
Reducing Energy Usage Through a Novel File
Synchronization Algorithm

Frederic Sala
LORIS Lab, UCLA

Joint work with:
Nicolas Bitouzé (UCLA)
Clayton Schoeny (UCLA),

S. M. Sadegh Tabatabaei Yazdi (Qualcomm),
Lara Dolecek (UCLA)

Laboratory for Robust Information Systems (LORIS)
Department of Electrical Engineering, UCLA

1 / 23

Motivation

Combined data center electricity usage is already at 1.5% of all
electricity used in the world.

J. Koomey, “Growth in data center electricity use 2005 to
2010”, 2011.

A major contributing factor: large data storage requirements. In
part, these requirements are due to the unnecessary storage of
superfluous data:

Multiple copies of the same file.

Multiple versions of a file.

2 / 23

Motivation

Combined data center electricity usage is already at 1.5% of all
electricity used in the world.

J. Koomey, “Growth in data center electricity use 2005 to
2010”, 2011.

A major contributing factor: large data storage requirements. In
part, these requirements are due to the unnecessary storage of
superfluous data:

Multiple copies of the same file.

Multiple versions of a file.

2 / 23

Motivation

Combined data center electricity usage is already at 1.5% of all
electricity used in the world.

J. Koomey, “Growth in data center electricity use 2005 to
2010”, 2011.

A major contributing factor: large data storage requirements. In
part, these requirements are due to the unnecessary storage of
superfluous data:

Multiple copies of the same file.

Multiple versions of a file.

2 / 23

Reducing Data Storage Demand

When files are identical, we can use deduplication tools.

What if files are similar, but not identical?

We need algorithms to synchronize multiple versions of a file.

Existing algorithms, such as RSYNC, su↵er from high
communication costs.

Goal: Develop a more e�cient synchronization algorithm.

3 / 23

Reducing Data Storage Demand

When files are identical, we can use deduplication tools.

What if files are similar, but not identical?

We need algorithms to synchronize multiple versions of a file.

Existing algorithms, such as RSYNC, su↵er from high
communication costs.

Goal: Develop a more e�cient synchronization algorithm.

3 / 23

Reducing Data Storage Demand

When files are identical, we can use deduplication tools.

What if files are similar, but not identical?

Synchronization from Insertions and Deletions
Under a Non-Binary, Non-Uniform Source

Nicolas Bitouzé and Lara Dolecek
Electrical Engineering Department

University of California, Los Angeles
Los Angeles, USA

Email: bitouze@ucla.edu, dolecek@ee.ucla.edu

Abstract—We study the problem of synchronizing two files X
and Y at two distant nodes A and B that are connected through a

two-way communication channel. We assume that file Y at node

B is obtained from file X at node A by inserting and deleting

a small fraction of symbols in X . More specifically, we consider

the case where X is a non-binary non-uniform string, and

deletions and insertions happen uniformly with rates �d and �i,

respectively. We propose a synchronization protocol between node

A and node B that needs to transmit O(CX(�d+�i)n log

1
�d+�i

)

bits (where n is the length of X and CX is a constant that depends

on the statistical properties of X) and reconstructs X at node

B with error probability exponentially low in n. This protocol

readily generalizes the recent result by Tabatabaei Yazdi and

Dolecek that dealt with synchronization from binary uniform

source and under only deletion errors.

I. INTRODUCTION
Motivated by the pervasive use of file synchronization in

modern data storage technologies, in this work we seek to
develop a synchronization protocol that is more efficient than
the existing algorithms. In particular, the popular RSYNC
method can be in general very inefficient and the number of
transmitted bits can be exponentially larger than the optimal
number.

Our starting point is an information-theoretically oriented
scheme recently developed in [1]. In [1], a synchronization
protocol that synchronizes an altered copy of the binary file
with the original version of the file was proposed. In this
scheme, the owner of the altered file requests additional
information from the owner of the original file to ensure proper
synchronization. It was assumed that the altered copy was
obtained from the original copy by i.i.d. deletions at the bit-
level and that the original file was generated from an i.i.d.
uniform binary source. It was then shown that the rate of the
proposed scheme asymptotically matches the optimal rate for
this channel, developed earlier in [2]. That is, in the scheme of
[1], the number of bits needed to synchronize two files can be
kept very small while achieving exponentially low probability
of error.

There are many practical scenarios where the files cannot
be modeled as binary and uniform. For example, a file is
usually not structured by bits, but by bytes or by even longer
atomic elements. If the source is a text file, not only are
some characters more frequent than others, but there is a large
autocorrelation within the file. Additionally, some symbols
may be inserted as well as deleted. As a result, our objective

is to suitably generalize the scheme in [1], while maintaining
low cost of transmission and low error of mis-synchronization.

Specifically, our model encapsulates the following general-
izations of the model in [1]:

1) We consider errors as being insertions or deletions instead
of being restricted to deletions only,

2) We consider non-binary source symbols,
3) We allow the source symbols to have an arbitrary distri-

bution; uniform distribution is then a special case.
The rest of the paper is organized as follows. In Section II

we outline the overall synchronization protocol. Necessary
notation and background results are presented in Section III.
Two key components of our synchronization protocol, the
matching module and the edit recovery module, are discussed
in detail in Sections IV and V, respectively. Section VI
concludes the paper.

II. THE SYNCHRONIZATION PROTOCOL
In [1], the following setup is considered: two distant nodes

A and B are connected by a low-bandwidth high-latency
network. A contains a file X which is a uniform i.i.d. binary
string of length n, and B contains a file Y of length n0 that is
obtained by deleting bits of X independently with probability
� ⌧ 1.

We consider a generalized setting in which the file X =

X
1

, . . . , Xn is i.i.d. on alphabet X = {0, . . . , Q � 1}, where
for all 1  t  n, Xt’s are distributed according to µ(x). For
simplicity, we consider Q to be a power of two, say Q = 2

q .
Insertions and deletions occur respectively with probability �i

and �d. Let us define an edit pattern E = E
1

, . . . , En as a
string in {�1, 0, 1}n such that Y is obtained from X in the
following way: for t from 1 to n,

• if Et = 0, transmit Xt,
• if Et = �1, delete (do not transmit) Xt,
• if Et = 1, transmit Xt, then insert (transmit) a new

symbol of X drawn with distribution µ(x).
For instance, consider X and Y defined over a quaternary

alphabet, X = 00

D
122133

D
10 and Y = 0120

I
23

I
10

I
310. Here

Y is derived from X by 2 deletions and 3 insertions where
deleted (inserted) symbols are denoted by D (I). The edit
pattern is thus E = (0,�1, 0, 1, 1, 1, 0,�1, 0, 0). Node B
aims to synchronize its file Y with the (original) file X by
requesting carefully chosen additional information from A

We need algorithms to synchronize multiple versions of a file.

Existing algorithms, such as RSYNC, su↵er from high
communication costs.

Goal: Develop a more e�cient synchronization algorithm.

3 / 23

Reducing Data Storage Demand

When files are identical, we can use deduplication tools.

What if files are similar, but not identical?

Synchronization from Insertions and Deletions
Under a Non-Binary, Non-Uniform Source

Nicolas Bitouzé and Lara Dolecek
Electrical Engineering Department

University of California, Los Angeles
Los Angeles, USA

Email: bitouze@ucla.edu, dolecek@ee.ucla.edu

Abstract—We study the problem of synchronizing two files X
and Y at two distant nodes A and B that are connected through a

two-way communication channel. We assume that file Y at node

B is obtained from file X at node A by inserting and deleting

a small fraction of symbols in X . More specifically, we consider

the case where X is a non-binary non-uniform string, and

deletions and insertions happen uniformly with rates �d and �i,

respectively. We propose a synchronization protocol between node

A and node B that needs to transmit O(CX(�d+�i)n log

1
�d+�i

)

bits (where n is the length of X and CX is a constant that depends

on the statistical properties of X) and reconstructs X at node

B with error probability exponentially low in n. This protocol

readily generalizes the recent result by Tabatabaei Yazdi and

Dolecek that dealt with synchronization from binary uniform

source and under only deletion errors.

I. INTRODUCTION
Motivated by the pervasive use of file synchronization in

modern data storage technologies, in this work we seek to
develop a synchronization protocol that is more efficient than
the existing algorithms. In particular, the popular RSYNC
method can be in general very inefficient and the number of
transmitted bits can be exponentially larger than the optimal
number.

Our starting point is an information-theoretically oriented
scheme recently developed in [1]. In [1], a synchronization
protocol that synchronizes an altered copy of the binary file
with the original version of the file was proposed. In this
scheme, the owner of the altered file requests additional
information from the owner of the original file to ensure proper
synchronization. It was assumed that the altered copy was
obtained from the original copy by i.i.d. deletions at the bit-
level and that the original file was generated from an i.i.d.
uniform binary source. It was then shown that the rate of the
proposed scheme asymptotically matches the optimal rate for
this channel, developed earlier in [2]. That is, in the scheme of
[1], the number of bits needed to synchronize two files can be
kept very small while achieving exponentially low probability
of error.

There are many practical scenarios where the files cannot
be modeled as binary and uniform. For example, a file is
usually not structured by bits, but by bytes or by even longer
atomic elements. If the source is a text file, not only are
some characters more frequent than others, but there is a large
autocorrelation within the file. Additionally, some symbols
may be inserted as well as deleted. As a result, our objective

is to suitably generalize the scheme in [1], while maintaining
low cost of transmission and low error of mis-synchronization.

Specifically, our model encapsulates the following general-
izations of the model in [1]:

1) We consider errors as being insertions or deletions instead
of being restricted to deletions only,

2) We consider non-binary source symbols,
3) We allow the source symbols to have an arbitrary distri-

bution; uniform distribution is then a special case.
The rest of the paper is organized as follows. In Section II

we outline the overall synchronization protocol. Necessary
notation and background results are presented in Section III.
Two key components of our synchronization protocol, the
matching module and the edit recovery module, are discussed
in detail in Sections IV and V, respectively. Section VI
concludes the paper.

II. THE SYNCHRONIZATION PROTOCOL
In [1], the following setup is considered: two distant nodes

A and B are connected by a low-bandwidth high-latency
network. A contains a file X which is a uniform i.i.d. binary
string of length n, and B contains a file Y of length n0 that is
obtained by deleting bits of X independently with probability
� ⌧ 1.

We consider a generalized setting in which the file X =

X
1

, . . . , Xn is i.i.d. on alphabet X = {0, . . . , Q � 1}, where
for all 1  t  n, Xt’s are distributed according to µ(x). For
simplicity, we consider Q to be a power of two, say Q = 2

q .
Insertions and deletions occur respectively with probability �i

and �d. Let us define an edit pattern E = E
1

, . . . , En as a
string in {�1, 0, 1}n such that Y is obtained from X in the
following way: for t from 1 to n,

• if Et = 0, transmit Xt,
• if Et = �1, delete (do not transmit) Xt,
• if Et = 1, transmit Xt, then insert (transmit) a new

symbol of X drawn with distribution µ(x).
For instance, consider X and Y defined over a quaternary

alphabet, X = 00

D
122133

D
10 and Y = 0120

I
23

I
10

I
310. Here

Y is derived from X by 2 deletions and 3 insertions where
deleted (inserted) symbols are denoted by D (I). The edit
pattern is thus E = (0,�1, 0, 1, 1, 1, 0,�1, 0, 0). Node B
aims to synchronize its file Y with the (original) file X by
requesting carefully chosen additional information from A

Synchronization from Insertions and Deletions
Under a Non-Binary, Non-Uniform Source

Nicolas Bitouzé and Lara Dolecek
Electrical Engineering Department

University of California, Los Angeles
Los Angeles, USA

Email: bitouze@ucla.edu, dolecek@ee.ucla.edu

Abstract—We study the problem of synchronizing two files X
and Y at two distant nodes A and B that are connected through a

two-way communication channel. We assume that file Y at node

B is obtained from file X at node A by inserting and deleting

a small fraction of symbols in X . More specifically, we consider

the case where X is a non-binary non-uniform string, and

deletions and insertions happen uniformly with rates �d and �i,

respectively. We propose a synchronization protocol between node

A and node B that needs to transmit O(CX(�d+�i)n log

1
�d+�i

)

bits (where n is the length of X and CX is a constant that depends

on the statistical properties of X) and reconstructs X at node

B with error probability exponentially low in n. This protocol

readily generalizes the recent result by Tabatabaei Yazdi and

Dolecek that dealt with synchronization from binary uniform

source and under only deletion errors.

I. INTRODUCTION

Motivated by the pervasive use of file synchronization in
modern data storage technologies, in this work we seek to
develop a synchronization protocol that is more efficient than
the existing algorithms. In particular, the popular RSYNC
method can be in general very inefficient and the number of
transmitted bits can be exponentially larger than the optimal
number.

Our starting point is an information-theoretically oriented
scheme recently developed in [1]. In [1], a synchronization
protocol that synchronizes an altered copy of the binary file
with the original version of the file was proposed. In this
scheme, the owner of the altered file requests additional
information from the owner of the original file to ensure proper
synchronization. It was assumed that the altered copy was
obtained from the original copy by i.i.d. deletions at the bit-
level and that the original file was generated from an i.i.d.
uniform binary source. It was then shown that the rate of the
proposed scheme asymptotically matches the optimal rate for
this channel, developed earlier in [2]. That is, in the scheme
of [1], the number of bits needed to synchronize two files can
be kept very small while achieving exponentially low error of
mis-synchronization.

There are many practical scenarios where the files cannot
be modeled as binary and uniform. For example, a file is
usually not structured by bits, but by bytes or by even longer
atomic elements. If the source is a text file, not only are
some characters more frequent than others, but there is a large
autocorrelation within the file. Additionally, some symbols
may be inserted as well as deleted. As a result, our objective

is to suitably generalize the scheme in [1], while maintaining
low cost of transmission and low error of mis-synchronization.

Specifically, our model encapsulates the following general-
izations of the model in [1]:

1) We consider errors as being insertions or deletions instead
of being restricted to deletions only,

2) We consider non-binary source symbols,
3) We allow the source symbols to have an arbitrary distri-

bution; uniform distribution is then a special case.
The rest of the paper is organized as follows. In Section II

we outline the overall synchronization protocol. Necessary
notation and background results are presented in Section III.
Two key components of our synchronization protocol, the
matching module and the edit recovery module, are discussed
in detail in Sections IV and V, respectively. Section VI
concludes the paper.

II. THE SYNCHRONIZATION PROTOCOL
In [1], the following setup is considered: two distant nodes

A and B are connected by a low-bandwidth high-latency
network. A contains a file X which is a uniform i.i.d. binary
string of length n, and B contains a file Y of length n0 that is
obtained by deleting bits of X independently with probability
� ⌧ 1.

We consider a generalized setting in which X =

X
1

, . . . , Xn is an i.i.d. file on alphabet X = {0, . . . , Q� 1},
where for all 1  t  n, Xt’s are distributed according
to µ(x). For simplicity, we consider Q to be a power of
two, say Q = 2

q . Insertions and deletions occur respectively
with probability �i and �d. Let us define an edit pattern
E = E

1

, . . . , En as a string in {�1, 0, 1}n such that Y is
obtained from X in the following way: for t from 1 to n,

• if Et = 0, transmit Xt,
• if Et = �1, delete (do not transmit) Xt,
• if Et = 1, transmit Xt, then insert (transmit) a new

symbol of X drawn with distribution µ(x).
For instance, consider X and Y defined over a quaternary

alphabet, X = 00

D
122133

D
10 and Y = 0120

I
23

I
10

I
310. Here

Y is derived from X by 2 deletions and 3 insertions where
deleted (inserted) symbols are denoted by D (I). The edit
pattern is thus E = (0,�1, 0, 1, 1, 1, 0,�1, 0, 0). Node B
aims to synchronize its file Y with the (original) file X by
requesting carefully chosen additional information from A

We need algorithms to synchronize multiple versions of a file.

Existing algorithms, such as RSYNC, su↵er from high
communication costs.

Goal: Develop a more e�cient synchronization algorithm.

3 / 23

Reducing Data Storage Demand

When files are identical, we can use deduplication tools.

What if files are similar, but not identical?

Synchronization from Insertions and Deletions
Under a Non-Binary, Non-Uniform Source

Nicolas Bitouzé and Lara Dolecek
Electrical Engineering Department

University of California, Los Angeles
Los Angeles, USA

Email: bitouze@ucla.edu, dolecek@ee.ucla.edu

Abstract—We study the problem of synchronizing two files X
and Y at two distant nodes A and B that are connected through a

two-way communication channel. We assume that file Y at node

B is obtained from file X at node A by inserting and deleting

a small fraction of symbols in X . More specifically, we consider

the case where X is a non-binary non-uniform string, and

deletions and insertions happen uniformly with rates �d and �i,

respectively. We propose a synchronization protocol between node

A and node B that needs to transmit O(CX(�d+�i)n log

1
�d+�i

)

bits (where n is the length of X and CX is a constant that depends

on the statistical properties of X) and reconstructs X at node

B with error probability exponentially low in n. This protocol

readily generalizes the recent result by Tabatabaei Yazdi and

Dolecek that dealt with synchronization from binary uniform

source and under only deletion errors.

I. INTRODUCTION
Motivated by the pervasive use of file synchronization in

modern data storage technologies, in this work we seek to
develop a synchronization protocol that is more efficient than
the existing algorithms. In particular, the popular RSYNC
method can be in general very inefficient and the number of
transmitted bits can be exponentially larger than the optimal
number.

Our starting point is an information-theoretically oriented
scheme recently developed in [1]. In [1], a synchronization
protocol that synchronizes an altered copy of the binary file
with the original version of the file was proposed. In this
scheme, the owner of the altered file requests additional
information from the owner of the original file to ensure proper
synchronization. It was assumed that the altered copy was
obtained from the original copy by i.i.d. deletions at the bit-
level and that the original file was generated from an i.i.d.
uniform binary source. It was then shown that the rate of the
proposed scheme asymptotically matches the optimal rate for
this channel, developed earlier in [2]. That is, in the scheme of
[1], the number of bits needed to synchronize two files can be
kept very small while achieving exponentially low probability
of error.

There are many practical scenarios where the files cannot
be modeled as binary and uniform. For example, a file is
usually not structured by bits, but by bytes or by even longer
atomic elements. If the source is a text file, not only are
some characters more frequent than others, but there is a large
autocorrelation within the file. Additionally, some symbols
may be inserted as well as deleted. As a result, our objective

is to suitably generalize the scheme in [1], while maintaining
low cost of transmission and low error of mis-synchronization.

Specifically, our model encapsulates the following general-
izations of the model in [1]:

1) We consider errors as being insertions or deletions instead
of being restricted to deletions only,

2) We consider non-binary source symbols,
3) We allow the source symbols to have an arbitrary distri-

bution; uniform distribution is then a special case.
The rest of the paper is organized as follows. In Section II

we outline the overall synchronization protocol. Necessary
notation and background results are presented in Section III.
Two key components of our synchronization protocol, the
matching module and the edit recovery module, are discussed
in detail in Sections IV and V, respectively. Section VI
concludes the paper.

II. THE SYNCHRONIZATION PROTOCOL
In [1], the following setup is considered: two distant nodes

A and B are connected by a low-bandwidth high-latency
network. A contains a file X which is a uniform i.i.d. binary
string of length n, and B contains a file Y of length n0 that is
obtained by deleting bits of X independently with probability
� ⌧ 1.

We consider a generalized setting in which the file X =

X
1

, . . . , Xn is i.i.d. on alphabet X = {0, . . . , Q � 1}, where
for all 1  t  n, Xt’s are distributed according to µ(x). For
simplicity, we consider Q to be a power of two, say Q = 2

q .
Insertions and deletions occur respectively with probability �i

and �d. Let us define an edit pattern E = E
1

, . . . , En as a
string in {�1, 0, 1}n such that Y is obtained from X in the
following way: for t from 1 to n,

• if Et = 0, transmit Xt,
• if Et = �1, delete (do not transmit) Xt,
• if Et = 1, transmit Xt, then insert (transmit) a new

symbol of X drawn with distribution µ(x).
For instance, consider X and Y defined over a quaternary

alphabet, X = 00

D
122133

D
10 and Y = 0120

I
23

I
10

I
310. Here

Y is derived from X by 2 deletions and 3 insertions where
deleted (inserted) symbols are denoted by D (I). The edit
pattern is thus E = (0,�1, 0, 1, 1, 1, 0,�1, 0, 0). Node B
aims to synchronize its file Y with the (original) file X by
requesting carefully chosen additional information from A

Synchronization from Insertions and Deletions
Under a Non-Binary, Non-Uniform Source

Nicolas Bitouzé and Lara Dolecek
Electrical Engineering Department

University of California, Los Angeles
Los Angeles, USA

Email: bitouze@ucla.edu, dolecek@ee.ucla.edu

Abstract—We study the problem of synchronizing two files X
and Y at two distant nodes A and B that are connected through a

two-way communication channel. We assume that file Y at node

B is obtained from file X at node A by inserting and deleting

a small fraction of symbols in X . More specifically, we consider

the case where X is a non-binary non-uniform string, and

deletions and insertions happen uniformly with rates �d and �i,

respectively. We propose a synchronization protocol between node

A and node B that needs to transmit O(CX(�d+�i)n log

1
�d+�i

)

bits (where n is the length of X and CX is a constant that depends

on the statistical properties of X) and reconstructs X at node

B with error probability exponentially low in n. This protocol

readily generalizes the recent result by Tabatabaei Yazdi and

Dolecek that dealt with synchronization from binary uniform

source and under only deletion errors.

I. INTRODUCTION

Motivated by the pervasive use of file synchronization in
modern data storage technologies, in this work we seek to
develop a synchronization protocol that is more efficient than
the existing algorithms. In particular, the popular RSYNC
method can be in general very inefficient and the number of
transmitted bits can be exponentially larger than the optimal
number.

Our starting point is an information-theoretically oriented
scheme recently developed in [1]. In [1], a synchronization
protocol that synchronizes an altered copy of the binary file
with the original version of the file was proposed. In this
scheme, the owner of the altered file requests additional
information from the owner of the original file to ensure proper
synchronization. It was assumed that the altered copy was
obtained from the original copy by i.i.d. deletions at the bit-
level and that the original file was generated from an i.i.d.
uniform binary source. It was then shown that the rate of the
proposed scheme asymptotically matches the optimal rate for
this channel, developed earlier in [2]. That is, in the scheme
of [1], the number of bits needed to synchronize two files can
be kept very small while achieving exponentially low error of
mis-synchronization.

There are many practical scenarios where the files cannot
be modeled as binary and uniform. For example, a file is
usually not structured by bits, but by bytes or by even longer
atomic elements. If the source is a text file, not only are
some characters more frequent than others, but there is a large
autocorrelation within the file. Additionally, some symbols
may be inserted as well as deleted. As a result, our objective

is to suitably generalize the scheme in [1], while maintaining
low cost of transmission and low error of mis-synchronization.

Specifically, our model encapsulates the following general-
izations of the model in [1]:

1) We consider errors as being insertions or deletions instead
of being restricted to deletions only,

2) We consider non-binary source symbols,
3) We allow the source symbols to have an arbitrary distri-

bution; uniform distribution is then a special case.
The rest of the paper is organized as follows. In Section II

we outline the overall synchronization protocol. Necessary
notation and background results are presented in Section III.
Two key components of our synchronization protocol, the
matching module and the edit recovery module, are discussed
in detail in Sections IV and V, respectively. Section VI
concludes the paper.

II. THE SYNCHRONIZATION PROTOCOL
In [1], the following setup is considered: two distant nodes

A and B are connected by a low-bandwidth high-latency
network. A contains a file X which is a uniform i.i.d. binary
string of length n, and B contains a file Y of length n0 that is
obtained by deleting bits of X independently with probability
� ⌧ 1.

We consider a generalized setting in which X =

X
1

, . . . , Xn is an i.i.d. file on alphabet X = {0, . . . , Q� 1},
where for all 1  t  n, Xt’s are distributed according
to µ(x). For simplicity, we consider Q to be a power of
two, say Q = 2

q . Insertions and deletions occur respectively
with probability �i and �d. Let us define an edit pattern
E = E

1

, . . . , En as a string in {�1, 0, 1}n such that Y is
obtained from X in the following way: for t from 1 to n,

• if Et = 0, transmit Xt,
• if Et = �1, delete (do not transmit) Xt,
• if Et = 1, transmit Xt, then insert (transmit) a new

symbol of X drawn with distribution µ(x).
For instance, consider X and Y defined over a quaternary

alphabet, X = 00

D
122133

D
10 and Y = 0120

I
23

I
10

I
310. Here

Y is derived from X by 2 deletions and 3 insertions where
deleted (inserted) symbols are denoted by D (I). The edit
pattern is thus E = (0,�1, 0, 1, 1, 1, 0,�1, 0, 0). Node B
aims to synchronize its file Y with the (original) file X by
requesting carefully chosen additional information from A

Synchronization from Insertions and Deletions
Under a Non-Binary, Non-Uniform Source

Nicolas Bitouzé and Lara Dolecek
Electrical Engineering Department

University of California, Los Angeles
Los Angeles, USA

Email: bitouze@ucla.edu, dolecek@ee.ucla.edu

Abstract—We study the problem of synchronizing two files X
and Y at two distant nodes A and B that are connected through a

two-way communication channel. We assume that file Y at node

B is obtained from file X at node A by inserting and deleting

a small fraction of symbols in X . More specifically, we consider

the case where X is a non-binary non-uniform sequence, and

deletions and insertions happen uniformly with rates �d and �i,

respectively. We propose a synchronization protocol between node

A and node B that needs to transmit O(CX(�d+�i)n log

1
�d+�i

)

bits (where n is the length of X and CX is a constant that depends

on the statistical properties of X) and reconstructs X at node

B with error probability exponentially low in n. This protocol

readily generalizes the recent result by Tabatabaei Yazdi and

Dolecek that dealt with synchronization from binary uniform

source and under only deletion errors.

I. INTRODUCTION
Motivated by the pervasive use of file synchronization in

modern data storage technologies, in this work we seek to
develop a synchronization protocol that is more efficient than
the existing algorithms. In particular, the popular RSYNC
method can be in general very inefficient and the number of
transmitted bits can be exponentially larger than the optimal
number.

Our starting point is an information-theoretically oriented
scheme recently developed in [1]. In [1], a synchronization
protocol that synchronizes an altered copy of the binary file
with the original version of the file was proposed. In this
scheme, the owner of the altered file requests additional
information from the owner of the original file to ensure proper
synchronization. It was assumed that the altered copy was
obtained from the original copy by i.i.d. deletions at the bit-
level and that the original file was generated from an i.i.d.
uniform binary source. It was then shown that the rate of the
proposed scheme asymptotically matches the optimal rate for
this channel, developed earlier in [2]. That is, in the scheme of
[1], the number of bits needed to synchronize two files can be
kept very small while achieving exponentially low probability
of error.

There are many practical scenarios where the files cannot
be modeled as binary and uniform. For example, a file is
usually not structured by bits, but by bytes or by even longer
atomic elements. If the source is a text file, not only are
some characters more frequent than others, but there is a large
autocorrelation within the file. Additionally, some symbols
may be inserted as well as deleted. As a result, our objective

is to suitably generalize the scheme in [1], while maintaining
low cost of transmission and low error of mis-synchronization.

Specifically, our model encapsulates the following general-
izations of the model in [1]:

1) We consider errors as being insertions or deletions instead
of being restricted to deletions only,

2) We consider non-binary source symbols,
3) We allow the source symbols to have an arbitrary distri-

bution; uniform distribution is then a special case.
The rest of the paper is organized as follows. In Section II

we outline the overall synchronization protocol. Necessary
notation and background results are presented in Section III.
Two key components of our synchronization protocol, the
matching module and the edit recovery module, are discussed
in detail in Sections IV and V, respectively. Section VI
concludes the paper.

II. THE SYNCHRONIZATION PROTOCOL
In [1], the following setup is considered: two distant nodes

A and B are connected by a low-bandwidth high-latency
network. A contains a file X which is a uniform i.i.d. binary
string of length n, and B contains a file Y of length n0 that is
obtained by deleting bits of X independently with probability
� ⌧ 1.

We consider a generalized setting in which the file X =

X
1

, . . . , Xn is i.i.d. on alphabet X = {0, . . . , Q � 1}, where
for all 1  t  n, Xt’s are distributed according to µ(x). For
simplicity, we consider Q to be a power of two, say Q = 2

q .
Insertions and deletions occur respectively with probability �i

and �d. Let us define an edit pattern E = E
1

, . . . , En as a
string in {�1, 0, 1}n such that Y is obtained from X in the
following way: for t from 1 to n,

• if Et = 0, transmit Xt,
• if Et = �1, delete (do not transmit) Xt,
• if Et = 1, transmit Xt, then insert (transmit) a new

symbol of X drawn with distribution µ(x).
For instance, consider X and Y defined over a quaternary

alphabet, X = 00

D
122133

D
10 and Y = 0120

I
23

I
10

I
310. Here

Y is derived from X by 2 deletions and 3 insertions where
deleted (inserted) symbols are denoted by D (I). The edit
pattern is thus E = (0,�1, 0, 1, 1, 1, 0,�1, 0, 0). Node B
aims to synchronize its file Y with the (original) file X by
requesting carefully chosen additional information from A

We need algorithms to synchronize multiple versions of a file.

Existing algorithms, such as RSYNC, su↵er from high
communication costs.

Goal: Develop a more e�cient synchronization algorithm.

3 / 23

Reducing Data Storage Demand

When files are identical, we can use deduplication tools.

What if files are similar, but not identical?

Synchronization from Insertions and Deletions
Under a Non-Binary, Non-Uniform Source

Nicolas Bitouzé and Lara Dolecek
Electrical Engineering Department

University of California, Los Angeles
Los Angeles, USA

Email: bitouze@ucla.edu, dolecek@ee.ucla.edu

Abstract—We study the problem of synchronizing two files X
and Y at two distant nodes A and B that are connected through a

two-way communication channel. We assume that file Y at node

B is obtained from file X at node A by inserting and deleting

a small fraction of symbols in X . More specifically, we consider

the case where X is a non-binary non-uniform string, and

deletions and insertions happen uniformly with rates �d and �i,

respectively. We propose a synchronization protocol between node

A and node B that needs to transmit O(CX(�d+�i)n log

1
�d+�i

)

bits (where n is the length of X and CX is a constant that depends

on the statistical properties of X) and reconstructs X at node

B with error probability exponentially low in n. This protocol

readily generalizes the recent result by Tabatabaei Yazdi and

Dolecek that dealt with synchronization from binary uniform

source and under only deletion errors.

I. INTRODUCTION
Motivated by the pervasive use of file synchronization in

modern data storage technologies, in this work we seek to
develop a synchronization protocol that is more efficient than
the existing algorithms. In particular, the popular RSYNC
method can be in general very inefficient and the number of
transmitted bits can be exponentially larger than the optimal
number.

Our starting point is an information-theoretically oriented
scheme recently developed in [1]. In [1], a synchronization
protocol that synchronizes an altered copy of the binary file
with the original version of the file was proposed. In this
scheme, the owner of the altered file requests additional
information from the owner of the original file to ensure proper
synchronization. It was assumed that the altered copy was
obtained from the original copy by i.i.d. deletions at the bit-
level and that the original file was generated from an i.i.d.
uniform binary source. It was then shown that the rate of the
proposed scheme asymptotically matches the optimal rate for
this channel, developed earlier in [2]. That is, in the scheme of
[1], the number of bits needed to synchronize two files can be
kept very small while achieving exponentially low probability
of error.

There are many practical scenarios where the files cannot
be modeled as binary and uniform. For example, a file is
usually not structured by bits, but by bytes or by even longer
atomic elements. If the source is a text file, not only are
some characters more frequent than others, but there is a large
autocorrelation within the file. Additionally, some symbols
may be inserted as well as deleted. As a result, our objective

is to suitably generalize the scheme in [1], while maintaining
low cost of transmission and low error of mis-synchronization.

Specifically, our model encapsulates the following general-
izations of the model in [1]:

1) We consider errors as being insertions or deletions instead
of being restricted to deletions only,

2) We consider non-binary source symbols,
3) We allow the source symbols to have an arbitrary distri-

bution; uniform distribution is then a special case.
The rest of the paper is organized as follows. In Section II

we outline the overall synchronization protocol. Necessary
notation and background results are presented in Section III.
Two key components of our synchronization protocol, the
matching module and the edit recovery module, are discussed
in detail in Sections IV and V, respectively. Section VI
concludes the paper.

II. THE SYNCHRONIZATION PROTOCOL
In [1], the following setup is considered: two distant nodes

A and B are connected by a low-bandwidth high-latency
network. A contains a file X which is a uniform i.i.d. binary
string of length n, and B contains a file Y of length n0 that is
obtained by deleting bits of X independently with probability
� ⌧ 1.

We consider a generalized setting in which the file X =

X
1

, . . . , Xn is i.i.d. on alphabet X = {0, . . . , Q � 1}, where
for all 1  t  n, Xt’s are distributed according to µ(x). For
simplicity, we consider Q to be a power of two, say Q = 2

q .
Insertions and deletions occur respectively with probability �i

and �d. Let us define an edit pattern E = E
1

, . . . , En as a
string in {�1, 0, 1}n such that Y is obtained from X in the
following way: for t from 1 to n,

• if Et = 0, transmit Xt,
• if Et = �1, delete (do not transmit) Xt,
• if Et = 1, transmit Xt, then insert (transmit) a new

symbol of X drawn with distribution µ(x).
For instance, consider X and Y defined over a quaternary

alphabet, X = 00

D
122133

D
10 and Y = 0120

I
23

I
10

I
310. Here

Y is derived from X by 2 deletions and 3 insertions where
deleted (inserted) symbols are denoted by D (I). The edit
pattern is thus E = (0,�1, 0, 1, 1, 1, 0,�1, 0, 0). Node B
aims to synchronize its file Y with the (original) file X by
requesting carefully chosen additional information from A

Synchronization from Insertions and Deletions
Under a Non-Binary, Non-Uniform Source

Nicolas Bitouzé and Lara Dolecek
Electrical Engineering Department

University of California, Los Angeles
Los Angeles, USA

Email: bitouze@ucla.edu, dolecek@ee.ucla.edu

Abstract—We study the problem of synchronizing two files X
and Y at two distant nodes A and B that are connected through a

two-way communication channel. We assume that file Y at node

B is obtained from file X at node A by inserting and deleting

a small fraction of symbols in X . More specifically, we consider

the case where X is a non-binary non-uniform string, and

deletions and insertions happen uniformly with rates �d and �i,

respectively. We propose a synchronization protocol between node

A and node B that needs to transmit O(CX(�d+�i)n log

1
�d+�i

)

bits (where n is the length of X and CX is a constant that depends

on the statistical properties of X) and reconstructs X at node

B with error probability exponentially low in n. This protocol

readily generalizes the recent result by Tabatabaei Yazdi and

Dolecek that dealt with synchronization from binary uniform

source and under only deletion errors.

I. INTRODUCTION

Motivated by the pervasive use of file synchronization in
modern data storage technologies, in this work we seek to
develop a synchronization protocol that is more efficient than
the existing algorithms. In particular, the popular RSYNC
method can be in general very inefficient and the number of
transmitted bits can be exponentially larger than the optimal
number.

Our starting point is an information-theoretically oriented
scheme recently developed in [1]. In [1], a synchronization
protocol that synchronizes an altered copy of the binary file
with the original version of the file was proposed. In this
scheme, the owner of the altered file requests additional
information from the owner of the original file to ensure proper
synchronization. It was assumed that the altered copy was
obtained from the original copy by i.i.d. deletions at the bit-
level and that the original file was generated from an i.i.d.
uniform binary source. It was then shown that the rate of the
proposed scheme asymptotically matches the optimal rate for
this channel, developed earlier in [2]. That is, in the scheme
of [1], the number of bits needed to synchronize two files can
be kept very small while achieving exponentially low error of
mis-synchronization.

There are many practical scenarios where the files cannot
be modeled as binary and uniform. For example, a file is
usually not structured by bits, but by bytes or by even longer
atomic elements. If the source is a text file, not only are
some characters more frequent than others, but there is a large
autocorrelation within the file. Additionally, some symbols
may be inserted as well as deleted. As a result, our objective

is to suitably generalize the scheme in [1], while maintaining
low cost of transmission and low error of mis-synchronization.

Specifically, our model encapsulates the following general-
izations of the model in [1]:

1) We consider errors as being insertions or deletions instead
of being restricted to deletions only,

2) We consider non-binary source symbols,
3) We allow the source symbols to have an arbitrary distri-

bution; uniform distribution is then a special case.
The rest of the paper is organized as follows. In Section II

we outline the overall synchronization protocol. Necessary
notation and background results are presented in Section III.
Two key components of our synchronization protocol, the
matching module and the edit recovery module, are discussed
in detail in Sections IV and V, respectively. Section VI
concludes the paper.

II. THE SYNCHRONIZATION PROTOCOL
In [1], the following setup is considered: two distant nodes

A and B are connected by a low-bandwidth high-latency
network. A contains a file X which is a uniform i.i.d. binary
string of length n, and B contains a file Y of length n0 that is
obtained by deleting bits of X independently with probability
� ⌧ 1.

We consider a generalized setting in which X =

X
1

, . . . , Xn is an i.i.d. file on alphabet X = {0, . . . , Q� 1},
where for all 1  t  n, Xt’s are distributed according
to µ(x). For simplicity, we consider Q to be a power of
two, say Q = 2

q . Insertions and deletions occur respectively
with probability �i and �d. Let us define an edit pattern
E = E

1

, . . . , En as a string in {�1, 0, 1}n such that Y is
obtained from X in the following way: for t from 1 to n,

• if Et = 0, transmit Xt,
• if Et = �1, delete (do not transmit) Xt,
• if Et = 1, transmit Xt, then insert (transmit) a new

symbol of X drawn with distribution µ(x).
For instance, consider X and Y defined over a quaternary

alphabet, X = 00

D
122133

D
10 and Y = 0120

I
23

I
10

I
310. Here

Y is derived from X by 2 deletions and 3 insertions where
deleted (inserted) symbols are denoted by D (I). The edit
pattern is thus E = (0,�1, 0, 1, 1, 1, 0,�1, 0, 0). Node B
aims to synchronize its file Y with the (original) file X by
requesting carefully chosen additional information from A

Synchronization from Insertions and Deletions
Under a Non-Binary, Non-Uniform Source

Nicolas Bitouzé and Lara Dolecek
Electrical Engineering Department

University of California, Los Angeles
Los Angeles, USA

Email: bitouze@ucla.edu, dolecek@ee.ucla.edu

Abstract—We study the problem of synchronizing two files X
and Y at two distant nodes A and B that are connected through a

two-way communication channel. We assume that file Y at node

B is obtained from file X at node A by inserting and deleting

a small fraction of symbols in X . More specifically, we consider

the case where X is a non-binary non-uniform sequence, and

deletions and insertions happen uniformly with rates �d and �i,

respectively. We propose a synchronization protocol between node

A and node B that needs to transmit O(CX(�d+�i)n log

1
�d+�i

)

bits (where n is the length of X and CX is a constant that depends

on the statistical properties of X) and reconstructs X at node

B with error probability exponentially low in n. This protocol

readily generalizes the recent result by Tabatabaei Yazdi and

Dolecek that dealt with synchronization from binary uniform

source and under only deletion errors.

I. INTRODUCTION
Motivated by the pervasive use of file synchronization in

modern data storage technologies, in this work we seek to
develop a synchronization protocol that is more efficient than
the existing algorithms. In particular, the popular RSYNC
method can be in general very inefficient and the number of
transmitted bits can be exponentially larger than the optimal
number.

Our starting point is an information-theoretically oriented
scheme recently developed in [1]. In [1], a synchronization
protocol that synchronizes an altered copy of the binary file
with the original version of the file was proposed. In this
scheme, the owner of the altered file requests additional
information from the owner of the original file to ensure proper
synchronization. It was assumed that the altered copy was
obtained from the original copy by i.i.d. deletions at the bit-
level and that the original file was generated from an i.i.d.
uniform binary source. It was then shown that the rate of the
proposed scheme asymptotically matches the optimal rate for
this channel, developed earlier in [2]. That is, in the scheme of
[1], the number of bits needed to synchronize two files can be
kept very small while achieving exponentially low probability
of error.

There are many practical scenarios where the files cannot
be modeled as binary and uniform. For example, a file is
usually not structured by bits, but by bytes or by even longer
atomic elements. If the source is a text file, not only are
some characters more frequent than others, but there is a large
autocorrelation within the file. Additionally, some symbols
may be inserted as well as deleted. As a result, our objective

is to suitably generalize the scheme in [1], while maintaining
low cost of transmission and low error of mis-synchronization.

Specifically, our model encapsulates the following general-
izations of the model in [1]:

1) We consider errors as being insertions or deletions instead
of being restricted to deletions only,

2) We consider non-binary source symbols,
3) We allow the source symbols to have an arbitrary distri-

bution; uniform distribution is then a special case.
The rest of the paper is organized as follows. In Section II

we outline the overall synchronization protocol. Necessary
notation and background results are presented in Section III.
Two key components of our synchronization protocol, the
matching module and the edit recovery module, are discussed
in detail in Sections IV and V, respectively. Section VI
concludes the paper.

II. THE SYNCHRONIZATION PROTOCOL
In [1], the following setup is considered: two distant nodes

A and B are connected by a low-bandwidth high-latency
network. A contains a file X which is a uniform i.i.d. binary
string of length n, and B contains a file Y of length n0 that is
obtained by deleting bits of X independently with probability
� ⌧ 1.

We consider a generalized setting in which the file X =

X
1

, . . . , Xn is i.i.d. on alphabet X = {0, . . . , Q � 1}, where
for all 1  t  n, Xt’s are distributed according to µ(x). For
simplicity, we consider Q to be a power of two, say Q = 2

q .
Insertions and deletions occur respectively with probability �i

and �d. Let us define an edit pattern E = E
1

, . . . , En as a
string in {�1, 0, 1}n such that Y is obtained from X in the
following way: for t from 1 to n,

• if Et = 0, transmit Xt,
• if Et = �1, delete (do not transmit) Xt,
• if Et = 1, transmit Xt, then insert (transmit) a new

symbol of X drawn with distribution µ(x).
For instance, consider X and Y defined over a quaternary

alphabet, X = 00

D
122133

D
10 and Y = 0120

I
23

I
10

I
310. Here

Y is derived from X by 2 deletions and 3 insertions where
deleted (inserted) symbols are denoted by D (I). The edit
pattern is thus E = (0,�1, 0, 1, 1, 1, 0,�1, 0, 0). Node B
aims to synchronize its file Y with the (original) file X by
requesting carefully chosen additional information from A

We need algorithms to synchronize multiple versions of a file.

Existing algorithms, such as RSYNC, su↵er from high
communication costs.

Goal: Develop a more e�cient synchronization algorithm.

3 / 23

Reducing Data Storage Demand

When files are identical, we can use deduplication tools.

What if files are similar, but not identical?

Synchronization from Insertions and Deletions
Under a Non-Binary, Non-Uniform Source

Nicolas Bitouzé and Lara Dolecek
Electrical Engineering Department

University of California, Los Angeles
Los Angeles, USA

Email: bitouze@ucla.edu, dolecek@ee.ucla.edu

Abstract—We study the problem of synchronizing two files X
and Y at two distant nodes A and B that are connected through a

two-way communication channel. We assume that file Y at node

B is obtained from file X at node A by inserting and deleting

a small fraction of symbols in X . More specifically, we consider

the case where X is a non-binary non-uniform string, and

deletions and insertions happen uniformly with rates �d and �i,

respectively. We propose a synchronization protocol between node

A and node B that needs to transmit O(CX(�d+�i)n log

1
�d+�i

)

bits (where n is the length of X and CX is a constant that depends

on the statistical properties of X) and reconstructs X at node

B with error probability exponentially low in n. This protocol

readily generalizes the recent result by Tabatabaei Yazdi and

Dolecek that dealt with synchronization from binary uniform

source and under only deletion errors.

I. INTRODUCTION
Motivated by the pervasive use of file synchronization in

modern data storage technologies, in this work we seek to
develop a synchronization protocol that is more efficient than
the existing algorithms. In particular, the popular RSYNC
method can be in general very inefficient and the number of
transmitted bits can be exponentially larger than the optimal
number.

Our starting point is an information-theoretically oriented
scheme recently developed in [1]. In [1], a synchronization
protocol that synchronizes an altered copy of the binary file
with the original version of the file was proposed. In this
scheme, the owner of the altered file requests additional
information from the owner of the original file to ensure proper
synchronization. It was assumed that the altered copy was
obtained from the original copy by i.i.d. deletions at the bit-
level and that the original file was generated from an i.i.d.
uniform binary source. It was then shown that the rate of the
proposed scheme asymptotically matches the optimal rate for
this channel, developed earlier in [2]. That is, in the scheme of
[1], the number of bits needed to synchronize two files can be
kept very small while achieving exponentially low probability
of error.

There are many practical scenarios where the files cannot
be modeled as binary and uniform. For example, a file is
usually not structured by bits, but by bytes or by even longer
atomic elements. If the source is a text file, not only are
some characters more frequent than others, but there is a large
autocorrelation within the file. Additionally, some symbols
may be inserted as well as deleted. As a result, our objective

is to suitably generalize the scheme in [1], while maintaining
low cost of transmission and low error of mis-synchronization.

Specifically, our model encapsulates the following general-
izations of the model in [1]:

1) We consider errors as being insertions or deletions instead
of being restricted to deletions only,

2) We consider non-binary source symbols,
3) We allow the source symbols to have an arbitrary distri-

bution; uniform distribution is then a special case.
The rest of the paper is organized as follows. In Section II

we outline the overall synchronization protocol. Necessary
notation and background results are presented in Section III.
Two key components of our synchronization protocol, the
matching module and the edit recovery module, are discussed
in detail in Sections IV and V, respectively. Section VI
concludes the paper.

II. THE SYNCHRONIZATION PROTOCOL
In [1], the following setup is considered: two distant nodes

A and B are connected by a low-bandwidth high-latency
network. A contains a file X which is a uniform i.i.d. binary
string of length n, and B contains a file Y of length n0 that is
obtained by deleting bits of X independently with probability
� ⌧ 1.

We consider a generalized setting in which the file X =

X
1

, . . . , Xn is i.i.d. on alphabet X = {0, . . . , Q � 1}, where
for all 1  t  n, Xt’s are distributed according to µ(x). For
simplicity, we consider Q to be a power of two, say Q = 2

q .
Insertions and deletions occur respectively with probability �i

and �d. Let us define an edit pattern E = E
1

, . . . , En as a
string in {�1, 0, 1}n such that Y is obtained from X in the
following way: for t from 1 to n,

• if Et = 0, transmit Xt,
• if Et = �1, delete (do not transmit) Xt,
• if Et = 1, transmit Xt, then insert (transmit) a new

symbol of X drawn with distribution µ(x).
For instance, consider X and Y defined over a quaternary

alphabet, X = 00

D
122133

D
10 and Y = 0120

I
23

I
10

I
310. Here

Y is derived from X by 2 deletions and 3 insertions where
deleted (inserted) symbols are denoted by D (I). The edit
pattern is thus E = (0,�1, 0, 1, 1, 1, 0,�1, 0, 0). Node B
aims to synchronize its file Y with the (original) file X by
requesting carefully chosen additional information from A

Synchronization from Insertions and Deletions
Under a Non-Binary, Non-Uniform Source

Nicolas Bitouzé and Lara Dolecek
Electrical Engineering Department

University of California, Los Angeles
Los Angeles, USA

Email: bitouze@ucla.edu, dolecek@ee.ucla.edu

Abstract—We study the problem of synchronizing two files X
and Y at two distant nodes A and B that are connected through a

two-way communication channel. We assume that file Y at node

B is obtained from file X at node A by inserting and deleting

a small fraction of symbols in X . More specifically, we consider

the case where X is a non-binary non-uniform string, and

deletions and insertions happen uniformly with rates �d and �i,

respectively. We propose a synchronization protocol between node

A and node B that needs to transmit O(CX(�d+�i)n log

1
�d+�i

)

bits (where n is the length of X and CX is a constant that depends

on the statistical properties of X) and reconstructs X at node

B with error probability exponentially low in n. This protocol

readily generalizes the recent result by Tabatabaei Yazdi and

Dolecek that dealt with synchronization from binary uniform

source and under only deletion errors.

I. INTRODUCTION

Motivated by the pervasive use of file synchronization in
modern data storage technologies, in this work we seek to
develop a synchronization protocol that is more efficient than
the existing algorithms. In particular, the popular RSYNC
method can be in general very inefficient and the number of
transmitted bits can be exponentially larger than the optimal
number.

Our starting point is an information-theoretically oriented
scheme recently developed in [1]. In [1], a synchronization
protocol that synchronizes an altered copy of the binary file
with the original version of the file was proposed. In this
scheme, the owner of the altered file requests additional
information from the owner of the original file to ensure proper
synchronization. It was assumed that the altered copy was
obtained from the original copy by i.i.d. deletions at the bit-
level and that the original file was generated from an i.i.d.
uniform binary source. It was then shown that the rate of the
proposed scheme asymptotically matches the optimal rate for
this channel, developed earlier in [2]. That is, in the scheme
of [1], the number of bits needed to synchronize two files can
be kept very small while achieving exponentially low error of
mis-synchronization.

There are many practical scenarios where the files cannot
be modeled as binary and uniform. For example, a file is
usually not structured by bits, but by bytes or by even longer
atomic elements. If the source is a text file, not only are
some characters more frequent than others, but there is a large
autocorrelation within the file. Additionally, some symbols
may be inserted as well as deleted. As a result, our objective

is to suitably generalize the scheme in [1], while maintaining
low cost of transmission and low error of mis-synchronization.

Specifically, our model encapsulates the following general-
izations of the model in [1]:

1) We consider errors as being insertions or deletions instead
of being restricted to deletions only,

2) We consider non-binary source symbols,
3) We allow the source symbols to have an arbitrary distri-

bution; uniform distribution is then a special case.
The rest of the paper is organized as follows. In Section II

we outline the overall synchronization protocol. Necessary
notation and background results are presented in Section III.
Two key components of our synchronization protocol, the
matching module and the edit recovery module, are discussed
in detail in Sections IV and V, respectively. Section VI
concludes the paper.

II. THE SYNCHRONIZATION PROTOCOL
In [1], the following setup is considered: two distant nodes

A and B are connected by a low-bandwidth high-latency
network. A contains a file X which is a uniform i.i.d. binary
string of length n, and B contains a file Y of length n0 that is
obtained by deleting bits of X independently with probability
� ⌧ 1.

We consider a generalized setting in which X =

X
1

, . . . , Xn is an i.i.d. file on alphabet X = {0, . . . , Q� 1},
where for all 1  t  n, Xt’s are distributed according
to µ(x). For simplicity, we consider Q to be a power of
two, say Q = 2

q . Insertions and deletions occur respectively
with probability �i and �d. Let us define an edit pattern
E = E

1

, . . . , En as a string in {�1, 0, 1}n such that Y is
obtained from X in the following way: for t from 1 to n,

• if Et = 0, transmit Xt,
• if Et = �1, delete (do not transmit) Xt,
• if Et = 1, transmit Xt, then insert (transmit) a new

symbol of X drawn with distribution µ(x).
For instance, consider X and Y defined over a quaternary

alphabet, X = 00

D
122133

D
10 and Y = 0120

I
23

I
10

I
310. Here

Y is derived from X by 2 deletions and 3 insertions where
deleted (inserted) symbols are denoted by D (I). The edit
pattern is thus E = (0,�1, 0, 1, 1, 1, 0,�1, 0, 0). Node B
aims to synchronize its file Y with the (original) file X by
requesting carefully chosen additional information from A

Synchronization from Insertions and Deletions
Under a Non-Binary, Non-Uniform Source

Nicolas Bitouzé and Lara Dolecek
Electrical Engineering Department

University of California, Los Angeles
Los Angeles, USA

Email: bitouze@ucla.edu, dolecek@ee.ucla.edu

Abstract—We study the problem of synchronizing two files X
and Y at two distant nodes A and B that are connected through a

two-way communication channel. We assume that file Y at node

B is obtained from file X at node A by inserting and deleting

a small fraction of symbols in X . More specifically, we consider

the case where X is a non-binary non-uniform sequence, and

deletions and insertions happen uniformly with rates �d and �i,

respectively. We propose a synchronization protocol between node

A and node B that needs to transmit O(CX(�d+�i)n log

1
�d+�i

)

bits (where n is the length of X and CX is a constant that depends

on the statistical properties of X) and reconstructs X at node

B with error probability exponentially low in n. This protocol

readily generalizes the recent result by Tabatabaei Yazdi and

Dolecek that dealt with synchronization from binary uniform

source and under only deletion errors.

I. INTRODUCTION
Motivated by the pervasive use of file synchronization in

modern data storage technologies, in this work we seek to
develop a synchronization protocol that is more efficient than
the existing algorithms. In particular, the popular RSYNC
method can be in general very inefficient and the number of
transmitted bits can be exponentially larger than the optimal
number.

Our starting point is an information-theoretically oriented
scheme recently developed in [1]. In [1], a synchronization
protocol that synchronizes an altered copy of the binary file
with the original version of the file was proposed. In this
scheme, the owner of the altered file requests additional
information from the owner of the original file to ensure proper
synchronization. It was assumed that the altered copy was
obtained from the original copy by i.i.d. deletions at the bit-
level and that the original file was generated from an i.i.d.
uniform binary source. It was then shown that the rate of the
proposed scheme asymptotically matches the optimal rate for
this channel, developed earlier in [2]. That is, in the scheme of
[1], the number of bits needed to synchronize two files can be
kept very small while achieving exponentially low probability
of error.

There are many practical scenarios where the files cannot
be modeled as binary and uniform. For example, a file is
usually not structured by bits, but by bytes or by even longer
atomic elements. If the source is a text file, not only are
some characters more frequent than others, but there is a large
autocorrelation within the file. Additionally, some symbols
may be inserted as well as deleted. As a result, our objective

is to suitably generalize the scheme in [1], while maintaining
low cost of transmission and low error of mis-synchronization.

Specifically, our model encapsulates the following general-
izations of the model in [1]:

1) We consider errors as being insertions or deletions instead
of being restricted to deletions only,

2) We consider non-binary source symbols,
3) We allow the source symbols to have an arbitrary distri-

bution; uniform distribution is then a special case.
The rest of the paper is organized as follows. In Section II

we outline the overall synchronization protocol. Necessary
notation and background results are presented in Section III.
Two key components of our synchronization protocol, the
matching module and the edit recovery module, are discussed
in detail in Sections IV and V, respectively. Section VI
concludes the paper.

II. THE SYNCHRONIZATION PROTOCOL
In [1], the following setup is considered: two distant nodes

A and B are connected by a low-bandwidth high-latency
network. A contains a file X which is a uniform i.i.d. binary
string of length n, and B contains a file Y of length n0 that is
obtained by deleting bits of X independently with probability
� ⌧ 1.

We consider a generalized setting in which the file X =

X
1

, . . . , Xn is i.i.d. on alphabet X = {0, . . . , Q � 1}, where
for all 1  t  n, Xt’s are distributed according to µ(x). For
simplicity, we consider Q to be a power of two, say Q = 2

q .
Insertions and deletions occur respectively with probability �i

and �d. Let us define an edit pattern E = E
1

, . . . , En as a
string in {�1, 0, 1}n such that Y is obtained from X in the
following way: for t from 1 to n,

• if Et = 0, transmit Xt,
• if Et = �1, delete (do not transmit) Xt,
• if Et = 1, transmit Xt, then insert (transmit) a new

symbol of X drawn with distribution µ(x).
For instance, consider X and Y defined over a quaternary

alphabet, X = 00

D
122133

D
10 and Y = 0120

I
23

I
10

I
310. Here

Y is derived from X by 2 deletions and 3 insertions where
deleted (inserted) symbols are denoted by D (I). The edit
pattern is thus E = (0,�1, 0, 1, 1, 1, 0,�1, 0, 0). Node B
aims to synchronize its file Y with the (original) file X by
requesting carefully chosen additional information from A

We need algorithms to synchronize multiple versions of a file.

Existing algorithms, such as RSYNC, su↵er from high
communication costs.

Goal: Develop a more e�cient synchronization algorithm.

3 / 23

Synchronization Protocols

Original File

Alice’s Version Bob ’s VersionEdits Edits

4 / 23

Synchronization Protocols

Original File

Alice’s Version Bob ’s VersionEdits Edits

4 / 23

Synchronization Protocols

Original File

Alice’s Version Bob ’s VersionEdits Edits

Synchronization Protocol

so that Bob’s version matches Alice’s

4 / 23

Synchronization Protocols

Original File

Alice’s Version Alice’s VersionEdits Edits

Synchronization Protocol

so that Bob’s version matches Alice’s

4 / 23

Problem Setting

File X : h d c e a t g b k u j r v c x f q. . .

File Y : h d e a k t g v b j r v c r f s q. . .

Small rate of edits �.

File length: |X |=n, |Y |=m⇡n.

5 / 23

Problem Setting

File X : h d c e a t g b k u j r v c x f q. . .

File Y : h d e a k t g v b j r v c r f s q. . .

Small rate of edits �.

File length: |X |=n, |Y |=m⇡n.

5 / 23

Problem Setting

File X : h d c e a t g b k u j r v c x f q. . .

File Y : h d e a k t g v b j r v c r f s q. . .

Small rate of edits �.

File length: |X |=n, |Y |=m⇡n.

5 / 23

Problem Setting

File X : h d c e a t g b k u j r v c x f q. . .

File Y : h d e a k t g v b j r v c r f s q. . .

D

Small rate of edits �.

File length: |X |=n, |Y |=m⇡n.

5 / 23

Problem Setting

File X : h d c e a t g b k u j r v c x f q. . .

File Y : h d e a k t g v b j r v c r f s q. . .

D

Small rate of edits �.

File length: |X |=n, |Y |=m⇡n.

5 / 23

Problem Setting

File X : h d c e a t g b k u j r v c x f q. . .

File Y : h d e a k t g v b j r v c r f s q. . .

D

Small rate of edits �.

File length: |X |=n, |Y |=m⇡n.

5 / 23

Problem Setting

File X : h d c e a t g b k u j r v c x f q. . .

File Y : h d e a k t g v b j r v c r f s q. . .

D
I

Small rate of edits �.

File length: |X |=n, |Y |=m⇡n.

5 / 23

Problem Setting

File X : h d c e a t g b k u j r v c x f q. . .

File Y : h d e a k t g v b j r v c r f s q. . .

D
I

Small rate of edits �.

File length: |X |=n, |Y |=m⇡n.

5 / 23

Problem Setting

File X : h d c e a t g b k u j r v c x f q. . .

File Y : h d e a k t g v b j r v c r f s q. . .

D
I

Small rate of edits �.

File length: |X |=n, |Y |=m⇡n.

5 / 23

Problem Setting

File X : h d c e a t g b k u j r v c x f q. . .

File Y : h d e a k t g v b j r v c r f s q. . .

D DD D
I I I I

Small rate of edits �.

File length: |X |=n, |Y |=m⇡n.

5 / 23

Problem Setting

File X : h d c e a t g b k u j r v c x f q. . .

File Y : h d e a k t g v b j r v c r f s q. . .

D DD D
I I I I

File X

Node A

File Y

Node B

Two-way Channel

(Noiseless)

Goal: Interactive Communication Scheme

Allow Node to B recover X from Y :

with low probability of error,

with low communication cost.

5 / 23

Related Work

Scheme that corrects a single edit (binary & non-binary):

V. I. Levenshtein, “Binary codes with correction of deletions,
insertions and reversals”, 1965.
G. M. Tenengolts, “Nonbinary codes, correcting single deletion
or insertion”, 1984.

Scheme that corrects a fixed number of edits (binary):

R. Venkataramanan, H. Zhang, and K. Ramchandran,
“Interactive low-complexity codes for synchronization from
deletions and insertions”, 2010.

Theoretical bound for the fixed rate of edits case:
N. Ma, K. Ramchandran and D. Tse, “E�cient file
synchronization: a distributed source coding approach”, 2011.

6 / 23

Related Work

Scheme that corrects a single edit (binary & non-binary):

V. I. Levenshtein, “Binary codes with correction of deletions,
insertions and reversals”, 1965.
G. M. Tenengolts, “Nonbinary codes, correcting single deletion
or insertion”, 1984.

Scheme that corrects a fixed number of edits (binary):

R. Venkataramanan, H. Zhang, and K. Ramchandran,
“Interactive low-complexity codes for synchronization from
deletions and insertions”, 2010.

Theoretical bound for the fixed rate of edits case:
N. Ma, K. Ramchandran and D. Tse, “E�cient file
synchronization: a distributed source coding approach”, 2011.

6 / 23

Related Work

Scheme that corrects a single edit (binary & non-binary):

V. I. Levenshtein, “Binary codes with correction of deletions,
insertions and reversals”, 1965.
G. M. Tenengolts, “Nonbinary codes, correcting single deletion
or insertion”, 1984.

Scheme that corrects a fixed number of edits (binary):

R. Venkataramanan, H. Zhang, and K. Ramchandran,
“Interactive low-complexity codes for synchronization from
deletions and insertions”, 2010.

Theoretical bound for the fixed rate of edits case:
N. Ma, K. Ramchandran and D. Tse, “E�cient file
synchronization: a distributed source coding approach”, 2011.

6 / 23

Our Contributions

Scheme for fixed rate of edits:

N. Bitouzé and L. Dolecek, “Synchronization from insertions
and deletions under a non-binary, non-uniform source”, IEEE
ISIT, Jul. 2013.
S. M. S. Tabatabaei and L. Dolecek, “A deterministic,
polynomial-time protocol for synchronizing from deletions”,
IEEE Trans. I.T., 2013.
N. Bitouzé, F. Sala, S. M. S. Tabatabaei, and L. Dolecek, “A
practical framework for e�cient file synchronization”, Allerton,
Oct. 2013.

7 / 23

Synchronization Scheme: Overview

hdcatgbkujinntuqjrvxfqxrzleydwajgndtwanyohdcyhzrnrmFile X :

Pivot Strings: short Segment Strings: long

Node A

hdcatbkujintkuqjrvxqxrledwrajgnidtwayohdcyhzrnrm

hdcatgbkujinntuqjrvxfqxrzleydwajgndtwanyohdcyhzrnrm

File Y :

Matched Pivots

Node B

8 / 23

Synchronization Scheme: Overview

hdcatgbkujinntuqjrvxfqxrzleydwajgndtwanyohdcyhzrnrmFile X :

Pivot Strings: short Segment Strings: longNode A

hdcatbkujintkuqjrvxqxrledwrajgnidtwayohdcyhzrnrm

hdcatgbkujinntuqjrvxfqxrzleydwajgndtwanyohdcyhzrnrm

File Y :

Matched Pivots

Node B

8 / 23

Synchronization Scheme: Overview

hdcatgbkujinntuqjrvxfqxrzleydwajgndtwanyohdcyhzrnrmFile X :

Pivot Strings: short Segment Strings: longNode A

hdcatbkujintkuqjrvxqxrledwrajgnidtwayohdcyhzrnrm

hdcatgbkujinntuqjrvxfqxrzleydwajgndtwanyohdcyhzrnrm

File Y :

Matched Pivots

Node B

Send the pivots:

hdc jrv gnd nrm

8 / 23

Synchronization Scheme: Overview

hdcatgbkujinntuqjrvxfqxrzleydwajgndtwanyohdcyhzrnrmFile X :

Pivot Strings: short Segment Strings: longNode A

hdcatbkujintkuqjrvxqxrledwrajgnidtwayohdcyhzrnrm

hdcatgbkujinntuqjrvxfqxrzleydwajgndtwanyohdcyhzrnrm

File Y :

Matched PivotsNode B

Send the pivots:

hdc jrv gnd nrm

1 Matching Module: Matches the pivot strings.

8 / 23

Synchronization Scheme: Overview

hdcatgbkujinntuqjrvxfqxrzleydwajgndtwanyohdcyhzrnrmFile X :

Pivot Strings: short Segment Strings: longNode A

hdcatbkujintkuqjrvxqxrledwrajgnidtwayohdcyhzrnrm

hdcatgbkujinntuqjrvxfqxrzleydwajgndtwanyohdcyhzrnrm

File Y :

Matched PivotsNode B

1 Matching Module: Matches the pivot strings.

8 / 23

Synchronization Scheme: Overview

hdcatgbkujinntuqjrvxfqxrzleydwajgndtwanyohdcyhzrnrmFile X :

Pivot Strings: short Segment Strings: longNode A

hdcatbkujintkuqjrvxqxrledwrajgnidtwayohdcyhzrnrm

hdcatgbkujinntuqjrvxfqxrzleydwajgndtwanyohdcyhzrnrm

File Y :

Matched Pivots Non-Synced SegmentsNode B

1 Matching Module: Matches the pivot strings.

8 / 23

Synchronization Scheme: Overview

hdcatgbkujinntuqjrvxfqxrzleydwajgndtwanyohdcyhzrnrmFile X :

Pivot Strings: short Segment Strings: longNode A

hdcatbkujintkuqjrvxqxrledwrajgnidtwayohdcyhzrnrm

hdcatgbkujinntuqjrvxfqxrzleydwajgndtwanyohdcyhzrnrm

File Y :

Matched Pivots Non-Synced SegmentsNode B

1 Matching Module: Matches the pivot strings.

2 Edit Recovery Module: Synchronizes the segment strings.

8 / 23

Synchronization Scheme: Overview

hdcatgbkujinntuqjrvxfqxrzleydwajgndtwanyohdcyhzrnrmFile X :

Pivot Strings: short Segment Strings: longNode A

hdcatgbkujinntuqjrvxfqxrzleydwajgndtwanyohdcyhzrnrmFile Y :

Matched Pivots Synchronized SegmentsNode B

1 Matching Module: Matches the pivot strings.

2 Edit Recovery Module: Synchronizes the segment strings.

8 / 23

Synchronization Scheme: Overview

hdcatgbkujinntuqjrvxfqxrzleydwajgndtwanyohdcyhzrnrmFile X :

Pivot Strings: short Segment Strings: longNode A

hdcatgbkujinntuqjrvxfqxrzleydwajgndtwanyohdcyhzrnrmFile Y :

Matched Pivots Synchronized SegmentsNode B

1 Matching Module: Matches the pivot strings.

2 Edit Recovery Module: Synchronizes the segment strings.

3 Channel Coding Module: Recovers from residual errors if any.

8 / 23

1 Matching Module

Matching Module

We match hdc jrv gnd nrm in

Y = hdcatbkujintkuqjrvxqxrledwrajgnidtwayohdcyhzrnrm.

hdc hdcatbkujintkuqjrvxqxrledwrajgnidtwaohdcdyhzrnrm

jrv hdcatbkujintkuqjrvxqxrledwrajgnidtwaohdcdyhzrnrm

gnd hdcatbkujintkuqjrvxqxrledwrajgnidtwaohdcdyhzrnrm

nrm hdcatbkujintkuqjrvxqxrledwrajgnidtwaohdcdyhzrnrm

9 / 23

Matching Module

We match hdc jrv gnd nrm in

Y = hdcatbkujintkuqjrvxqxrledwrajgnidtwayohdcyhzrnrm.

hdc hdcatbkujintkuqjrvxqxrledwrajgnidtwaohdcdyhzrnrm

jrv hdcatbkujintkuqjrvxqxrledwrajgnidtwaohdcdyhzrnrm

gnd hdcatbkujintkuqjrvxqxrledwrajgnidtwaohdcdyhzrnrm

nrm hdcatbkujintkuqjrvxqxrledwrajgnidtwaohdcdyhzrnrm

9 / 23

Matching Module

We match hdc jrv gnd nrm in

Y = hdcatbkujintkuqjrvxqxrledwrajgnidtwayohdcyhzrnrm.

hdc hdcatbkujintkuqjrvxqxrledwrajgnidtwaohdcdyhzrnrm

jrv hdcatbkujintkuqjrvxqxrledwrajgnidtwaohdcdyhzrnrm

gnd hdcatbkujintkuqjrvxqxrledwrajgnidtwaohdcdyhzrnrm

nrm hdcatbkujintkuqjrvxqxrledwrajgnidtwaohdcdyhzrnrm

9 / 23

Matching Module

We match hdc jrv gnd nrm in

Y = hdcatbkujintkuqjrvxqxrledwrajgnidtwayohdcyhzrnrm.

hdc hdcatbkujintkuqjrvxqxrledwrajgnidtwaohdcdyhzrnrm

jrv hdcatbkujintkuqjrvxqxrledwrajgnidtwaohdcdyhzrnrm

gnd hdcatbkujintkuqjrvxqxrledwrajgnidtwaohdcdyhzrnrm

nrm hdcatbkujintkuqjrvxqxrledwrajgnidtwaohdcdyhzrnrm

9 / 23

Matching Module

We match hdc jrv gnd nrm in

Y = hdcatbkujintkuqjrvxqxrledwrajgnidtwayohdcyhzrnrm.

hdc hdcatbkujintkuqjrvxqxrledwrajgnidtwaohdcdyhzrnrm

jrv hdcatbkujintkuqjrvxqxrledwrajgnidtwaohdcdyhzrnrm

gnd hdcatbkujintkuqjrvxqxrledwrajgnidtwaohdcdyhzrnrm

nrm hdcatbkujintkuqjrvxqxrledwrajgnidtwaohdcdyhzrnrm

9 / 23

Matching Module

We match hdc jrv gnd nrm in

Y = hdcatbkujintkuqjrvxqxrledwrajgnidtwayohdcyhzrnrm.

hdc hdcatbkujintkuqjrvxqxrledwrajgnidtwaohdcdyhzrnrm

jrv hdcatbkujintkuqjrvxqxrledwrajgnidtwaohdcdyhzrnrm

gnd hdcatbkujintkuqjrvxqxrledwrajgnidtwaohdcdyhzrnrm

nrm hdcatbkujintkuqjrvxqxrledwrajgnidtwaohdcdyhzrnrm

9 / 23

Matching Module: Larger Example

1

2

3

4

5

6

1 1 11

2 2

333

44 4

555

66 6

y1y2 ym

10 / 23

Matching Module: Even Larger Example

Edit Rates �d = �i = 0.02, n = 5000, Pivot Length 5

Pivot k

Pivot 40

Pivot 20

Pivot 1

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

11 / 23

Matching Module: Even Larger Example

Edit Rates �d = �i = 0.02, n = 5000, Pivot Length 6

Pivot k

Pivot 40

Pivot 20

Pivot 1

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

11 / 23

Matching Module: Even Larger Example

Edit Rates �d = �i = 0.02, n = 5000, Pivot Length 7

Pivot k

Pivot 40

Pivot 20

Pivot 1

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

11 / 23

Matching Module: Cost and Error Probability

Errors

Pivots are short enough to avoid edits,

Pivots are long enough so that pivot collisions are unlikely,

“Wrong” thick edges exist, but wrong thick paths do not.

Communication

With pivot length O
⇣
log 1

�

⌘
,

With segment length O
⇣

1
�

⌘
,

O(n�) pivots are transmitted, totalling O
⇣
n� log 1

�

⌘
bit.

12 / 23

Matching Module: Cost and Error Probability

Errors

Pivots are short enough to avoid edits,

Pivots are long enough so that pivot collisions are unlikely,

“Wrong” thick edges exist, but wrong thick paths do not.

Communication

With pivot length O
⇣
log 1

�

⌘
,

With segment length O
⇣

1
�

⌘
,

O(n�) pivots are transmitted, totalling O
⇣
n� log 1

�

⌘
bit.

12 / 23

Matching Module: Cost and Error Probability

Summary

The module transmits O
⇣
n� log 1

�

⌘
bits

(in a single channel use).

With probability 1� O(2�n):

We match a fraction 1� O
⇣
� log 1

�

⌘
of the pivots.

These matches are incorrect with probability < � + o(�).

12 / 23

2 Edit Recovery Module

Edit Recovery Module: Correcting Single Edits

When two files di↵er by a single edit, synchronization:

can be done in a single round of communication,

in a perfect manner (no error),

communicating ⇠ log L+ log q bits (from A to B),
where L and L± 1 are the lengths of the files.

G. M. Tenengolts, “Nonbinary codes, correcting single deletion
or insertion”, 1984.

13 / 23

Edit Recovery Module

R. Venkataramanan, H. Zhang, and K. Ramchandran,
“Interactive low-complexity codes for synchronization from
deletions and insertions”, 2010.

Goal: X = j r v x q x r l e d w r a j g n i d t w a y o h d c y h z r n r m

Given: Y = j r v x f q x r z l e y d w a j g n d t w a n y o h d c y h z r n r m

j r v x q x r l e d w a j g n i d t w a y o h d c y h z r n r m
j r v x f q x r z l e y d w a j g n d t w a n y o h d c y h z r n r m

26

29

12 12

14 / 23

Edit Recovery Module

R. Venkataramanan, H. Zhang, and K. Ramchandran,
“Interactive low-complexity codes for synchronization from
deletions and insertions”, 2010.

Goal: X = j r v x q x r l e d w r a j g n i d t w a y o h d c y h z r n r m

Given: Y = j r v x f q x r z l e y d w a j g n d t w a n y o h d c y h z r n r m

j r v x q x r l e d w a j g n i d t w a y o h d c y h z r n r m
j r v x f q x r z l e y d w a j g n d t w a n y o h d c y h z r n r m

26

29

12 12

Lengths di↵er by more than 1:
Send a central delimiter.

14 / 23

Edit Recovery Module

R. Venkataramanan, H. Zhang, and K. Ramchandran,
“Interactive low-complexity codes for synchronization from
deletions and insertions”, 2010.

Goal: X = j r v x q x r l e d w r a j g n i d t w a y o h d c y h z r n r m

Given: Y = j r v x f q x r z l e y d w a j g n d t w a n y o h d c y h z r n r m

j r v x q x r l e d w a j g n i d t w a y o h d c y h z r n r m
j r v x f q x r z l e y d w a j g n d t w a n y o h d c y h z r n r m

26

29

12 12

Delimiter i d has no match:
Choose a di↵erent delimiter.

14 / 23

Edit Recovery Module

R. Venkataramanan, H. Zhang, and K. Ramchandran,
“Interactive low-complexity codes for synchronization from
deletions and insertions”, 2010.

Goal: X = j r v x q x r l e d w r a j g n i d t w a y o h d c y h z r n r m

Given: Y = j r v x f q x r z l e y d w a j g n d t w a n y o h d c y h z r n r m

j r v x q x r l e d w a j g n i d t w a y o h d c y h z r n r m
j r v x f q x r z l e y d w a j g n d t w a n y o h d c y h z r n r m

26

29

12 12

New “central” delimiter g n is matched:
Repeat on both sides.

14 / 23

Edit Recovery Module

Goal: X = j r v x q x r l e d w r a j g n i d t w a y o h d c y h z r n r m

Given: Y = j r v x f q x r z l e y d w a j g n d t w a n y o h d c y h z r n r m

j r v x q x r l e d w a j g n i d t w a y o h d c y h z r n r m
j r v x f q x r z l e y d w a j g n d t w a n y o h d c y h z r n r m

26

29

12 12

10 14

13 14

Left side:

Lengths di↵er by more than 1:
Send a delimiter.

Right side:

Lengths are equal:

Test if strings are equal (hash),

No: Send a delimiter.

14 / 23

Edit Recovery Module

Goal: X = j r v x q x r l e d w r a j g n i d t w a y o h d c y h z r n r m

Given: Y = j r v x f q x r z l e y d w a j g n d t w a n y o h d c y h z r n r m

j r v x q x r l e d w a j g n i d t w a y o h d c y h z r n r m
j r v x f q x r z l e y d w a j g n d t w a n y o h d c y h z r n r m

26

29

12 12

And so on...

until every subproblem is solved.

14 / 23

Edit Recovery Module

Goal: X = j r v x q x r l e d w r a j g n i d t w a y o h d c y h z r n r m

Given: Y = j r v x f q x r z l e y d w a j g n d t w a n y o h d c y h z r n r m

j r v x q x r l e d w a j g n i d t w a y o h d c y h z r n r m
j r v x f q x r z l e y d w a j g n d t w a n y o h d c y h z r n r m

26

29

12 12

4

6

4

5

6

6

6

6

And so on...

until every subproblem is solved.

14 / 23

Edit Recovery Module

Goal: X = j r v x q x r l e d w r a j g n i d t w a y o h d c y h z r n r m

Given: Y = j r v x f q x r z l e y d w a j g n d t w a n y o h d c y h z r n r m

j r v x q x r l e d w a j g n id t w a y o h d c y h z r n r m
j r v x f q x r z l e d w a j g n d t w a n y o h d c y h z r n r m

26

29

12 12

And so on...

until every subproblem is solved.

14 / 23

Edit Recovery Module

Goal: X = j r v x q x r l e d w r a j g n i d t w a y o h d c y h z r n r m

Given: Y = j r v x f q x r z l e y d w a j g n d t w a n y o h d c y h z r n r m

j r v x q x r l e d w a j g n id t w a y o h d c y h z r n r m
j r v x f q x r z l e d w a j g n d t w a n y o h d c y h z r n r m

26

29

12 12

1 1 2 2

2 2 1 3

And so on...

until every subproblem is solved.

14 / 23

Edit Recovery Module

Goal: X = j r v x q x r l e d w r a j g n i d t w a y o h d c y h z r n r m

Given: Y = j r v x f q x r z l e y d w a j g n d t w a n y o h d c y h z r n r m

j r v x q x r l e d w a j g n id t w a y o h d c y h z r n r m
j r v x q x r l e d w a j g n id t w a y o h d c y h z r n r m

26

29

12 12

And so on... until every subproblem is solved.

14 / 23

Edit Recovery Module: Cost and Error Probability

Errors

Come from Hash Collisions,

Increase hash length:
More communication,
Less collisions.

Communication

Hashes (from A to B),

Delimiters (from A to B),

Syndromes (from A to B),

Control (from B to A).

15 / 23

Edit Recovery Module: Cost and Error Probability

Errors

Come from Hash Collisions,

Increase hash length:
More communication,
Less collisions.

Communication

Hashes (from A to B),

Delimiters (from A to B),

Syndromes (from A to B),

Control (from B to A).

15 / 23

Edit Recovery Module: Cost and Error Probability

Summary

The module transmits O
⇣
n� log 1

�

⌘
bits

(in a few rounds of communication).

With probability 1� O(2�n),
only a fraction o(�) of the segments is mis-synchronized.

15 / 23

3 Channel Coding Module

Channel Coding Module: Motivation

Possible Errors

Pivots mismatched by the Matching Module.

Delimiters mismatched by the Edit Recovery Module.

Hash collisions.

After these two modules,
the symbol-error probability is < 2� + o(�).

) Correct these errors with the Channel Coding Module.

16 / 23

Channel Coding Module: Motivation

Possible Errors

Pivots mismatched by the Matching Module.

Delimiters mismatched by the Edit Recovery Module.

Hash collisions.

After these two modules,
the symbol-error probability is < 2� + o(�).
) Correct these errors with the Channel Coding Module.

16 / 23

Channel Coding Module

Node A

Node B

X

Output ⇡X from Edit Recov. Mod.
(Same length as X)

C

Systematic part q-ary Checks

Codeword from Systematic LDPC Code

C

X C

Channel Coding Module: LDPC Decoder

17 / 23

Channel Coding Module

Node A

Node B

X

Output ⇡X from Edit Recov. Mod.
(Same length as X)

C

Systematic part q-ary Checks

Codeword from Systematic LDPC Code

C

X C

Channel Coding Module: LDPC Decoder

17 / 23

Channel Coding Module

Node A

Node B

X

Output ⇡X from Edit Recov. Mod.
(Same length as X)

C

Systematic part q-ary Checks

Codeword from Systematic LDPC Code

C

X C

Channel Coding Module: LDPC Decoder

Send

17 / 23

Channel Coding Module

Node A

Node B

X

Output ⇡X from Edit Recov. Mod.

(Same length as X)

C

Systematic part q-ary Checks

Codeword from Systematic LDPC Code

C

X C

Channel Coding Module: LDPC Decoder

Send

17 / 23

Channel Coding Module

Node A

Node B

X

Output ⇡X from Edit Recov. Mod.

(Same length as X)

C

Systematic part q-ary Checks

Codeword from Systematic LDPC Code

C

X C

Channel Coding Module: LDPC Decoder

Send

17 / 23

Channel Coding Module: Cost and Error Probability

Communication

Residual error probability from previous modules:
2� + o(�).

Additional data required to correct these errors:

Const · n · H(2� + o(�)) = O
⇣
n� log 1

�

⌘
bits.

Summary

The module transmits O
⇣
n� log 1

�

⌘
bits

(in a single channel use).

With probability 1� O(2�n),
Y is synchronized with no remaining error.

18 / 23

Channel Coding Module: Cost and Error Probability

Communication

Residual error probability from previous modules:
2� + o(�).

Additional data required to correct these errors:

Const · n · H(2� + o(�)) = O
⇣
n� log 1

�

⌘
bits.

Summary

The module transmits O
⇣
n� log 1

�

⌘
bits

(in a single channel use).

With probability 1� O(2�n),
Y is synchronized with no remaining error.

18 / 23

Comparison with RSYNC when n varies

� = 0.01 and � = 0.002, i.i.d. file, i.i.d. edits, q = 52,
Our pivot length: 5, segment length: 1/�.

0

100000

200000

300000

400000

0 20000 40000 60000 80000 100000

B
it
s
tr
an
sm

it
te
d

File length (n)

Factor 5.5

Factor 12.5

our scheme (� = 0.002)
our scheme (� = 0.010)

rsync (� = 0.002)
rsync (� = 0.010)

19 / 23

Comparison with RSYNC when � varies

n = 50000, i.i.d. file, i.i.d. edits, q = 52,
Our pivot length: 5, segment length: 1/�.

0

100000

200000

300000

0 0.002 0.004 0.006 0.008 0.01

B
it
s
tr
an
sm

it
te
d

Edit rate (�)

Factor 10

our scheme
rsync

20 / 23

Comparison with Venkataramanan et al. scheme

� = 0.01, i.i.d. file, i.i.d. edits, q = 52,

Our pivot length: 5, segment length: 1/�.

Bandwidth (in bits)

n 20k 40k 60k 100k

Median
Our scheme 18k 35k 54k 87k

Venkataramanan 19k 41k 63k 87k

Worst-case
Our scheme 52k 96k 95k 95k

Venkataramanan 390k 845k 1,216k 346k

Rounds of communication required

Our scheme completes in about half less rounds.

Errors prior to Channel Coding

Our error rate per symbol is also about half lower.

21 / 23

Applications

In addition to reducing data storage demand, our algorithm can be
used for:

Synchronization in general data storage (Dropbox),

Synchronization in particular data repositories: source control
(Github, SVN, etc...), video (YouTube, Vimeo),

Database searches: determining whether two records are
similar.

22 / 23

Applications

In addition to reducing data storage demand, our algorithm can be
used for:

Synchronization in general data storage (Dropbox),

Synchronization in particular data repositories: source control
(Github, SVN, etc...), video (YouTube, Vimeo),

Database searches: determining whether two records are
similar.

22 / 23

Applications

In addition to reducing data storage demand, our algorithm can be
used for:

Synchronization in general data storage (Dropbox),

Synchronization in particular data repositories: source control
(Github, SVN, etc...), video (YouTube, Vimeo),

Database searches: determining whether two records are
similar.

22 / 23

Applications

In addition to reducing data storage demand, our algorithm can be
used for:

Synchronization in general data storage (Dropbox),

Synchronization in particular data repositories: source control
(Github, SVN, etc...), video (YouTube, Vimeo),

Database searches: determining whether two records are
similar.

22 / 23

Ongoing Work

Allow for more complex edit patterns
(e.g., in practical scenarios, edits are often “bursty”),

Specialize our scheme to application-dependent types of files
(e.g., if the files are source code, exploit that structure),

Optimize the implementation (e.g., in terms of both
computation and network usage).

23 / 23

Ongoing Work

Allow for more complex edit patterns
(e.g., in practical scenarios, edits are often “bursty”),

Specialize our scheme to application-dependent types of files
(e.g., if the files are source code, exploit that structure),

Optimize the implementation (e.g., in terms of both
computation and network usage).

23 / 23

Ongoing Work

Allow for more complex edit patterns
(e.g., in practical scenarios, edits are often “bursty”),

Specialize our scheme to application-dependent types of files
(e.g., if the files are source code, exploit that structure),

Optimize the implementation (e.g., in terms of both
computation and network usage).

23 / 23

	Matching Module
	Edit Recovery Module
	Channel Coding Module

