### Fundamental Limits of Caching

#### Urs Niesen Jointly with Mohammad Maddah-Ali

Bell Labs, Alcatel-Lucent

Video on demand is getting increasingly popular:

- Netflix streaming service
- Amazon Instant Video
- Hulu
- Verizon / Comcast on Demand
- **.**..

Video on demand is getting increasingly popular:

- Netflix streaming service
- Amazon Instant Video
- Hulu
- Verizon / Comcast on Demand
- ...

 $\Rightarrow$  Places significant stress on service provider's networks

Video on demand is getting increasingly popular:

- Netflix streaming service
- Amazon Instant Video
- Hulu
- Verizon / Comcast on Demand
- ...

⇒ Places significant stress on service provider's networks
⇒ Caching (prefetching) can be used to mitigate this stress

# Caching (Prefetching)



# Caching (Prefetching)



High temporal traffic variability

# Caching (Prefetching)



- High temporal traffic variability
- Caching can help smooth traffic

Caches useful to deliver content locally

- Caches useful to deliver content locally
- Local cache size matters

- Caches useful to deliver content locally
- Local cache size matters
- Statistically identical users  $\Rightarrow$  identical cache content

- Caches useful to deliver content locally
- Local cache size matters
- Statistically identical users  $\Rightarrow$  identical cache content

Insights from this work:

- Caches useful to deliver content locally
- Local cache size matters
- Statistically identical users  $\Rightarrow$  identical cache content

Insights from this work:

■ The main gain in caching is global

- Caches useful to deliver content locally
- Local cache size matters
- Statistically identical users  $\Rightarrow$  identical cache content

Insights from this work:

- The main gain in caching is global
- Global cache size matters

- Caches useful to deliver content locally
- Local cache size matters
- Statistically identical users ⇒ identical cache content

Insights from this work:

- The main gain in caching is global
- Global cache size matters
- Statistically identical users  $\Rightarrow$  different cache content









Placement: cache arbitrary function of files (linear, nonlinear, ...)



Delivery:



Delivery: - requests are revealed to server



Delivery: - requests are revealed to server

- server sends arbitrary function of files



Delivery: - requests are revealed to server

- server sends arbitrary function of files



Question: smallest worst-case rate R(M) needed in delivery phase?











N files, K users, cache size M



Performance of conventional scheme:

$$R(M) = K \cdot (1 - M/N)$$

N files, K users, cache size M



 $\blacksquare$  Caches provide content locally  $\Rightarrow$  local cache size matters

Identical cache content at users


















#### Proposed Caching Scheme *N* files, *K* users, cache size *M*

Design guidelines advocated in this work:

- The main gain in caching is global
- Global cache size matters
- Different cache content at users

#### Proposed Caching Scheme *N* files, *K* users, cache size *M*

Design guidelines advocated in this work:

- The main gain in caching is global
- Global cache size matters
- Different cache content at users

Performance of proposed scheme:

$$R(M) = K \cdot (1 - M/N) \cdot \frac{1}{1 + KM/N}$$



































- $\Rightarrow$  Identical cache content at users
- $\Rightarrow\,$  Gain from delivering content locally









 $\Rightarrow$  Multicast only possible for users with same demand


















# Proposed Scheme N = 2 files, K = 2 users, cache size M = 1



## **Proposed Scheme** N = 2 files, K = 2 users, cache size M = 1



- $\Rightarrow$  Different cache content at users
- $\Rightarrow$  Multicast to 2 users with different demands

# Proposed Scheme N = 2 files, K = 2 users, cache size M = 1



 $\Rightarrow$  Works for all possible user requests

 $\Rightarrow$  Simultaneous multicasting gain

# Proposed Scheme N = 2 files, K = 2 users, cache size M = 1



## Proposed Scheme N files, K users, cache size M

# Scheme can be generalized to arbitrary:

- Number of files N
- Number of users K
- Cache size *M*

## Proposed Scheme N files, K users, cache size M

- Scheme can be generalized to arbitrary:
  - Number of files N
  - Number of users K
  - Cache size M

• Enables multicast to KM/N + 1 users with different demands

- Conventional scheme:  $R(M) = K \cdot (1 M/N)$
- Proposed scheme:  $R(M) = K \cdot (1 M/N) \cdot \frac{1}{1 + KM/N}$

- Conventional scheme:  $R(M) = K \cdot (1 M/N)$
- Proposed scheme:  $R(M) = \frac{K}{K} \cdot (1 M/N) \cdot \frac{1}{1 + KM/N}$

## Rate without caching K

- Conventional scheme:  $R(M) = K \cdot (1 M/N)$
- Proposed scheme:  $R(M) = K \cdot (1 M/N) \cdot \frac{1}{1 + KM/N}$

- Rate without caching K
- Local caching gain 1 M/N
  - Significant when local cache size *M* is of order *N*

- Conventional scheme:  $R(M) = K \cdot (1 M/N)$
- Proposed scheme:  $R(M) = K \cdot (1 M/N) \cdot \frac{1}{1 + KM/N}$

- Rate without caching K
- Local caching gain 1 M/N
  - Significant when local cache size M is of order N
- Global caching gain  $\frac{1}{1+KM/N}$ 
  - Significant when global cache size *KM* is of order *N*

- Conventional scheme:  $R(M) = K \cdot (1 M/N)$
- Proposed scheme:  $R(M) = K \cdot (1 M/N) \cdot \frac{1}{1 + KM/N}$

- Rate without caching K
- Local caching gain 1 M/N
  - Significant when local cache size M is of order N
- Global caching gain  $\frac{1}{1+KM/N}$ 
  - Significant when global cache size *KM* is of order *N*
- $\Rightarrow$  Global gain can be  $\Theta(K)$  smaller than local gain

Theorem

The proposed scheme is optimal to within a constant factor in rate.

Theorem

The proposed scheme is optimal to within a constant factor in rate.

 $\Rightarrow$  Information-theoretic bound

#### Theorem

The proposed scheme is optimal to within a constant factor in rate.

- $\Rightarrow$  Information-theoretic bound
- $\Rightarrow$  Constant is independent of problem parameters N, K, M

#### Theorem

The proposed scheme is optimal to within a constant factor in rate.

- $\Rightarrow$  Information-theoretic bound
- $\Rightarrow$  Constant is independent of problem parameters N, K, M
- $\Rightarrow\,$  No other significant gain besides local and global

- The main gain in caching is global
  - $\Rightarrow~$  Multicast to users with different demands

- The main gain in caching is global
  - $\Rightarrow$  Multicast to users with different demands
- Global cache size matters

- The main gain in caching is global
  - $\Rightarrow$  Multicast to users with different demands
- Global cache size matters
- Statistically identical users  $\Rightarrow$  different cache content

- The main gain in caching is global
  - $\Rightarrow$  Multicast to users with different demands
- Global cache size matters
- Statistically identical users  $\Rightarrow$  different cache content
- Significant improvement over conventional caching schemes ⇒ Reduction in rate up to order of number of users

- The main gain in caching is global
  - $\Rightarrow$  Multicast to users with different demands
- Global cache size matters
- Statistically identical users  $\Rightarrow$  different cache content
- Significant improvement over conventional caching schemes ⇒ Reduction in rate up to order of number of users
- Papers available on arXiv
  - $\Rightarrow$  Maddah-Ali, Niesen: "Fundamental Limits of Caching"
  - ⇒ Maddah-Ali, Niesen: "Decentralized Caching Attains Order-Optimal Memory-Rate Tradeoff"
  - ⇒ Niesen, Maddah-Ali: "Coded Caching with Nonuniform Demands"