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Policy Resistance[Sterman, 2006]

policy resistance – the tendency for interventions to be defeated
by the system’s response to the intervention itself. Examples of
Policy Resistance

I Low tar and nicotine cigarettes increase intake of carcinogens
because smokers compensate by smoking more cigarettes.

I Antibiotics have stimulated the evolution of drug-resistant
pathogens.

I HAART treatment has dramatically reduced mortality among
those living with HIV, but has increased risky behaviors, including
unprotected sex and substance abuse, among youth and other
groups, causing a rebound in incidence.



Failures of SIR Theory

None of our standard epidemic models can explain problems of
policy resistance.

So, why is our theory
incomplete? Because our theory
treats a biological system like a
physics system. Atoms and
molecules, for the sake of many
problems, are points with a
relatively limited state-space.

But people have complicated internal state-spaces such that their
behaviors are functions of their environment in more complicated
ways.



The new problem - theories that describe people
with free-will

Challenges - we need a bottom-up approach that accounts for the
behaviors of people and institutions as independent but
interconnected actors.

Game theory is the study of interacting optimizing agents.
Classical game theory has focused on ideal behaviors:

I Independent actors

I Perfect information

I Unlimited computing power

I Logical objectives

Classic game theory provides a baseline.



A model of public and private investments in health

Ṡ = −σ(cs, ct)βIS + γI,

İ = σ(cs, ct)βIS − γI,
1 = S + I.

Here, individuals are investing cs
per day in their own prevention,
while paying ct in taxes per day,
compared to a baseline income
of u dollars per day.

If we let pS(t) be the probability that an
individual is in the susceptible state S
at time t and pI(t) be the probability
that and individual is infected at time t,
then individual’s futures are governed
by a Markov process...

ṗS = −σ(cs, ct)βIpS + γpI,

ṗI = σ(cs, ct)βIpS − γpI,

Note that cs 6= cs
generally.



Outline of the mathematical approach

I Predict the population dynamics based on people’s “average”
behavior in the large-population limit.

I Use Markov decision process theory or dynamical systems
theory to calculate the value of a particular strategy/behavior in a
given environment created by the average behavior.

I Study the payoff. Try to identify game “solutions” with properties
like Nash, ESS, invasion potential, convergently stable:

• If everybody is doing the same thing, do I have any reason to
be different?
• Am I doing well, no matter what other people do?

I Determine the best reachable policy.



Determining future values for risks and costs

Suppose ui(t) is the expected future value of being in state i at time
t, while Qjidt is the probability of changing state for i to j. Then

ui(t− dt) = vidt+ (1− hdt)

∑
j 6=i

uj(t)Qjidt+ (1−
∑
j

Qjidt)ui(t)


ui(t− dt)− ui(t)

dt
= vi − hui(t) +

∑
j

uj(t)Qji

duT

dt
= uT (hI−Q)− vT

Taking into account the initial distribution of for an individual’s state,
the expected value U = uTp0. This is a classic result of Markov
decision process theory [Howard, 1960].



Payoffs to individuals and communities

For an individual, the payoff of investing cs is exposure reduction
while everybody else is investing cs

U(cs; cs, ct) =
u− ct
h
− (h+ γ)cs + βI∗σ (cs, ct) ci

h [h+ γ + βI∗σ (cs, ct)]
, (3)

I∗ = 1− γ

σ(cs, ct)β
(4)

where h is the rate of discounting of future returns and βI∗ is the
stationary force of infection.

In a Platonic Republic, where the government’s sole objective is to
maximize the welfare of it’s citizens∗, public policy should be to
chose the tax-rate ct to maximize U(cs; cs, ct).

∗ignoring population growth effects



So what’s the payoff-surface look like?

The best payoff is for ct = .05, cs = .07.
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However, rather than maximizing the community’s payoff,
individuals should choose cs to maximize their own payoff
U(cs; cs, ct) for a given environment (cs, ct).



Relative payoffs U(cs; cs)− U(cs; cs)
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Contour plot of relative payoffs showing how individuals can
improve their payoffs compared to the average.



Solution concepts

Calculating the you future payoff isn’t enough, though, because
your future isn’t predetermined. Your future depends on both your
decisions and the decisions of everybody else.

The question, then is how does your payoff depend on your
choices cs and the choices of others cs. What is the shape of

U(cs, cs)? (5)

There may be decisions c∗s

I . . . that are best for you, no matter what everybody else does.

I . . . where you never do worse than anybody else.

I . . . such that nobody would want to change their mind if given a
second chance.



Partial orderings of the strategy space

One way to formally describe the properties of the various solution
concepts that is valid for arbitrary strategy-spaces in a game
describing choice in a single population is in terms of two partial
orderings

The Nash ordering based on what strategies beat resident’s

N>(cs) = {cs : U(cs, cs) > U(cs, cs)}, (6)

and a Smith ordering describing what resident strategies are
beatable.

S>(cs) = {cs : U(cs, cs) > U(cs, cs)}, (7)

These conditions provide an axiomatic approach to existence of
fitness landscapes, ESS’s, recursively dominate strategies, and
weak equilibria in local and global senses.



Nash equilibria and ESS’s

A Nash equilibrium in a population game is a strategy c∗s, such that,
when everybody plays c∗s, nobody wants to change their mind.

N>(c∗s) = ∅ (8)

A Nash equilibrium has global invasion potential if it never does
worse than the resident strategy.

S≥(c∗s) = everything. (9)

Such a strategy is usually called an Evolutionary Stable Strategy
(ESS)
Theorem 1. If σ(cs, ct) is decreasing and convex in cs, then there is
a unique Nash equilibrium c∗s(ct) for every taxation rate ct ≥ 0.



Policy resistance - illusions of opportunity
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Theorem 2. If the effects of government and individual
interventions are independent, such that σ(cs, ct) = σs(cs)σt(ct),
then increased taxation decreases equilibrium individual
investment in self-protection ( dc∗s/dct ≤ 0).



So what does it mean?

I Results depend greatly on how individual and community
investment interact to reduce risk (σ(cs, ct)’s shape). If taxation is
inefficient, it does more harm than good. But scale effects on
capital potentially allow taxation to reduce risk much more than
is possible by individuals alone.

I The ideal outcome depends on perspective. What’s ideal for the
community is not necessarily ideal for individuals.

I Large, sudden changes in policy can have unforeseen
consequences if not designed to account for behavioral
feedbacks.



Simple models can provide very satisfying just-so
stories, but how much can we trust them?

The fundamental ingredient in these analyses are the calculation of
Nash equilibria, but I don’t have very much intuition yet for what the
Nash equilibria look like in different epidemiological models yet.

I What if individuals have strategies that can change depending
on the age of the individual?

I What if different subpopulations have different costs and risks?
How does that effect the analysis?



Allowing Age-dependent behaviors in an SI model

Ṡy = r − σyλSy − fSy −mySy,

İy = σyλSy − (γy + f)Iy,

Ṡo = fSy − σoλSo −moSo,

İo = fIy + σoλSo − γoIo.

with λ = βyIy + βoIo.
So

Sy yI

oI

Q =


−σyλ− f −my 0 0 0

σyλ −γy − f 0 0
f 0 −σoλ−mo 0
0 f σoλ −γo

 , p(0) =


1
0
0
0

 .



Costs and benefits (felicities)

To describe differences in decisions, we associate values with each
state. We assume young and old states have values uy and uo per
day, that infection costs cyi and coi, and that total self-protection
costs cv per day.

The felicities of each state then are represented by the vector

v =


uy − (1− σy)cv

uy − cyi
uo − (1− σo)cv

uo − coi

 , (10)



The Utility Function

U(σ, λ∗) =
uyi λ

∗ σy + uy − cv + σycv
λ∗ σy + f +my + h

+
f [uoiλ∗σo + uo − (1− σo) cv]
(λ∗ σy + f +my) (λ∗ σo +mo)

where λ∗ is the equilibrium force of infection depending on the
population’s aggregate behavior σ,

uyi =
1

γy + f
(uy − cyi + fuoi) (11)

and

uoi =
1
γo

(uo − coi) . (12)

For simplicity, we assume discounting is built into the removal rates
my, mo, γy, and γo.



Best Response

The best response correspondence for stationary force of infection
λ∗ is

σB = argmaxσU(σ, λ∗) =

H

(
uy + λ∗uyi + fEo
my + f + λ∗

− uy − cv + fEo
my + f

)
×H

(
uo + λ∗uoi
mo + λ∗

− uo − cv
mo

)
where

Eo = max
σo∈[0,1]

uoiλ
∗σo + uo − (1− σo) cv

(λ∗ σo +mo)
and the Heaviside correspondence

H(x) =


0 if x < 0,
[0, 1] if x = 0,
1 if x > 0.

(13)



Determining Nash Equilibria

The Nash Equilibria are strategies which are best-responses to
themselves.

σB(λ∗(σ)) 3 σ
which can be rewritten in the scalar necessary condition

λ∗(σB(λ)) 3 λ

Theorem 3. If R0 > 1 and the stationary force of infection λ∗ is a
strictly increasing function of both σy and σo, cv > 0, then there is a
unique Nash equilibrium strategy σ∗ as long as

uo − cv
mo

6= uy − cv − (my + f) (uyi − uoi)
my

,



Force of infection λ when βy ≈ βo
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Solution to the fixed point equation
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Non-Monotonicity of Stationary Solutions (βy ≈ 0)
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However, the stationary force of infection is not always monotone in
the self-protection fractions. This can potentially create 3 Nash
equilibria, of which 2 are “stable”.



Possible Solution to the fixed point equation
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When there are 3 equilibria, neither extreme can
invade the other
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Interacting subpopulations with different interests

Rather than having a single homogeneous population, suppose we
consider the problem of two seperate populations (for instance,
men and women)

Ṡ1 = γI1 − λ1σ1S1, (14a)

İ1 = λ1σ1S1 − γI1, (14b)

Ṡ2 = γI2 − λ2σ2S2, (14c)

İ2 = λ2σ2S2 − γI2, (14d)

λ1 = β11I1 + β21I2, (14e)

λ2 = β12I1 + β22I2 (14f)

with S1 + I1 = 1 and S2 + I2 = 1 [Hethcote and Yorke, 1984,
Beretta and Capasso, 1986].



The game equilibria depend on the mixing pattern
and the differences in costs †
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†The analysis of this game parallels similarities to the analysis of Lotka’s competition model.



Summary

I Games of behavioral response to infectious diseases can be
constructed by extending population-scale models to include
Markov process descriptions of individual’s lives.

I These games allow us to account for “policy resistance” when
we make decisions.

I Infectious disease games can admit multiple solutions, each of
which has it’s own implications for community structure.

I Non-monotone effects can lead to non-unique game equilibria.
(imperfect efficacy, disassortative mixing, age-dependent
virulence)

I Policy models can incorporate game theory into their
optimization objectives to anticipate policy resistance.
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