Piggybacked Erasure Codes
for Distributed Storage &

Findings from the
Facebook Warehouse Cluster

Berkeley

K. V. Rashmi, Nihar Shah, D. Gu,
H. Kuang, D. Borthakur, K. Ramchandran

Piggybacked Erasure Codes
for Distributed Storage &

Findings from the
Facebook Warehouse Cluster

Berkeley

K. V. Rashmi, Nihar Shah, D. Gu,
H. Kuang, D. Borthakur, K. Ramchandran

Presented by Kangwook Lee
=> Unhandled questions will be happily forwarded

Outline

Introduction & Motivation
— Measurements from Facebook’s Warehouse cluster

The Piggybacking framework

Via the Piggybacking framework

— Best known codes for several settings
— Comparison with other codes

— Preliminary practical experiments

Summary & future work

Outline

 Introduction & Motivation
— Measurements from Facebook’s Warehouse cluster

Motivation: Facebook’s Warehouse
Cluster Measurements

* Multiple tens of PBs and growing
 Multiple thousands of nodes

[Reducing storage requirements is of high importance J

e Uses (14, 10) RS code for storage efficiency
— on less-frequently accessed data

 Multiple PBs of RS coded data

[Rashmi et al., USENIX HotStorage 2013]
“A solution to the network challenges of data recovery in erasure-coded
distributed storage systems: A study on the Facebook warehouse cluster”

Repair in Conventional Erasure Codes:
High disk IO & download

* Conventional repair in erasure codes:
Download & 10 = Size of entire message

a+b IO & Download
2X

a+b

a+2b

For (14, 10) RS code, it’s 10x!

Amount of transfer

250 TB
0
£ 200TB 3
5 g
Q@ o
¢ 150 TB L
S | 9
| O
Y o
9] n o
© 100 TBp re)
" | %
%] |
o L c
& 50TBf,| *
.,’ — # cross-rack transfer bytes |H60 K
Y - - # HDFS blocks recovered
OTBO 5 10 15 20 25

Day

 Median of 180 TB transferred across racks per day for repair

Rashmi et al., USENIX HotStorage 2013

Breakdown of repairs

repairs % of repairs
[1 98.08
2 1.87
3 0.036
4 9x 10
>5 9 x 107°

= Code should perform efficient single repair.

Rashmi et al., USENIX HotStorage 2013

Outline

 The Piggybacking framework

Piggybacking RS codes: Toy Example

Step 1: Take 2 stripes of (4, 2) Reed-Solomon code

systematic 1 a, b,

systematic 2 a, b,
parity 1 a,+a, b,+b,
parity 2 a;+2a, b,+2b,

Piggybacking RS codes: Toy Example

Step 2: Add ‘piggybacks’

a, b,

a, b,
a,+a, b,+b,
a,+2a, b,+2b,+a,

No additional storage!

Fault-Tolerance

Same fault tolerance as RS code:
can tolerate any 2 failures

a,+a, b,+b,

a,+2a, b,+2b,+a,

Fault-Tolerance

Same fault tolerance as RS code:
can tolerate any 2 failures

a,+2a, b,+2b,+a,

Fault-Tolerance

Same fault tolerance as RS code:
can tolerate any 2 failures

_— subtract

Fault-Tolerance

Same fault tolerance as RS code:
can tolerate any 2 failures

4 NT 7~ N
a,+a, b,+b,
a,+2a, b,+2b,

Repair

a,+a, b,+b,

a,+2a, b,+2b,+a,

Repair

1O & Download =3
(instead of 4 as in RS)

= ~ b,+2b,+a,
d, b, 1

a,+a, b,+b,

a,+2a, gb1+2b2+a1 Y,

Optimal !

Repair

IO & Download =3
(instead of 4 as in RS) subtract

— ~ b,+2b,+a,

a,+a, b +b2

a,+2a, gb1+2b2+a1 Y,

Repair

1O & Download =3
(instead of 4 as in RS)

subtract
a,+a, b,+b,

a,+2a, gb1+2b2+a1 Y,

General Piggybacking Framework

Step 1: Take 2 (or more) stripes of (n, k) code C

General Piggybacking Framework

Step 2: Add Piggybacks’

a1 b1
ay b,
f.(a,...,a,) f.(by,...,0) + p,(a;,...,a,)

General Piggybacking Framework

Decoding: use decoder of C

2k b,
A by
f.(a,...,a,) f.(by,...b) + p,(a;,...,a)
f (a,...,a) f (by,...b) + p, (a;,...,8)
A\ J/ (g J/
~ ~
recover a,,...,a, asin C subtract piggybacks;

recover by,...,.b, asin C

General Piggybacking Framework
* Piggybacking does not reduce minimum distance

e .. Can choose arbitrary functions for piggybacking

Piggybacking functions should be designed

such that they can be used for repair

3 designs of Piggybacking functions in ISIT paper

Outline

* Via the Piggybacking framework
— Best known codes for several settings
— Comparison with other codes
— Preliminary practical experiments

Via the Piggybacking framework...

@ Practical” High-rate MDS codes:

Lowest known IO & download during repair

e Storage constrained systems: MDS & high-rate

* Then, why not high-rate Minimum Storage

Regenerating (MSR) codes ?

— Require exponential block length (Tamo et al. 2011)

|0 & Download
Block length o .
n k (% of message size)
RS | Piggy-RS | MSR RS Piggy-RS | MSR
16 14 1 4 128 100 77 54
25 22 1 4 3154 100 69 36
210 | 200 | 1 4 10”° | 100 56 11

Comparison With Other Codes

Rotated-RS < 3 parities constant

EVENODD/RDP < 2 parities linear

Piggyback Y all constant / linear

* These are the only other codes that satisfy our requirements
of being MDS, high rate and have small block lengths.

* Piggyback codes have smaller repair download and 10 than
them both.

Via the Piggybacking framework...

© Binary MDS (vector) codes

— lowest known 10 & download during repair
(when #parity>2)

— for all parameters where binary MDS (vector)
codes exist

Via the Piggybacking framework...

© Enabling parity repair in regenerating codes

designed for only systematic repair

— efficiency in systematic repair retained

— parity repair improved

Example...

 Regenerating code that repairs systematic nodes efficiently
* Parity node repair performed by downloading all data

aXC a C

=
b d

systematic node repair:
2a+b+2c || 2b+c+d download & IO = 1.5x

a+b+2c | a+2b+4d

y
. > 4

* Take two stripes of this code

a C e g

b d f h
2a+b+2c | 2b+c+d || 2e+f+2g | 2f+g+h
a+b+2c | a+2b+4d || e+f+2g | e+2f+4h

« Add Piggybacks of parities from 15t stripe to 2" stripe

a C e g
b d f h
2a+b+2c | 2b+c+d || 2e+f+2g | 2f+g+h
+a+b+2c |+a+2b+4d
a+b+2c | a+2b+4d || e+f+2g | e+2f+4h

e Systematic repair: same efficiency as original code
(Piggyback subtracted out in downloaded data)

2a+b+2c | 2b+c+d || 2e+f+2g || 2f+g+h
+a+b+2c |fra+2b+4d

systematic node repair:
download & 10 = 1.5x

a+b+2c |a+2b+4d || e+f+2g || e+2f+4h

* Original code:
Parity repair download & |0 = 2x

2a+b+2c | 2b+c+d || 2e+f+2g | 2f+g+h
+a+b+2c [+a+2b+4d

a+b+2c a+2b+4§ e+f+2g | e+2f+4h

* Using Piggybacks:
Second parity repair download & 10 = 1.5x

a c e g
b d f h
2a+b+2c | 2b+c+d ||| 2e+f+2g | 2f+g+h
+a+b+2c |+a+2b+4d
a+b+2c | a+2 b+4& e+f+2g | e+2f+4h

Via the Piggybacking framework...

@ Have implemented (14, 10) Piggyback-RS in
the Hadoop Distributed File System (HDFS)

— 35% reduction in disk-lO and download

— same storage & fault tolerance

— testing on Facebook’s Warehouse cluster

underway

Is connecting to more nodes a concern ?

We performed measurements for various data-sizes in

the Facebook Warehouse cluster in production.

Piggyback-RS codes:
* Reduce primary metrics of IO & download

* Time to repair also reduces upon connecting to more

Locality/Connectivity not an issue in this setting

Outline

Introduction & Motivation
— Measurements from Facebook’s Warehouse cluster

The Piggybacking framework

Via the Piggybacking framework

— Best known codes for several settings
— Comparison with other codes

— Preliminary practical experiments

Summary & future work

Summary

“Piggybacking” code designh framework
3 piggyback function designs

Best known codes for several settings
— MDS + high-rate + small block length

— binary MDS (vector)

— parity repair in regenerating codes

Implemented in HDFS, testing in Facebook

Future work & open problems

 Comprehensive experiments at Facebook

e Other Piggybacking designs / applications
* Bounds for Piggybacking approach ?

A

* High-rate MDS: Tradeoff §[*™
s| x Piggyback
between block length & sl Xx
© X X
S £
|0/download S °22 P77 MR
>
1 2 - (linear) (exponential)

(constant) Block length

Future work & open problems

 Comprehensive experiments at Facebook

e Other Piggybacking designs / applications

[]
AAIllml— P S 7 N NV I N NN

THAN KS'

* Bounds for Pigg\

* High-rate MDS: Tradeoff g X
5| x Piggyback
between block length & sl Xx
2 X X
=
|0/download S °22 P77 MR
4>
1 2 - (linear) (exponential)

(constant) Block length

