
	000		0000	0
	00		000	
	0			


1957-like Mortality, 40M Doses

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

ntroduction	Model	Outcome Measures	Results	Conclusions
00	0	0000	000	0.
	000		0000	0
	00		000	
	0			

1918-like Mortality, 40M Doses

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Introduction	Model	Outcome Measures	Results	Conclusions
00	0 000 00 0	0000	000 0000 000	•

Conclusions

- 65M doses prevents an $R_0 = 1.4$ epidemic
- 135M doses prevents an $R_0 = 2.0$ epidemic
- Can improve vaccination policies
- Infections: Vaccinate transmitters, children (5–19) & parents (30–39)
- Deaths, YLL, Contingent, & Cost:
 - When vaccine limited, vaccinate those at risk of death

- When vaccine plentiful, vaccinate transmitters
- Transition varies between outcome measures
- Deaths averted transitions last
- Joint work with Alison Galvani Funded by NSF grant SBE-0624117