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Epidemiology

Mathematical Models for
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Simdemics: High resolution network-based modeling

1. Create a synthetic population
 Sampling Contingency Tables, Assignment Problems
2. Derive a social contact network G

* Assign activities (CART Trees), locations (Gravity models),
Construction and analysis of large networks

3. Create a model of disease transmission
* Design probabilistic timed finite state automata based on data
4. Simulate disease spreads over G

 Simulation of a diffusion process

5. Study effect of interventions: co-evolution of G,
behavior, policy and disease progression

 Markov decision processes (MDP) and n-way games
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Step 1: Synthetic populations

*Who, where, what, = & <+l . [« Activity
L T | '
when: People R A e Locations
— Individuals John Doe
Age: 37
— Household structure Dest: Boeing
— Statistically identical e Income: $37K
to U.S. Census P I A o
- L " Streets
— Assigned to Home and I i B R
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Beckman et al. Transportation Science, NISS technical reports, Barrett et al. TRANSIMS technical reports
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Step 2: Urban dynamic social contact network

= Demographically match schedules

PR s00em L oo

4

= Assign appropriate locations by

8.

. . . y 1 %'/-QQPSA/ Ofﬂ;e f Cleaning % 3 1B
activity and distance 1 C Rg
. . . . Home B 2 oo ‘g» = Home
= Determine duration of interaction Houshols - i
ingle Mother Daycare e
. and Daughter Grandma's
= (Generate social network
fi‘;lzle Vertex: Location Vertex:
« household size ® C> * (x,y.2)
* gender e land use.
* Income .. * Business type

Edge labels

e activity type: shop, work, school
e (start time 1, end time 1)

o (start time 2, end time 2)
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Social Contact Networks are not easy to shatter
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Realistic Social Contact network differ from
“simple" random networks

Number of Subgraphs
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Number of Nodes in Template Graph
Portland Network:
=Cliques within same age group (0-19).
= Simple random graph models cannot produce these structures
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’ The probability of transmission
- @8 can depend on:
' - type of disease
=8 - duration and type of contact
- person’s characteristics
- age, health state, etc.

- — D
’ N atent 1ntectious
_' __________________ e 2 Within host model:
0.1 ay = . .
. ‘ w0 _. v Probabilistic timed
AN _» ay ays

03 transition systems (PTTS)
t untreated —» ---- vaccine ----» /
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Step 4: Fast Simulations for Disease Spread

Distinguishing EpiSims EpiSimdemics EpiFast
Features (Nature’04) (SC'09) (ICS’ 2009)
Solution Method Dls.crete Event Inter.actlonTBased Co.rnblnato.rlal
Simulation Simulation +discrete time
Performance 180
days 9M hosts & ~40 hours 2 hours Few minutes
40 proc.
Co-evolving Social Can work Works Well Works only with
Network restricted form
Disease Edge as well Edge as well as Edge based,
y vertex based (e.g. | .
transmission as vertex independence of
threshold . .
model based . infecting events
functions)
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Visualizing the spatio-temporal diffusion

-
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Step 5: Study Effects of Interventions

= Specifying a Situation (Scenario)
- E.g. How to represent cascading failures?

= Kinds of Interventions

— PI: Vaccines and Anti-viral, Anti-biotic

— NPI: Social distancing, quarantining | QUARANTINE -

o : SMALLPOX &
= Specifying an Intervention . voLiomyeLITs|

\Keep Out of this House "™****"*" |

— When, where, whom & how much

= (Cost Functions

— Human suffering averted

— Time gained (delay of exponential growth)

— Resource constraints

lllll
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Interventions: Partially Observable Markov
Decision Process (POMDP)

Social
networks

/PO“CIGS& /Disease

individual :
behaviors ) Dynamics

»Behaviors and Disease dynamics can be cast as
generalized reaction diffusion: Leads to coupled networks
=Co-evolving dynamical systems
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New Network Measures and an application to
optimal allocation of PI
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Vulnerability and Criticality of nodes

»V/(i) = Vulnerability of a node i = probability of e | porand
getting infected, if the disease starts at a random g 0
node .Z; 0.25

& 02
=Criticality(v): reduction in epidemic size when the % o1/

0.1
0.05

node is vaccinated

»/(i, t) = Vulnerability of a node i at time t= "o o1 o2 Rl 07 08
probability of getting infected during the first t time '
steps

*Depends on

mInitial conditions

*Transmission probability

»Network structure - not a first order property

Blue nodes are highly critical but not
very vulnerable
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Vaccination based on vulnerability rank order
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Contact graph on Chicago, ~ 8 million people

Immunization Size (in 1000s)

Highly vulnerable nodes are also most critical for this network
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Computing vulnerability

- Monte-carlo samples: each sample by running EpiFast
= V.(i): probability node i gets infected in k iterations

= R(c0): top n nodes in vulnerability order, V(i)

= R(t): top n nodes in temporal vulnerability order V(i t)

Convergence of Vulnerab:lity Measure with 1 Initial Infecticn @ Ditterence between Timed and Overall Vulnerability
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Correlation with static graph measures
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Correlations with labels
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Total contact time of a node

0 Similar correlations at different transmission probabilities
0 Need better models for individual activities and contact duration
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An illustrative case study: allocating and
distributing A/Vs through public and private
stockpile
(Marathe et al.)
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The problem

Policy Problem: Is there an optimum

strategy to partition the scarce AV
doses between public stockpile
administered through hospitals and
private stockpile distributed using a
market-mechanism

Measures of Effectiveness: Number of &

infected, peak infections, cost of
recovery, equitable allocation

Additional Scientific Question: How
disease prevalence, individual

e
Prevalence

NEIWOrK Susceptibility
Structure
do

é—

behavior, network structure, disease

dynamics and AV demand co-evolve

?
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The Setup

= Use Simdemics modeling framework

= All modeling assumptions used in this study are the same as were used
for the “MIDAS medkit” study in June 2008

- Exception 1: Market distribution replaces the pre-assignment of AV Kkits
based on income

— Exception 2: Self Isolation of households based on prevalence and sick
member

— Exception 3: Disease prevalence used as a mechanism for adaptation

- Disease model, Reporting, Diagnosis and Distribution Models: Same
= New River Valley population size: 150K
= The total stockpile of AV is 15k (10% of the population size).

= The price of the AV kit can vary between $50-$150 (2008 study: 100$).
= Total household budget for the AV is 1% of the income.
= The private stockpile can be purchased by anyone who can afford it.
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Disease Models

= Disease Model:

SEIR model is used.

Transmissibility (prob. of transmission in every minute of contact between
an infectious node and a susceptible node) = 3E-5

Incubation and infectious period durations are chosen from distributions,
mean = 1.9 and 4.1 days respectively.

A/V Efficacy: Susceptible nodes are 87% less likely to get infected; infectious
nodes are 80% less likely to transmit the disease.

AV treatment and prophylaxis lasts 10 days.
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Reporting, Diagonsing and Distribution of Public
Stockpile

= Reporting and Diagnosis Model:
— 2/3 of the infectious are symptomatic and report to the hospital.
- Remaining 1/3 of the infectious are asymptomatic and 47% less likely to transmit.
— Only 60% of those who report to the hospital get diagnosed.

- Misdiagnosed: not sick but diagnosed as sick; In every 12 nodes diagnosed as
sick 2 are not sick.

= Distribution

- The hospital stockpile is distributed to only those diagnosed as
infected.

— There is no direct cost to the people for using the hospital stockpile.
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Behavioral models

= [Isolation based on Prevalence :] Once the prevalence reaches 0.2%,
for individuals diagnosed as infected, with compliance rate 40%, the
entire household is isolated at home.

= [Demand based on Prevalence:] Total AV supply is 15k: allocated
between hospitals and market

- Hospitals: give to diagnosed as infected
— Market: sells to households according to demand
*» Household demand: D, ; = —=%(1 — ¢ %)
Increases with disease prevaience (x,)
Increases with household budget (B,,); decreases with price (P,)
price is linear in remaining supply

B reflects risk aversion or prevalence elastic demand to AV.
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Suggests an optimal allocation strategy

u SuggeStS Optlmal aHO Cathn Attack Rate Decreases with Increasing Hospital Allocation
strategy of AVs between public » | | | |
and private stockpile %\
— Hospitals (public sector) should be 2 2|
given priority £ 15}
- If > threshold, the remaining o
stockpile be distributed via market. 5 . . ——
0 20 40 60 80 100

fraction (%) allocated to hospitals

— Private stockpile useful for
indiVidualS WhO dare infeCtious but Revenue from Antiviral Market vs. Hospital Allocation

not symptomatic 1000
1400
= Optimal split (40% to hospitals, _ ™
& 1000 |
60% to the market) recoversthe s |
cost of antiviral manufacturing if & e
the unit cost is < $42. |
0 0 2I0 4IO 610 8I0 100
fraction (%) allocated to hospitals
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Importance of behavioral modeling

Prevalence over Time

4500

4000 | with isolation, D = function(prevalence) -
no isolation, D = function(prevalence)
3500 | with isolation, D != function(prevalence) === |

» Prevalence elastic demand: Delays
the epidemic by about a month

3000 r
2500 r
2000

= Self Isolation triggered by
Prevalence and sick member: 1000 |
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1500 r
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Demand over Time
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Inequitable allocation & role of government

Antiviral Purchase and Infection by Income Level
(demand depends on prevalence)

8000 r - . ] .
antiviral purchase m—
7000 F exposure count s

Market based distribution is inherently
inequitable

6000

— Prevalence elastic demand creates more 5000 |
inequitable distribution (due to price 3 4000 f
increase) 3000

2000

Provides a way for evaluating

. . 1000
government subsidy or investment

. . . . . . 10th 20th 30th 40th 50th 60th 70th 80th 90th
— More even distribution possible if price
Antiviral Purchase and Infection by Income Level

is capped or mechanisms are provided (demand does not depend on prevalence)
for reimbursing 8000 -

" antiviral purchase s
7000 exposure count s

— The price range determines the

6000
investment needed by the government

5000 |

4000 r

count

3000 r

2000

1000

10th 20th 30th 40th 50th 60th 70th 80th 90th
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A game theoretic view: AV purchase game

= Players: households
= Strategies: {buy antiviral, not to buy}

= Payoff: F (AV cost, expected number of
infected household members)

Infection
. .
* Information: AV supply (split between

hospital and market stockpile) and buy  $605.98 0.0769
price, disease prevalence, household ot to . 0 1602
budget. buy |
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IDAC | 'C: HPC Services Based Epidemiological
Planning Environment

Analyst can focus on delivering results rather than

becoming a computing expert
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Simple User Interface to Set up Experiments

Highly resolved parameters

ExperimentsfjAnalysesfTriggersjUser ManualfFeedbackjjAbou bryan Logout
Name i [Demo Vax SDS 50 | Description:Vax = 0, 25,50 SDS=50 SDG=none Replicates i [25 |
Status i [completed | Total Cells i [3 |
Owner i [sample | Simulated Days i [200 |
Region i I Alabama LI View o l .
Disease Model i |Catast ; ~| view POpu athn
Initial Conditions i wday ~| v :
flS2dzy_o] view e Disease
Enabled Interventions i |~’Vaccinate Antiviral Social Distance Close Work/~ Close Schoo
[EERNBE Antiviral Jocial Distance JCloce Work BEEEEREREN e [nitial conditions
Close Schools i
Subpopulation j Compliance j Trigger j ® Il’lterventhnS
« % Value i Bo__ ] |[[0.5 percent ~|
preschool Sweep Sweep - Type
SCHoolSage Initial % Value i | | — | i
Final % Value i | Edit Thggers - Efflcacy
Increment i | _ Compliance
View - Timing
Done | Save | Discard Unsaved Changes | Show Cells - Subpopulatlon
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Visual Analytics Support

Day Count # of Times Count
0 50 100 0 50 100 0 5 10 15
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30 5040 o 34875
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Dublmf‘/7,~/ nsburg A Alte
! V'% Il PUI‘;SKI‘ ‘ : . R“%j' = ﬁj#’ Gretn. locs
eville etn:
: ©" 98549 (3
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o Collinsville
Galax
( )
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E@E ,mOMM'rmpdata@2003Te|eAt|a9- _qggs,
]
To clear the list of Ids above click here: (ClearlList
Select Epidemic Id: |88. . v I Go ko initial infected person

Counts

5
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Conclusions

= Start towards an integrated HPC-based policy informatics
environment to support computational epidemiology that
goes beyond simply agent-based disease modeling

- Easy to use by SMEs, highly scalable and resolved
— High performance computing grids & web-based services
— Deployed and used successfully (e.g. during recent HIN1 response)

— Flexible, realistic and efficient representation of individual behavior
and public policy

* Presented a realistic case study to understand public health
and economic consequences of AV allocations via public and
market mechanisms

- suggests a split between public and market-based stockpile that is
optimal (in terms of the peak, time to peak and cost)

— Individual behaviors play a crucial role - prevalence elastic demand
and isolation is the key.
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Summary: 3 take home points

Point 1: Seamless access to powerful computational models for use by
subject matter experts (SMEs) is desirable and possible.

— Computing and modeling advances
— Diversity of interests amongst various stakeholders
- Yeta desire and need to share information and data during crisis: Social Computing

— Leads to a qualitative change in the way public policies are supported

Point 2: Models and data sources are increasingly complex and diverse:
Synthetic Information systems provide a natural and scalable way for
model composition and analysis

— Unified view of models and data
— Use of context based modeling and reasoning

— Interactive simulations

Point 3: In realistic situations, individual behavior, social networks, public
policy & disease dynamics co-evolve

— Representing multiple behavioral models & multiple network (MTML) is now
possible: expressive, easy to use and computationally efficient
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