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SYSTEMS THAT RESPOND to user actions quickly (within 
100ms) feel more fluid and natural to users than 
those that take longer.3 Improvements in Internet 
connectivity and the rise of warehouse-scale computing 
systems2 have enabled Web services that provide fluid 
responsiveness while consulting multi-terabyte datasets 
spanning thousands of servers; for example, the Google 
search system updates query results interactively as 
the user types, predicting the most likely query based 
on the prefix typed so far, performing the search and 
showing the results within a few tens of milliseconds. 
Emerging augmented-reality devices (such as the 
Google Glass prototype7) will need associated Web 
services with even greater responsiveness in order to 
guarantee seamless interactivity. 

It is challenging for service providers to keep the tail 
of latency distribution short for interactive services  
as the size and complexity of the system scales up or 

as overall use increases. Temporary 
high-latency episodes (unimportant in 
moderate-size systems) may come to 
dominate overall service performance at 
large scale. Just as fault-tolerant comput-
ing aims to create a reliable whole out of 
less-reliable parts, large online services 
need to create a predictably responsive 
whole out of less-predictable parts; 
we refer to such systems as “latency 
tail-tolerant,” or simply “tail-tolerant.” 
Here, we outline some common causes 
for high-latency episodes in large online 
services and describe techniques that 
reduce their severity or mitigate their 
effect on whole-system performance. 
In many cases, tail-tolerant techniques 
can take advantage of resources already 
deployed to achieve fault-tolerance, re-
sulting in low additional overhead. We 
explore how these techniques allow sys-
tem utilization to be driven higher with-
out lengthening the latency tail, thus 
avoiding wasteful overprovisioning. 

Why Variability Exists? 
Variability of response time that leads 
to high tail latency in individual com-
ponents of a service can arise for many 
reasons, including: 

Shared resources. Machines might 
be shared by different applications 
contending for shared resources (such 
as CPU cores, processor caches, mem-
ory bandwidth, and network band-
width), and within the same applica-
tion different requests might contend 
for resources; 

Daemons. Background daemons 
may use only limited resources on aver-
age but when scheduled can generate 
multi-millisecond hiccups; 

The Tail 
at Scale 

DOI:10.1145/2408776.2408794

Software techniques that tolerate latency 
variability are vital to building responsive 
large-scale Web services. 

BY JEFFREY DEAN AND LUIZ ANDRÉ BARROSO 

 key insights
    Even rare performance hiccups affect 

a significant fraction of all requests in 
large-scale distributed systems. 

    Eliminating all sources of latency 
variability in large-scale systems 
is impractical, especially in shared 
environments. 

    Using an approach analogous to 
fault-tolerant computing, tail-tolerant 
software techniques form a predictable 
whole out of less-predictable parts. 
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Abstract
Windows Azure Storage (WAS) is a cloud storage sys-

tem that provides customers the ability to store seem-
ingly limitless amounts of data for any duration of time.
WAS customers have access to their data from anywhere,
at any time, and only pay for what they use and store. To
provide durability for that data and to keep the cost of
storage low, WAS uses erasure coding.
In this paper we introduce a new set of codes for era-

sure coding called Local Reconstruction Codes (LRC).
LRC reduces the number of erasure coding fragments
that need to be read when reconstructing data fragments
that are offline, while still keeping the storage overhead
low. The important benefits of LRC are that it reduces the
bandwidth and I/Os required for repair reads over prior
codes, while still allowing a significant reduction in stor-
age overhead. We describe how LRC is used in WAS to
provide low overhead durable storage with consistently
low read latencies.

1 Introduction
Windows Azure Storage (WAS) [1] is a scalable cloud

storage system that has been in production since Novem-
ber 2008. It is used inside Microsoft for applications
such as social networking search, serving video, music
and game content, managing medical records, and more.
In addition, there are thousands of customers outside Mi-
crosoft using WAS, and anyone can sign up over the In-
ternet to use the system. WAS provides cloud storage
in the form of Blobs (user files), Tables (structured stor-
age), Queues (message delivery), and Drives (network
mounted VHDs). These data abstractions provide the
overall storage and work flow for applications running
in the cloud.
WAS stores all of its data into an append-only dis-

tributed file system called the stream layer [1]. Data is
appended to the end of active extents, which are repli-
cated three times by the underlying stream layer. The
data is originally written to 3 full copies to keep the data
durable. Once reaching a certain size (e.g., 1 GB), ex-
tents are sealed. These sealed extents can no longer be
modified and thus make perfect candidates for erasure
coding. WAS then erasure codes a sealed extent lazily in
the background, and once the extent is erasure-coded the
original 3 full copies of the extent are deleted.
The motivation for using erasure coding in WAS

comes from the need to reduce the cost of storage. Era-
sure coding can reduce the cost of storage over 50%,

which is a tremendous cost saving as we will soon sur-
pass an Exabyte of storage. There are the obvious cost
savings from purchasing less hardware to store that much
data, but there are significant savings from the fact that
this also reduces our data center footprint by 1/2, the
power savings from running 1/2 the hardware, along with
other savings.
The trade-off for using erasure coding instead of keep-

ing 3 full copies is performance. The performance hit
comes when dealing with i) a lost or offline data frag-
ment and ii) hot storage nodes. When an extent is
erasure-coded, it is broken up into k data fragments, and
a set of parity fragments. In WAS, a data fragment may
be lost due to a disk, node or rack failure. In addition,
cloud services are perpetually in beta [2] due to frequent
upgrades. A data fragment may be offline for seconds to
a few minutes due to an upgrade where the storage node
process may be restarted or the OS for the storage node
may be rebooted. During this time, if there is an on-
demand read from a client to a fragment on the storage
node being upgraded, WAS reads from enough fragments
in order to dynamically reconstruct the data being asked
for to return the data to the client. This reconstruction
needs to be optimized to be as fast as possible and use
as little networking bandwidth and I/Os as possible, with
the goal to have the reconstruction time consistently low
to meet customer SLAs.
When using erasure coding, the data fragment the

client’s request is asking for is stored on a specific stor-
age node, which can greatly increase the risk of a storage
node becoming hot, which could affect latency. One way
that WAS can deal with hot storage nodes is to recog-
nize the fragments that are hot and then replicate them to
cooler storage nodes to balance out the load, or cache the
data and serve it directly from DRAM or SSDs. But, the
read performance can suffer for the potential set of reads
going to that storage node as it gets hot, until the data
is cached or load balanced. Therefore, one optimization
WAS has is if it looks like the read to a data fragment is
going to take too long, WAS in parallel tries to perform a
reconstruction of the data fragment (effectively treating
the storage node with the original data fragment as if it
was offline) and return to the client whichever of the two
results is faster.
For both of the above cases the time to reconstruct a

data fragment for on-demand client requests is crucial.
The problem is that the reconstruction operation is only
as fast as the slowest storage node to respond to reading
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whole out of less-predictable parts; 
we refer to such systems as “latency 
tail-tolerant,” or simply “tail-tolerant.” 
Here, we outline some common causes 
for high-latency episodes in large online 
services and describe techniques that 
reduce their severity or mitigate their 
effect on whole-system performance. 
In many cases, tail-tolerant techniques 
can take advantage of resources already 
deployed to achieve fault-tolerance, re-
sulting in low additional overhead. We 
explore how these techniques allow sys-
tem utilization to be driven higher with-
out lengthening the latency tail, thus 
avoiding wasteful overprovisioning. 
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Variability of response time that leads 
to high tail latency in individual com-
ponents of a service can arise for many 
reasons, including: 
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be shared by different applications 
contending for shared resources (such 
as CPU cores, processor caches, mem-
ory bandwidth, and network band-
width), and within the same applica-
tion different requests might contend 
for resources; 

Daemons. Background daemons 
may use only limited resources on aver-
age but when scheduled can generate 
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Windows Azure Storage (WAS) is a cloud storage sys-

tem that provides customers the ability to store seem-
ingly limitless amounts of data for any duration of time.
WAS customers have access to their data from anywhere,
at any time, and only pay for what they use and store. To
provide durability for that data and to keep the cost of
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a few minutes due to an upgrade where the storage node
process may be restarted or the OS for the storage node
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Abstract

Despite prior research on outlier mitigation, our anal-
ysis of jobs from the Facebook cluster shows that out-
liers still occur, especially in small jobs. Small jobs
are particularly sensitive to long-running outlier tasks
because of their interactive nature. Outlier mitigation
strategies rely on comparing different tasks of the same
job and launching speculative copies for the slower tasks.
However, small jobs execute all their tasks simultane-
ously, thereby not providing sufficient time to observe
and compare tasks. Building on the observation that clus-
ters are underutilized, we take speculation to its logical
extreme—run full clones of jobs to mitigate the effect

of outliers. The heavy-tail distribution of job sizes im-
plies that we can impact most jobs without using much
resources. Trace-driven simulations show that average
completion time of all the small jobs improves by 47%
using cloning, at the cost of just 3% extra resources.

1 Introduction

Cloud computing has become a significant technologi-
cal breakthrough. An increasing number of organizations
use datacenters to run a mixed variety of computations,
ranging from long-running batch jobs to interactive short
queries that operators launch on the fly.

The importance of these datacenter computations has
led to much effort being spent on optimizing their perfor-
mance. The prevalence of outlier tasks was early identi-
fied as a common source of performance problem [1].
Initial research suggested the use of speculative execu-
tion to mitigate such outliers. These methods were later
improved by LATE [2] and Mantri [3], which provide
more intelligent outlier mitigation based on speculative
execution of tasks. Similar techniques have also been
used to deal with outliers in other settings [4, 5].

Despite this research on outlier mitigation, our anal-
yses of traces from a 3,500 node Facebook cluster, that
applies the LATE technique, shows that outliers are still
common, especially in small jobs. The small jobs, on av-

erage, have outlier tasks that are 12 times slower than that
job’s median task, which significantly delays completion
of jobs. Our simulations show that the outlier numbers
for Mantri are similar for small jobs.

Small jobs are particularly sensitive to outliers because
they execute in a single wave of simultaneously running
tasks. Therefore even a single task being an outlier slows
down the entire job. The single-waved property also
limits the efficacy of traditional outlier mitigation strate-
gies that rely on comparing different tasks of the same
job. Any meaningful comparison requires waiting to ob-
tain statistically significant samples of task performance,
which single-waved small jobs cannot afford.

In this work, we focus on improving the completion
time of these small jobs, which are often interactive
queries, where the response time is important to the hu-
man operator awaiting its response. The idea we explore
in this paper is to take speculative execution to its logical
extreme and run full clones of jobs to reduce job comple-

tion times. Two trends make this approach viable.

First, most jobs are small and consume few resources.
Our analysis shows that job sizes have a power-law
distribution, with the absolute majority of the jobs be-
ing small, while the absolute majority of the cluster re-
sources are spent on a small number of large jobs. Thus,
the aggregate resources consumed by small jobs is mod-
erate. Running clones of small jobs has the potential to
impact most jobs, without using much resources.

Second, most clusters are highly underutilized. Sev-
eral of the clusters that we analyzed have a very low av-
erage utilization. In particular, CPU and memory utiliza-
tion in these clusters has a median less than 20%. In fact,
cluster utilization exceeds the 50% mark only 8% of the
time. There is thus room for running extra clones of jobs.

A key question is whether running job clones will
negatively impact energy efficiency. Despite research
on powering down machines for energy efficiency, we
note that most clusters today do not shut off machines
to save energy. Thus, machines are on most of the

1
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It is challenging for service providers to keep the tail 
of latency distribution short for interactive services  
as the size and complexity of the system scales up or 

as overall use increases. Temporary 
high-latency episodes (unimportant in 
moderate-size systems) may come to 
dominate overall service performance at 
large scale. Just as fault-tolerant comput-
ing aims to create a reliable whole out of 
less-reliable parts, large online services 
need to create a predictably responsive 
whole out of less-predictable parts; 
we refer to such systems as “latency 
tail-tolerant,” or simply “tail-tolerant.” 
Here, we outline some common causes 
for high-latency episodes in large online 
services and describe techniques that 
reduce their severity or mitigate their 
effect on whole-system performance. 
In many cases, tail-tolerant techniques 
can take advantage of resources already 
deployed to achieve fault-tolerance, re-
sulting in low additional overhead. We 
explore how these techniques allow sys-
tem utilization to be driven higher with-
out lengthening the latency tail, thus 
avoiding wasteful overprovisioning. 

Why Variability Exists? 
Variability of response time that leads 
to high tail latency in individual com-
ponents of a service can arise for many 
reasons, including: 

Shared resources. Machines might 
be shared by different applications 
contending for shared resources (such 
as CPU cores, processor caches, mem-
ory bandwidth, and network band-
width), and within the same applica-
tion different requests might contend 
for resources; 

Daemons. Background daemons 
may use only limited resources on aver-
age but when scheduled can generate 
multi-millisecond hiccups; 
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Windows Azure Storage (WAS) is a cloud storage sys-

tem that provides customers the ability to store seem-
ingly limitless amounts of data for any duration of time.
WAS customers have access to their data from anywhere,
at any time, and only pay for what they use and store. To
provide durability for that data and to keep the cost of
storage low, WAS uses erasure coding.
In this paper we introduce a new set of codes for era-

sure coding called Local Reconstruction Codes (LRC).
LRC reduces the number of erasure coding fragments
that need to be read when reconstructing data fragments
that are offline, while still keeping the storage overhead
low. The important benefits of LRC are that it reduces the
bandwidth and I/Os required for repair reads over prior
codes, while still allowing a significant reduction in stor-
age overhead. We describe how LRC is used in WAS to
provide low overhead durable storage with consistently
low read latencies.

1 Introduction
Windows Azure Storage (WAS) [1] is a scalable cloud

storage system that has been in production since Novem-
ber 2008. It is used inside Microsoft for applications
such as social networking search, serving video, music
and game content, managing medical records, and more.
In addition, there are thousands of customers outside Mi-
crosoft using WAS, and anyone can sign up over the In-
ternet to use the system. WAS provides cloud storage
in the form of Blobs (user files), Tables (structured stor-
age), Queues (message delivery), and Drives (network
mounted VHDs). These data abstractions provide the
overall storage and work flow for applications running
in the cloud.
WAS stores all of its data into an append-only dis-

tributed file system called the stream layer [1]. Data is
appended to the end of active extents, which are repli-
cated three times by the underlying stream layer. The
data is originally written to 3 full copies to keep the data
durable. Once reaching a certain size (e.g., 1 GB), ex-
tents are sealed. These sealed extents can no longer be
modified and thus make perfect candidates for erasure
coding. WAS then erasure codes a sealed extent lazily in
the background, and once the extent is erasure-coded the
original 3 full copies of the extent are deleted.
The motivation for using erasure coding in WAS

comes from the need to reduce the cost of storage. Era-
sure coding can reduce the cost of storage over 50%,

which is a tremendous cost saving as we will soon sur-
pass an Exabyte of storage. There are the obvious cost
savings from purchasing less hardware to store that much
data, but there are significant savings from the fact that
this also reduces our data center footprint by 1/2, the
power savings from running 1/2 the hardware, along with
other savings.
The trade-off for using erasure coding instead of keep-

ing 3 full copies is performance. The performance hit
comes when dealing with i) a lost or offline data frag-
ment and ii) hot storage nodes. When an extent is
erasure-coded, it is broken up into k data fragments, and
a set of parity fragments. In WAS, a data fragment may
be lost due to a disk, node or rack failure. In addition,
cloud services are perpetually in beta [2] due to frequent
upgrades. A data fragment may be offline for seconds to
a few minutes due to an upgrade where the storage node
process may be restarted or the OS for the storage node
may be rebooted. During this time, if there is an on-
demand read from a client to a fragment on the storage
node being upgraded, WAS reads from enough fragments
in order to dynamically reconstruct the data being asked
for to return the data to the client. This reconstruction
needs to be optimized to be as fast as possible and use
as little networking bandwidth and I/Os as possible, with
the goal to have the reconstruction time consistently low
to meet customer SLAs.
When using erasure coding, the data fragment the

client’s request is asking for is stored on a specific stor-
age node, which can greatly increase the risk of a storage
node becoming hot, which could affect latency. One way
that WAS can deal with hot storage nodes is to recog-
nize the fragments that are hot and then replicate them to
cooler storage nodes to balance out the load, or cache the
data and serve it directly from DRAM or SSDs. But, the
read performance can suffer for the potential set of reads
going to that storage node as it gets hot, until the data
is cached or load balanced. Therefore, one optimization
WAS has is if it looks like the read to a data fragment is
going to take too long, WAS in parallel tries to perform a
reconstruction of the data fragment (effectively treating
the storage node with the original data fragment as if it
was offline) and return to the client whichever of the two
results is faster.
For both of the above cases the time to reconstruct a

data fragment for on-demand client requests is crucial.
The problem is that the reconstruction operation is only
as fast as the slowest storage node to respond to reading
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Abstract

Despite prior research on outlier mitigation, our anal-
ysis of jobs from the Facebook cluster shows that out-
liers still occur, especially in small jobs. Small jobs
are particularly sensitive to long-running outlier tasks
because of their interactive nature. Outlier mitigation
strategies rely on comparing different tasks of the same
job and launching speculative copies for the slower tasks.
However, small jobs execute all their tasks simultane-
ously, thereby not providing sufficient time to observe
and compare tasks. Building on the observation that clus-
ters are underutilized, we take speculation to its logical
extreme—run full clones of jobs to mitigate the effect

of outliers. The heavy-tail distribution of job sizes im-
plies that we can impact most jobs without using much
resources. Trace-driven simulations show that average
completion time of all the small jobs improves by 47%
using cloning, at the cost of just 3% extra resources.

1 Introduction

Cloud computing has become a significant technologi-
cal breakthrough. An increasing number of organizations
use datacenters to run a mixed variety of computations,
ranging from long-running batch jobs to interactive short
queries that operators launch on the fly.

The importance of these datacenter computations has
led to much effort being spent on optimizing their perfor-
mance. The prevalence of outlier tasks was early identi-
fied as a common source of performance problem [1].
Initial research suggested the use of speculative execu-
tion to mitigate such outliers. These methods were later
improved by LATE [2] and Mantri [3], which provide
more intelligent outlier mitigation based on speculative
execution of tasks. Similar techniques have also been
used to deal with outliers in other settings [4, 5].

Despite this research on outlier mitigation, our anal-
yses of traces from a 3,500 node Facebook cluster, that
applies the LATE technique, shows that outliers are still
common, especially in small jobs. The small jobs, on av-

erage, have outlier tasks that are 12 times slower than that
job’s median task, which significantly delays completion
of jobs. Our simulations show that the outlier numbers
for Mantri are similar for small jobs.

Small jobs are particularly sensitive to outliers because
they execute in a single wave of simultaneously running
tasks. Therefore even a single task being an outlier slows
down the entire job. The single-waved property also
limits the efficacy of traditional outlier mitigation strate-
gies that rely on comparing different tasks of the same
job. Any meaningful comparison requires waiting to ob-
tain statistically significant samples of task performance,
which single-waved small jobs cannot afford.

In this work, we focus on improving the completion
time of these small jobs, which are often interactive
queries, where the response time is important to the hu-
man operator awaiting its response. The idea we explore
in this paper is to take speculative execution to its logical
extreme and run full clones of jobs to reduce job comple-

tion times. Two trends make this approach viable.

First, most jobs are small and consume few resources.
Our analysis shows that job sizes have a power-law
distribution, with the absolute majority of the jobs be-
ing small, while the absolute majority of the cluster re-
sources are spent on a small number of large jobs. Thus,
the aggregate resources consumed by small jobs is mod-
erate. Running clones of small jobs has the potential to
impact most jobs, without using much resources.

Second, most clusters are highly underutilized. Sev-
eral of the clusters that we analyzed have a very low av-
erage utilization. In particular, CPU and memory utiliza-
tion in these clusters has a median less than 20%. In fact,
cluster utilization exceeds the 50% mark only 8% of the
time. There is thus room for running extra clones of jobs.

A key question is whether running job clones will
negatively impact energy efficiency. Despite research
on powering down machines for energy efficiency, we
note that most clusters today do not shut off machines
to save energy. Thus, machines are on most of the
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ABSTRACT
Low latency is critical for interactive networked appli-
cations. But while we know how to scale systems to in-
crease capacity, reducing latency — especially the tail of
the latency distribution — can be much more di⇤cult.

We argue that the use of redundancy in the context
of the wide-area Internet is an e�ective way to convert a
small amount of extra capacity into reduced latency. By
initiating redundant operations across diverse resources
and using the first result which completes, redundancy
improves a system’s latency even under exceptional con-
ditions. We demonstrate that redundancy can signifi-
cantly reduce latency for small but critical tasks, and
argue that it is an e�ective general-purpose strategy
even on devices like cell phones where bandwidth is rel-
atively constrained.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: Gen-
eral

General Terms
Performance, Reliability

1. INTRODUCTION
Low latency is important for humans. Even slightly

higher web page load times can significantly reduce vis-
its from users and revenue, as demonstrated by several
sites [21]. For example, injecting just 400 milliseconds
of artificial delay into Google search results caused the
delayed users to perform 0.74% fewer searches after 4-6
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weeks [7]. A 500 millisecond delay in the Bing search en-
gine reduced revenue per user by 1.2%, or 4.3% with a 2-
second delay [21]. Human-computer interaction studies
similarly show that people react to small di�erences in
the delay of operations (see [12] and references therein).

Achieving consistent low latency is challenging. Mod-
ern applications are highly distributed, and likely to get
more so as cloud computing separates users from their
data and computation. Moreover, application-level op-
erations often require tens or hundreds of tasks to com-
plete — due to many objects comprising a single web
page [19], or aggregation of many back-end queries to
produce a front-end result [1,10]. This means individual
tasks may have latency budgets on the order of a few
milliseconds or tens of milliseconds, and the tail of the
latency distribution is critical. Thus, latency is a di⇤-
cult challenge for networked systems: How do we make
the other side of the world feel like it is right here, even
under exceptional conditions?

One powerful technique to reduce latency is redun-
dancy : Initiate an operation multiple times, using as
diverse resources as possible, and use the first result
which completes. For example, a host may query mul-
tiple DNS servers in parallel to resolve a name. The
overall latency is the minimum of the delays across each
instance, thus potentially reducing both the mean and
the tail of the latency distribution. The power of this
technique is that it reduces latency precisely under the
most challenging conditions: when delays or failures are
unpredictable.

Redundancy has been employed in several past net-
worked systems: notably, as a way to deal with failures
in DTNs [15], and in a multi-homed web proxy over-
lay [3]. But beyond these specific research projects, re-
dundancy is typically eschewed across the Internet. We
argue this is a missed opportunity.

The contribution of this paper is to argue for redun-
dancy as a general technique for the wide-area Internet.
The combination of interactive applications, high la-
tency, and variability of latency make redundancy well
suited to this environment. Even in a well-provisioned
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SYSTEMS THAT RESPOND to user actions quickly (within 
100ms) feel more fluid and natural to users than 
those that take longer.3 Improvements in Internet 
connectivity and the rise of warehouse-scale computing 
systems2 have enabled Web services that provide fluid 
responsiveness while consulting multi-terabyte datasets 
spanning thousands of servers; for example, the Google 
search system updates query results interactively as 
the user types, predicting the most likely query based 
on the prefix typed so far, performing the search and 
showing the results within a few tens of milliseconds. 
Emerging augmented-reality devices (such as the 
Google Glass prototype7) will need associated Web 
services with even greater responsiveness in order to 
guarantee seamless interactivity. 

It is challenging for service providers to keep the tail 
of latency distribution short for interactive services  
as the size and complexity of the system scales up or 

as overall use increases. Temporary 
high-latency episodes (unimportant in 
moderate-size systems) may come to 
dominate overall service performance at 
large scale. Just as fault-tolerant comput-
ing aims to create a reliable whole out of 
less-reliable parts, large online services 
need to create a predictably responsive 
whole out of less-predictable parts; 
we refer to such systems as “latency 
tail-tolerant,” or simply “tail-tolerant.” 
Here, we outline some common causes 
for high-latency episodes in large online 
services and describe techniques that 
reduce their severity or mitigate their 
effect on whole-system performance. 
In many cases, tail-tolerant techniques 
can take advantage of resources already 
deployed to achieve fault-tolerance, re-
sulting in low additional overhead. We 
explore how these techniques allow sys-
tem utilization to be driven higher with-
out lengthening the latency tail, thus 
avoiding wasteful overprovisioning. 

Why Variability Exists? 
Variability of response time that leads 
to high tail latency in individual com-
ponents of a service can arise for many 
reasons, including: 

Shared resources. Machines might 
be shared by different applications 
contending for shared resources (such 
as CPU cores, processor caches, mem-
ory bandwidth, and network band-
width), and within the same applica-
tion different requests might contend 
for resources; 

Daemons. Background daemons 
may use only limited resources on aver-
age but when scheduled can generate 
multi-millisecond hiccups; 

The Tail 
at Scale 

DOI:10.1145/2408776.2408794

Software techniques that tolerate latency 
variability are vital to building responsive 
large-scale Web services. 

BY JEFFREY DEAN AND LUIZ ANDRÉ BARROSO 

 key insights
    Even rare performance hiccups affect 

a significant fraction of all requests in 
large-scale distributed systems. 

    Eliminating all sources of latency 
variability in large-scale systems 
is impractical, especially in shared 
environments. 

    Using an approach analogous to 
fault-tolerant computing, tail-tolerant 
software techniques form a predictable 
whole out of less-predictable parts. 
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Abstract
Windows Azure Storage (WAS) is a cloud storage sys-

tem that provides customers the ability to store seem-
ingly limitless amounts of data for any duration of time.
WAS customers have access to their data from anywhere,
at any time, and only pay for what they use and store. To
provide durability for that data and to keep the cost of
storage low, WAS uses erasure coding.
In this paper we introduce a new set of codes for era-

sure coding called Local Reconstruction Codes (LRC).
LRC reduces the number of erasure coding fragments
that need to be read when reconstructing data fragments
that are offline, while still keeping the storage overhead
low. The important benefits of LRC are that it reduces the
bandwidth and I/Os required for repair reads over prior
codes, while still allowing a significant reduction in stor-
age overhead. We describe how LRC is used in WAS to
provide low overhead durable storage with consistently
low read latencies.

1 Introduction
Windows Azure Storage (WAS) [1] is a scalable cloud

storage system that has been in production since Novem-
ber 2008. It is used inside Microsoft for applications
such as social networking search, serving video, music
and game content, managing medical records, and more.
In addition, there are thousands of customers outside Mi-
crosoft using WAS, and anyone can sign up over the In-
ternet to use the system. WAS provides cloud storage
in the form of Blobs (user files), Tables (structured stor-
age), Queues (message delivery), and Drives (network
mounted VHDs). These data abstractions provide the
overall storage and work flow for applications running
in the cloud.
WAS stores all of its data into an append-only dis-

tributed file system called the stream layer [1]. Data is
appended to the end of active extents, which are repli-
cated three times by the underlying stream layer. The
data is originally written to 3 full copies to keep the data
durable. Once reaching a certain size (e.g., 1 GB), ex-
tents are sealed. These sealed extents can no longer be
modified and thus make perfect candidates for erasure
coding. WAS then erasure codes a sealed extent lazily in
the background, and once the extent is erasure-coded the
original 3 full copies of the extent are deleted.
The motivation for using erasure coding in WAS

comes from the need to reduce the cost of storage. Era-
sure coding can reduce the cost of storage over 50%,

which is a tremendous cost saving as we will soon sur-
pass an Exabyte of storage. There are the obvious cost
savings from purchasing less hardware to store that much
data, but there are significant savings from the fact that
this also reduces our data center footprint by 1/2, the
power savings from running 1/2 the hardware, along with
other savings.
The trade-off for using erasure coding instead of keep-

ing 3 full copies is performance. The performance hit
comes when dealing with i) a lost or offline data frag-
ment and ii) hot storage nodes. When an extent is
erasure-coded, it is broken up into k data fragments, and
a set of parity fragments. In WAS, a data fragment may
be lost due to a disk, node or rack failure. In addition,
cloud services are perpetually in beta [2] due to frequent
upgrades. A data fragment may be offline for seconds to
a few minutes due to an upgrade where the storage node
process may be restarted or the OS for the storage node
may be rebooted. During this time, if there is an on-
demand read from a client to a fragment on the storage
node being upgraded, WAS reads from enough fragments
in order to dynamically reconstruct the data being asked
for to return the data to the client. This reconstruction
needs to be optimized to be as fast as possible and use
as little networking bandwidth and I/Os as possible, with
the goal to have the reconstruction time consistently low
to meet customer SLAs.
When using erasure coding, the data fragment the

client’s request is asking for is stored on a specific stor-
age node, which can greatly increase the risk of a storage
node becoming hot, which could affect latency. One way
that WAS can deal with hot storage nodes is to recog-
nize the fragments that are hot and then replicate them to
cooler storage nodes to balance out the load, or cache the
data and serve it directly from DRAM or SSDs. But, the
read performance can suffer for the potential set of reads
going to that storage node as it gets hot, until the data
is cached or load balanced. Therefore, one optimization
WAS has is if it looks like the read to a data fragment is
going to take too long, WAS in parallel tries to perform a
reconstruction of the data fragment (effectively treating
the storage node with the original data fragment as if it
was offline) and return to the client whichever of the two
results is faster.
For both of the above cases the time to reconstruct a

data fragment for on-demand client requests is crucial.
The problem is that the reconstruction operation is only
as fast as the slowest storage node to respond to reading
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Abstract

Despite prior research on outlier mitigation, our anal-
ysis of jobs from the Facebook cluster shows that out-
liers still occur, especially in small jobs. Small jobs
are particularly sensitive to long-running outlier tasks
because of their interactive nature. Outlier mitigation
strategies rely on comparing different tasks of the same
job and launching speculative copies for the slower tasks.
However, small jobs execute all their tasks simultane-
ously, thereby not providing sufficient time to observe
and compare tasks. Building on the observation that clus-
ters are underutilized, we take speculation to its logical
extreme—run full clones of jobs to mitigate the effect

of outliers. The heavy-tail distribution of job sizes im-
plies that we can impact most jobs without using much
resources. Trace-driven simulations show that average
completion time of all the small jobs improves by 47%
using cloning, at the cost of just 3% extra resources.

1 Introduction

Cloud computing has become a significant technologi-
cal breakthrough. An increasing number of organizations
use datacenters to run a mixed variety of computations,
ranging from long-running batch jobs to interactive short
queries that operators launch on the fly.

The importance of these datacenter computations has
led to much effort being spent on optimizing their perfor-
mance. The prevalence of outlier tasks was early identi-
fied as a common source of performance problem [1].
Initial research suggested the use of speculative execu-
tion to mitigate such outliers. These methods were later
improved by LATE [2] and Mantri [3], which provide
more intelligent outlier mitigation based on speculative
execution of tasks. Similar techniques have also been
used to deal with outliers in other settings [4, 5].

Despite this research on outlier mitigation, our anal-
yses of traces from a 3,500 node Facebook cluster, that
applies the LATE technique, shows that outliers are still
common, especially in small jobs. The small jobs, on av-

erage, have outlier tasks that are 12 times slower than that
job’s median task, which significantly delays completion
of jobs. Our simulations show that the outlier numbers
for Mantri are similar for small jobs.

Small jobs are particularly sensitive to outliers because
they execute in a single wave of simultaneously running
tasks. Therefore even a single task being an outlier slows
down the entire job. The single-waved property also
limits the efficacy of traditional outlier mitigation strate-
gies that rely on comparing different tasks of the same
job. Any meaningful comparison requires waiting to ob-
tain statistically significant samples of task performance,
which single-waved small jobs cannot afford.

In this work, we focus on improving the completion
time of these small jobs, which are often interactive
queries, where the response time is important to the hu-
man operator awaiting its response. The idea we explore
in this paper is to take speculative execution to its logical
extreme and run full clones of jobs to reduce job comple-

tion times. Two trends make this approach viable.

First, most jobs are small and consume few resources.
Our analysis shows that job sizes have a power-law
distribution, with the absolute majority of the jobs be-
ing small, while the absolute majority of the cluster re-
sources are spent on a small number of large jobs. Thus,
the aggregate resources consumed by small jobs is mod-
erate. Running clones of small jobs has the potential to
impact most jobs, without using much resources.

Second, most clusters are highly underutilized. Sev-
eral of the clusters that we analyzed have a very low av-
erage utilization. In particular, CPU and memory utiliza-
tion in these clusters has a median less than 20%. In fact,
cluster utilization exceeds the 50% mark only 8% of the
time. There is thus room for running extra clones of jobs.

A key question is whether running job clones will
negatively impact energy efficiency. Despite research
on powering down machines for energy efficiency, we
note that most clusters today do not shut off machines
to save energy. Thus, machines are on most of the
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ABSTRACT
Low latency is critical for interactive networked appli-
cations. But while we know how to scale systems to in-
crease capacity, reducing latency — especially the tail of
the latency distribution — can be much more di⇤cult.

We argue that the use of redundancy in the context
of the wide-area Internet is an e�ective way to convert a
small amount of extra capacity into reduced latency. By
initiating redundant operations across diverse resources
and using the first result which completes, redundancy
improves a system’s latency even under exceptional con-
ditions. We demonstrate that redundancy can signifi-
cantly reduce latency for small but critical tasks, and
argue that it is an e�ective general-purpose strategy
even on devices like cell phones where bandwidth is rel-
atively constrained.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: Gen-
eral

General Terms
Performance, Reliability

1. INTRODUCTION
Low latency is important for humans. Even slightly

higher web page load times can significantly reduce vis-
its from users and revenue, as demonstrated by several
sites [21]. For example, injecting just 400 milliseconds
of artificial delay into Google search results caused the
delayed users to perform 0.74% fewer searches after 4-6

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Hotnets ’12, October 29–30, 2012, Seattle, WA, USA.
Copyright 2012 ACM 978-1-4503-1776-4/10/12 ...$10.00.

weeks [7]. A 500 millisecond delay in the Bing search en-
gine reduced revenue per user by 1.2%, or 4.3% with a 2-
second delay [21]. Human-computer interaction studies
similarly show that people react to small di�erences in
the delay of operations (see [12] and references therein).

Achieving consistent low latency is challenging. Mod-
ern applications are highly distributed, and likely to get
more so as cloud computing separates users from their
data and computation. Moreover, application-level op-
erations often require tens or hundreds of tasks to com-
plete — due to many objects comprising a single web
page [19], or aggregation of many back-end queries to
produce a front-end result [1,10]. This means individual
tasks may have latency budgets on the order of a few
milliseconds or tens of milliseconds, and the tail of the
latency distribution is critical. Thus, latency is a di⇤-
cult challenge for networked systems: How do we make
the other side of the world feel like it is right here, even
under exceptional conditions?

One powerful technique to reduce latency is redun-
dancy : Initiate an operation multiple times, using as
diverse resources as possible, and use the first result
which completes. For example, a host may query mul-
tiple DNS servers in parallel to resolve a name. The
overall latency is the minimum of the delays across each
instance, thus potentially reducing both the mean and
the tail of the latency distribution. The power of this
technique is that it reduces latency precisely under the
most challenging conditions: when delays or failures are
unpredictable.

Redundancy has been employed in several past net-
worked systems: notably, as a way to deal with failures
in DTNs [15], and in a multi-homed web proxy over-
lay [3]. But beyond these specific research projects, re-
dundancy is typically eschewed across the Internet. We
argue this is a missed opportunity.

The contribution of this paper is to argue for redun-
dancy as a general technique for the wide-area Internet.
The combination of interactive applications, high la-
tency, and variability of latency make redundancy well
suited to this environment. Even in a well-provisioned
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FAST CLOUD: Pushing the Envelope on Delay
Performance of Cloud Storage with Coding

Guanfeng Liang, Member, IEEE, and Ulaş C. Kozat, Senior Member, IEEE

Abstract—Our paper presents solutions that can significantly
improve the delay performance of putting and retrieving data
in and out of cloud storage. We first focus on measuring the
delay performance of a very popular cloud storage service
Amazon S3. We establish that there is significant randomness
in service times for reading and writing small and medium size
objects when assigned distinct keys. We further demonstrate that
using erasure coding, parallel connections to storage cloud and
limited chunking (i.e., dividing the object into a few smaller
objects) together pushes the envelope on service time distributions
significantly (e.g., 76%, 80%, and 85% reductions in mean,
90th, and 99th percentiles for 2 Mbyte files) at the expense of
additional storage (e.g., 1.75×). However, chunking and erasure
coding increase the load and hence the queuing delays while
reducing the supportable rate region in number of requests per
second per node. Thus, in the second part of our paper we focus
on analyzing the delay performance when chunking, FEC, and
parallel connections are used together. Based on this analysis, we
develop load adaptive algorithms that can pick the best code rate
on a per request basis by using off-line computed queue backlog
thresholds. The solutions work with homogeneous services with
fixed object sizes, chunk sizes, operation type (e.g., read or write)
as well as heterogeneous services with mixture of object sizes,
chunk sizes, and operation types. We also present a simple greedy
solution that opportunistically uses idle connections and picks
the erasure coding rate accordingly on the fly. Both backlog and
greedy solutions support the full rate region and provide best
mean delay performance when compared to the best fixed coding
rate policy. Our evaluations show that backlog based solutions
achieve better delay performance at higher percentile values than
the greedy solution.
Index Terms—FEC, Cloud storage, Queueing, Delay

I. INTRODUCTION

Public clouds have been utilized by web services and
Internet applications widespread. They provide high degree of
availability, scalability, and data durability. Yet, there exists
significant skew in network bound I/O performance neces-
sitating solutions that provide robustness in a cost effective
manner [1], [2]. In this paper, we focus on the cloud storage
and present solutions that can provide much better delay
performance for putting files into the cloud storage as well
as for retrieving them back on demand. In particular, we base
our analysis on Amazon S3 service as one of the most popular
cloud storage service.

A typical cloud storage stores and retrieves objects via their
unique keys. Each object is replicated several times within the
cloud and sometimes also further protected by erasure codes to
more efficiently use the storage capacity while attaining very
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high durability guarantees [3]. Storage provider also monitors
the load on each storage node and employs dynamic load
balancing to prevent hot storage nodes that might observe high
loads or slow nodes that have excessively high response times.
Although mainly used for repairing data in unavailable storage
nodes, some cloud providers also access coded blocks in
parallel to uncoded blocks when uncoded blocks are stored in
slow nodes [3]. Despite all these mechanisms, still evaluations
of large scale systems indicate that there is a high degree
of randomness in delay performance [1]. Thus, the services
that require better delay performance must deploy their own
solutions such as sending multiple requests (in parallel or
sequentially), chunking large objects into smaller ones and
read/write each chunk in parallel, replicate the same object
using multiple distinct keys, etc.

To this end, we conducted our own measurements on
Amazon S3 for various object sizes to model its delay dis-
tribution. Our measurement results confirm that the delay
spread is significant even when object sizes are in the order of
megabytes. Moreover, our study indicates that when the server
accessing the storage cloud is not the bottleneck (in terms of
CPU and network access speed), we can substantially improve
the distribution of read/write delays. To achieve these gains,
one has to consider not only chunking and parallel access to
each chunk, but also erasure coding. In fact without erasure
coding, more chunking starts hurting the performance at lower
percentile values. The gains when forward error correction
(FEC) is employed are significant in the average delay perfor-
mance and they are much better at higher percentile delays.

Nonetheless, server accessing the storage cloud has limited
CPU and network access speed limiting the number of con-
current connections to the storage cloud without going into
a processor sharing mode. With limited system capacity, one
has to consider the load and its impact on queueing delays
to quantify the total delay. Unfortunately, FEC and chunking
create redundant load multiplying the arrival rate into the
system. Unless mean service rate is improved to the same
extent, the maximum rate at which end users can be served
is reduced. Our observations over Amazon S3 indicate that
indeed lower code rates reduce the supportable rate region
inducing queue instability earlier than higher code rates. Thus,
it is imperative to design a load adaptive strategy for changing
FEC rates on the fly to keep total average delays at the
minimum level while remaining in the achievable rate region
of the uncoded system.

To come up with meaningful solutions, one needs to analyze
queuing delay for the system. As one of the main contributions
of the paper, we analyze the average delay performance of a
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SYSTEMS THAT RESPOND to user actions quickly (within 
100ms) feel more fluid and natural to users than 
those that take longer.3 Improvements in Internet 
connectivity and the rise of warehouse-scale computing 
systems2 have enabled Web services that provide fluid 
responsiveness while consulting multi-terabyte datasets 
spanning thousands of servers; for example, the Google 
search system updates query results interactively as 
the user types, predicting the most likely query based 
on the prefix typed so far, performing the search and 
showing the results within a few tens of milliseconds. 
Emerging augmented-reality devices (such as the 
Google Glass prototype7) will need associated Web 
services with even greater responsiveness in order to 
guarantee seamless interactivity. 

It is challenging for service providers to keep the tail 
of latency distribution short for interactive services  
as the size and complexity of the system scales up or 

as overall use increases. Temporary 
high-latency episodes (unimportant in 
moderate-size systems) may come to 
dominate overall service performance at 
large scale. Just as fault-tolerant comput-
ing aims to create a reliable whole out of 
less-reliable parts, large online services 
need to create a predictably responsive 
whole out of less-predictable parts; 
we refer to such systems as “latency 
tail-tolerant,” or simply “tail-tolerant.” 
Here, we outline some common causes 
for high-latency episodes in large online 
services and describe techniques that 
reduce their severity or mitigate their 
effect on whole-system performance. 
In many cases, tail-tolerant techniques 
can take advantage of resources already 
deployed to achieve fault-tolerance, re-
sulting in low additional overhead. We 
explore how these techniques allow sys-
tem utilization to be driven higher with-
out lengthening the latency tail, thus 
avoiding wasteful overprovisioning. 

Why Variability Exists? 
Variability of response time that leads 
to high tail latency in individual com-
ponents of a service can arise for many 
reasons, including: 

Shared resources. Machines might 
be shared by different applications 
contending for shared resources (such 
as CPU cores, processor caches, mem-
ory bandwidth, and network band-
width), and within the same applica-
tion different requests might contend 
for resources; 

Daemons. Background daemons 
may use only limited resources on aver-
age but when scheduled can generate 
multi-millisecond hiccups; 

The Tail 
at Scale 
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 key insights
    Even rare performance hiccups affect 

a significant fraction of all requests in 
large-scale distributed systems. 

    Eliminating all sources of latency 
variability in large-scale systems 
is impractical, especially in shared 
environments. 

    Using an approach analogous to 
fault-tolerant computing, tail-tolerant 
software techniques form a predictable 
whole out of less-predictable parts. 
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Abstract
Windows Azure Storage (WAS) is a cloud storage sys-

tem that provides customers the ability to store seem-
ingly limitless amounts of data for any duration of time.
WAS customers have access to their data from anywhere,
at any time, and only pay for what they use and store. To
provide durability for that data and to keep the cost of
storage low, WAS uses erasure coding.
In this paper we introduce a new set of codes for era-

sure coding called Local Reconstruction Codes (LRC).
LRC reduces the number of erasure coding fragments
that need to be read when reconstructing data fragments
that are offline, while still keeping the storage overhead
low. The important benefits of LRC are that it reduces the
bandwidth and I/Os required for repair reads over prior
codes, while still allowing a significant reduction in stor-
age overhead. We describe how LRC is used in WAS to
provide low overhead durable storage with consistently
low read latencies.

1 Introduction
Windows Azure Storage (WAS) [1] is a scalable cloud

storage system that has been in production since Novem-
ber 2008. It is used inside Microsoft for applications
such as social networking search, serving video, music
and game content, managing medical records, and more.
In addition, there are thousands of customers outside Mi-
crosoft using WAS, and anyone can sign up over the In-
ternet to use the system. WAS provides cloud storage
in the form of Blobs (user files), Tables (structured stor-
age), Queues (message delivery), and Drives (network
mounted VHDs). These data abstractions provide the
overall storage and work flow for applications running
in the cloud.
WAS stores all of its data into an append-only dis-

tributed file system called the stream layer [1]. Data is
appended to the end of active extents, which are repli-
cated three times by the underlying stream layer. The
data is originally written to 3 full copies to keep the data
durable. Once reaching a certain size (e.g., 1 GB), ex-
tents are sealed. These sealed extents can no longer be
modified and thus make perfect candidates for erasure
coding. WAS then erasure codes a sealed extent lazily in
the background, and once the extent is erasure-coded the
original 3 full copies of the extent are deleted.
The motivation for using erasure coding in WAS

comes from the need to reduce the cost of storage. Era-
sure coding can reduce the cost of storage over 50%,

which is a tremendous cost saving as we will soon sur-
pass an Exabyte of storage. There are the obvious cost
savings from purchasing less hardware to store that much
data, but there are significant savings from the fact that
this also reduces our data center footprint by 1/2, the
power savings from running 1/2 the hardware, along with
other savings.
The trade-off for using erasure coding instead of keep-

ing 3 full copies is performance. The performance hit
comes when dealing with i) a lost or offline data frag-
ment and ii) hot storage nodes. When an extent is
erasure-coded, it is broken up into k data fragments, and
a set of parity fragments. In WAS, a data fragment may
be lost due to a disk, node or rack failure. In addition,
cloud services are perpetually in beta [2] due to frequent
upgrades. A data fragment may be offline for seconds to
a few minutes due to an upgrade where the storage node
process may be restarted or the OS for the storage node
may be rebooted. During this time, if there is an on-
demand read from a client to a fragment on the storage
node being upgraded, WAS reads from enough fragments
in order to dynamically reconstruct the data being asked
for to return the data to the client. This reconstruction
needs to be optimized to be as fast as possible and use
as little networking bandwidth and I/Os as possible, with
the goal to have the reconstruction time consistently low
to meet customer SLAs.
When using erasure coding, the data fragment the

client’s request is asking for is stored on a specific stor-
age node, which can greatly increase the risk of a storage
node becoming hot, which could affect latency. One way
that WAS can deal with hot storage nodes is to recog-
nize the fragments that are hot and then replicate them to
cooler storage nodes to balance out the load, or cache the
data and serve it directly from DRAM or SSDs. But, the
read performance can suffer for the potential set of reads
going to that storage node as it gets hot, until the data
is cached or load balanced. Therefore, one optimization
WAS has is if it looks like the read to a data fragment is
going to take too long, WAS in parallel tries to perform a
reconstruction of the data fragment (effectively treating
the storage node with the original data fragment as if it
was offline) and return to the client whichever of the two
results is faster.
For both of the above cases the time to reconstruct a

data fragment for on-demand client requests is crucial.
The problem is that the reconstruction operation is only
as fast as the slowest storage node to respond to reading
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Abstract

Despite prior research on outlier mitigation, our anal-
ysis of jobs from the Facebook cluster shows that out-
liers still occur, especially in small jobs. Small jobs
are particularly sensitive to long-running outlier tasks
because of their interactive nature. Outlier mitigation
strategies rely on comparing different tasks of the same
job and launching speculative copies for the slower tasks.
However, small jobs execute all their tasks simultane-
ously, thereby not providing sufficient time to observe
and compare tasks. Building on the observation that clus-
ters are underutilized, we take speculation to its logical
extreme—run full clones of jobs to mitigate the effect

of outliers. The heavy-tail distribution of job sizes im-
plies that we can impact most jobs without using much
resources. Trace-driven simulations show that average
completion time of all the small jobs improves by 47%
using cloning, at the cost of just 3% extra resources.

1 Introduction

Cloud computing has become a significant technologi-
cal breakthrough. An increasing number of organizations
use datacenters to run a mixed variety of computations,
ranging from long-running batch jobs to interactive short
queries that operators launch on the fly.

The importance of these datacenter computations has
led to much effort being spent on optimizing their perfor-
mance. The prevalence of outlier tasks was early identi-
fied as a common source of performance problem [1].
Initial research suggested the use of speculative execu-
tion to mitigate such outliers. These methods were later
improved by LATE [2] and Mantri [3], which provide
more intelligent outlier mitigation based on speculative
execution of tasks. Similar techniques have also been
used to deal with outliers in other settings [4, 5].

Despite this research on outlier mitigation, our anal-
yses of traces from a 3,500 node Facebook cluster, that
applies the LATE technique, shows that outliers are still
common, especially in small jobs. The small jobs, on av-

erage, have outlier tasks that are 12 times slower than that
job’s median task, which significantly delays completion
of jobs. Our simulations show that the outlier numbers
for Mantri are similar for small jobs.

Small jobs are particularly sensitive to outliers because
they execute in a single wave of simultaneously running
tasks. Therefore even a single task being an outlier slows
down the entire job. The single-waved property also
limits the efficacy of traditional outlier mitigation strate-
gies that rely on comparing different tasks of the same
job. Any meaningful comparison requires waiting to ob-
tain statistically significant samples of task performance,
which single-waved small jobs cannot afford.

In this work, we focus on improving the completion
time of these small jobs, which are often interactive
queries, where the response time is important to the hu-
man operator awaiting its response. The idea we explore
in this paper is to take speculative execution to its logical
extreme and run full clones of jobs to reduce job comple-

tion times. Two trends make this approach viable.

First, most jobs are small and consume few resources.
Our analysis shows that job sizes have a power-law
distribution, with the absolute majority of the jobs be-
ing small, while the absolute majority of the cluster re-
sources are spent on a small number of large jobs. Thus,
the aggregate resources consumed by small jobs is mod-
erate. Running clones of small jobs has the potential to
impact most jobs, without using much resources.

Second, most clusters are highly underutilized. Sev-
eral of the clusters that we analyzed have a very low av-
erage utilization. In particular, CPU and memory utiliza-
tion in these clusters has a median less than 20%. In fact,
cluster utilization exceeds the 50% mark only 8% of the
time. There is thus room for running extra clones of jobs.

A key question is whether running job clones will
negatively impact energy efficiency. Despite research
on powering down machines for energy efficiency, we
note that most clusters today do not shut off machines
to save energy. Thus, machines are on most of the
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ABSTRACT
Low latency is critical for interactive networked appli-
cations. But while we know how to scale systems to in-
crease capacity, reducing latency — especially the tail of
the latency distribution — can be much more di⇤cult.

We argue that the use of redundancy in the context
of the wide-area Internet is an e�ective way to convert a
small amount of extra capacity into reduced latency. By
initiating redundant operations across diverse resources
and using the first result which completes, redundancy
improves a system’s latency even under exceptional con-
ditions. We demonstrate that redundancy can signifi-
cantly reduce latency for small but critical tasks, and
argue that it is an e�ective general-purpose strategy
even on devices like cell phones where bandwidth is rel-
atively constrained.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: Gen-
eral

General Terms
Performance, Reliability

1. INTRODUCTION
Low latency is important for humans. Even slightly

higher web page load times can significantly reduce vis-
its from users and revenue, as demonstrated by several
sites [21]. For example, injecting just 400 milliseconds
of artificial delay into Google search results caused the
delayed users to perform 0.74% fewer searches after 4-6
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weeks [7]. A 500 millisecond delay in the Bing search en-
gine reduced revenue per user by 1.2%, or 4.3% with a 2-
second delay [21]. Human-computer interaction studies
similarly show that people react to small di�erences in
the delay of operations (see [12] and references therein).

Achieving consistent low latency is challenging. Mod-
ern applications are highly distributed, and likely to get
more so as cloud computing separates users from their
data and computation. Moreover, application-level op-
erations often require tens or hundreds of tasks to com-
plete — due to many objects comprising a single web
page [19], or aggregation of many back-end queries to
produce a front-end result [1,10]. This means individual
tasks may have latency budgets on the order of a few
milliseconds or tens of milliseconds, and the tail of the
latency distribution is critical. Thus, latency is a di⇤-
cult challenge for networked systems: How do we make
the other side of the world feel like it is right here, even
under exceptional conditions?

One powerful technique to reduce latency is redun-
dancy : Initiate an operation multiple times, using as
diverse resources as possible, and use the first result
which completes. For example, a host may query mul-
tiple DNS servers in parallel to resolve a name. The
overall latency is the minimum of the delays across each
instance, thus potentially reducing both the mean and
the tail of the latency distribution. The power of this
technique is that it reduces latency precisely under the
most challenging conditions: when delays or failures are
unpredictable.

Redundancy has been employed in several past net-
worked systems: notably, as a way to deal with failures
in DTNs [15], and in a multi-homed web proxy over-
lay [3]. But beyond these specific research projects, re-
dundancy is typically eschewed across the Internet. We
argue this is a missed opportunity.

The contribution of this paper is to argue for redun-
dancy as a general technique for the wide-area Internet.
The combination of interactive applications, high la-
tency, and variability of latency make redundancy well
suited to this environment. Even in a well-provisioned
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FAST CLOUD: Pushing the Envelope on Delay
Performance of Cloud Storage with Coding

Guanfeng Liang, Member, IEEE, and Ulaş C. Kozat, Senior Member, IEEE

Abstract—Our paper presents solutions that can significantly
improve the delay performance of putting and retrieving data
in and out of cloud storage. We first focus on measuring the
delay performance of a very popular cloud storage service
Amazon S3. We establish that there is significant randomness
in service times for reading and writing small and medium size
objects when assigned distinct keys. We further demonstrate that
using erasure coding, parallel connections to storage cloud and
limited chunking (i.e., dividing the object into a few smaller
objects) together pushes the envelope on service time distributions
significantly (e.g., 76%, 80%, and 85% reductions in mean,
90th, and 99th percentiles for 2 Mbyte files) at the expense of
additional storage (e.g., 1.75×). However, chunking and erasure
coding increase the load and hence the queuing delays while
reducing the supportable rate region in number of requests per
second per node. Thus, in the second part of our paper we focus
on analyzing the delay performance when chunking, FEC, and
parallel connections are used together. Based on this analysis, we
develop load adaptive algorithms that can pick the best code rate
on a per request basis by using off-line computed queue backlog
thresholds. The solutions work with homogeneous services with
fixed object sizes, chunk sizes, operation type (e.g., read or write)
as well as heterogeneous services with mixture of object sizes,
chunk sizes, and operation types. We also present a simple greedy
solution that opportunistically uses idle connections and picks
the erasure coding rate accordingly on the fly. Both backlog and
greedy solutions support the full rate region and provide best
mean delay performance when compared to the best fixed coding
rate policy. Our evaluations show that backlog based solutions
achieve better delay performance at higher percentile values than
the greedy solution.
Index Terms—FEC, Cloud storage, Queueing, Delay

I. INTRODUCTION

Public clouds have been utilized by web services and
Internet applications widespread. They provide high degree of
availability, scalability, and data durability. Yet, there exists
significant skew in network bound I/O performance neces-
sitating solutions that provide robustness in a cost effective
manner [1], [2]. In this paper, we focus on the cloud storage
and present solutions that can provide much better delay
performance for putting files into the cloud storage as well
as for retrieving them back on demand. In particular, we base
our analysis on Amazon S3 service as one of the most popular
cloud storage service.

A typical cloud storage stores and retrieves objects via their
unique keys. Each object is replicated several times within the
cloud and sometimes also further protected by erasure codes to
more efficiently use the storage capacity while attaining very
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high durability guarantees [3]. Storage provider also monitors
the load on each storage node and employs dynamic load
balancing to prevent hot storage nodes that might observe high
loads or slow nodes that have excessively high response times.
Although mainly used for repairing data in unavailable storage
nodes, some cloud providers also access coded blocks in
parallel to uncoded blocks when uncoded blocks are stored in
slow nodes [3]. Despite all these mechanisms, still evaluations
of large scale systems indicate that there is a high degree
of randomness in delay performance [1]. Thus, the services
that require better delay performance must deploy their own
solutions such as sending multiple requests (in parallel or
sequentially), chunking large objects into smaller ones and
read/write each chunk in parallel, replicate the same object
using multiple distinct keys, etc.

To this end, we conducted our own measurements on
Amazon S3 for various object sizes to model its delay dis-
tribution. Our measurement results confirm that the delay
spread is significant even when object sizes are in the order of
megabytes. Moreover, our study indicates that when the server
accessing the storage cloud is not the bottleneck (in terms of
CPU and network access speed), we can substantially improve
the distribution of read/write delays. To achieve these gains,
one has to consider not only chunking and parallel access to
each chunk, but also erasure coding. In fact without erasure
coding, more chunking starts hurting the performance at lower
percentile values. The gains when forward error correction
(FEC) is employed are significant in the average delay perfor-
mance and they are much better at higher percentile delays.

Nonetheless, server accessing the storage cloud has limited
CPU and network access speed limiting the number of con-
current connections to the storage cloud without going into
a processor sharing mode. With limited system capacity, one
has to consider the load and its impact on queueing delays
to quantify the total delay. Unfortunately, FEC and chunking
create redundant load multiplying the arrival rate into the
system. Unless mean service rate is improved to the same
extent, the maximum rate at which end users can be served
is reduced. Our observations over Amazon S3 indicate that
indeed lower code rates reduce the supportable rate region
inducing queue instability earlier than higher code rates. Thus,
it is imperative to design a load adaptive strategy for changing
FEC rates on the fly to keep total average delays at the
minimum level while remaining in the achievable rate region
of the uncoded system.

To come up with meaningful solutions, one needs to analyze
queuing delay for the system. As one of the main contributions
of the paper, we analyze the average delay performance of a
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SYSTEMS THAT RESPOND to user actions quickly (within 
100ms) feel more fluid and natural to users than 
those that take longer.3 Improvements in Internet 
connectivity and the rise of warehouse-scale computing 
systems2 have enabled Web services that provide fluid 
responsiveness while consulting multi-terabyte datasets 
spanning thousands of servers; for example, the Google 
search system updates query results interactively as 
the user types, predicting the most likely query based 
on the prefix typed so far, performing the search and 
showing the results within a few tens of milliseconds. 
Emerging augmented-reality devices (such as the 
Google Glass prototype7) will need associated Web 
services with even greater responsiveness in order to 
guarantee seamless interactivity. 

It is challenging for service providers to keep the tail 
of latency distribution short for interactive services  
as the size and complexity of the system scales up or 

as overall use increases. Temporary 
high-latency episodes (unimportant in 
moderate-size systems) may come to 
dominate overall service performance at 
large scale. Just as fault-tolerant comput-
ing aims to create a reliable whole out of 
less-reliable parts, large online services 
need to create a predictably responsive 
whole out of less-predictable parts; 
we refer to such systems as “latency 
tail-tolerant,” or simply “tail-tolerant.” 
Here, we outline some common causes 
for high-latency episodes in large online 
services and describe techniques that 
reduce their severity or mitigate their 
effect on whole-system performance. 
In many cases, tail-tolerant techniques 
can take advantage of resources already 
deployed to achieve fault-tolerance, re-
sulting in low additional overhead. We 
explore how these techniques allow sys-
tem utilization to be driven higher with-
out lengthening the latency tail, thus 
avoiding wasteful overprovisioning. 

Why Variability Exists? 
Variability of response time that leads 
to high tail latency in individual com-
ponents of a service can arise for many 
reasons, including: 

Shared resources. Machines might 
be shared by different applications 
contending for shared resources (such 
as CPU cores, processor caches, mem-
ory bandwidth, and network band-
width), and within the same applica-
tion different requests might contend 
for resources; 

Daemons. Background daemons 
may use only limited resources on aver-
age but when scheduled can generate 
multi-millisecond hiccups; 

The Tail 
at Scale 
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Software techniques that tolerate latency 
variability are vital to building responsive 
large-scale Web services. 
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 key insights
    Even rare performance hiccups affect 

a significant fraction of all requests in 
large-scale distributed systems. 

    Eliminating all sources of latency 
variability in large-scale systems 
is impractical, especially in shared 
environments. 

    Using an approach analogous to 
fault-tolerant computing, tail-tolerant 
software techniques form a predictable 
whole out of less-predictable parts. 

Erasure Coding in Windows Azure Storage
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Abstract
Windows Azure Storage (WAS) is a cloud storage sys-

tem that provides customers the ability to store seem-
ingly limitless amounts of data for any duration of time.
WAS customers have access to their data from anywhere,
at any time, and only pay for what they use and store. To
provide durability for that data and to keep the cost of
storage low, WAS uses erasure coding.
In this paper we introduce a new set of codes for era-

sure coding called Local Reconstruction Codes (LRC).
LRC reduces the number of erasure coding fragments
that need to be read when reconstructing data fragments
that are offline, while still keeping the storage overhead
low. The important benefits of LRC are that it reduces the
bandwidth and I/Os required for repair reads over prior
codes, while still allowing a significant reduction in stor-
age overhead. We describe how LRC is used in WAS to
provide low overhead durable storage with consistently
low read latencies.

1 Introduction
Windows Azure Storage (WAS) [1] is a scalable cloud

storage system that has been in production since Novem-
ber 2008. It is used inside Microsoft for applications
such as social networking search, serving video, music
and game content, managing medical records, and more.
In addition, there are thousands of customers outside Mi-
crosoft using WAS, and anyone can sign up over the In-
ternet to use the system. WAS provides cloud storage
in the form of Blobs (user files), Tables (structured stor-
age), Queues (message delivery), and Drives (network
mounted VHDs). These data abstractions provide the
overall storage and work flow for applications running
in the cloud.
WAS stores all of its data into an append-only dis-

tributed file system called the stream layer [1]. Data is
appended to the end of active extents, which are repli-
cated three times by the underlying stream layer. The
data is originally written to 3 full copies to keep the data
durable. Once reaching a certain size (e.g., 1 GB), ex-
tents are sealed. These sealed extents can no longer be
modified and thus make perfect candidates for erasure
coding. WAS then erasure codes a sealed extent lazily in
the background, and once the extent is erasure-coded the
original 3 full copies of the extent are deleted.
The motivation for using erasure coding in WAS

comes from the need to reduce the cost of storage. Era-
sure coding can reduce the cost of storage over 50%,

which is a tremendous cost saving as we will soon sur-
pass an Exabyte of storage. There are the obvious cost
savings from purchasing less hardware to store that much
data, but there are significant savings from the fact that
this also reduces our data center footprint by 1/2, the
power savings from running 1/2 the hardware, along with
other savings.
The trade-off for using erasure coding instead of keep-

ing 3 full copies is performance. The performance hit
comes when dealing with i) a lost or offline data frag-
ment and ii) hot storage nodes. When an extent is
erasure-coded, it is broken up into k data fragments, and
a set of parity fragments. In WAS, a data fragment may
be lost due to a disk, node or rack failure. In addition,
cloud services are perpetually in beta [2] due to frequent
upgrades. A data fragment may be offline for seconds to
a few minutes due to an upgrade where the storage node
process may be restarted or the OS for the storage node
may be rebooted. During this time, if there is an on-
demand read from a client to a fragment on the storage
node being upgraded, WAS reads from enough fragments
in order to dynamically reconstruct the data being asked
for to return the data to the client. This reconstruction
needs to be optimized to be as fast as possible and use
as little networking bandwidth and I/Os as possible, with
the goal to have the reconstruction time consistently low
to meet customer SLAs.
When using erasure coding, the data fragment the

client’s request is asking for is stored on a specific stor-
age node, which can greatly increase the risk of a storage
node becoming hot, which could affect latency. One way
that WAS can deal with hot storage nodes is to recog-
nize the fragments that are hot and then replicate them to
cooler storage nodes to balance out the load, or cache the
data and serve it directly from DRAM or SSDs. But, the
read performance can suffer for the potential set of reads
going to that storage node as it gets hot, until the data
is cached or load balanced. Therefore, one optimization
WAS has is if it looks like the read to a data fragment is
going to take too long, WAS in parallel tries to perform a
reconstruction of the data fragment (effectively treating
the storage node with the original data fragment as if it
was offline) and return to the client whichever of the two
results is faster.
For both of the above cases the time to reconstruct a

data fragment for on-demand client requests is crucial.
The problem is that the reconstruction operation is only
as fast as the slowest storage node to respond to reading
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Abstract

Despite prior research on outlier mitigation, our anal-
ysis of jobs from the Facebook cluster shows that out-
liers still occur, especially in small jobs. Small jobs
are particularly sensitive to long-running outlier tasks
because of their interactive nature. Outlier mitigation
strategies rely on comparing different tasks of the same
job and launching speculative copies for the slower tasks.
However, small jobs execute all their tasks simultane-
ously, thereby not providing sufficient time to observe
and compare tasks. Building on the observation that clus-
ters are underutilized, we take speculation to its logical
extreme—run full clones of jobs to mitigate the effect

of outliers. The heavy-tail distribution of job sizes im-
plies that we can impact most jobs without using much
resources. Trace-driven simulations show that average
completion time of all the small jobs improves by 47%
using cloning, at the cost of just 3% extra resources.

1 Introduction

Cloud computing has become a significant technologi-
cal breakthrough. An increasing number of organizations
use datacenters to run a mixed variety of computations,
ranging from long-running batch jobs to interactive short
queries that operators launch on the fly.

The importance of these datacenter computations has
led to much effort being spent on optimizing their perfor-
mance. The prevalence of outlier tasks was early identi-
fied as a common source of performance problem [1].
Initial research suggested the use of speculative execu-
tion to mitigate such outliers. These methods were later
improved by LATE [2] and Mantri [3], which provide
more intelligent outlier mitigation based on speculative
execution of tasks. Similar techniques have also been
used to deal with outliers in other settings [4, 5].

Despite this research on outlier mitigation, our anal-
yses of traces from a 3,500 node Facebook cluster, that
applies the LATE technique, shows that outliers are still
common, especially in small jobs. The small jobs, on av-

erage, have outlier tasks that are 12 times slower than that
job’s median task, which significantly delays completion
of jobs. Our simulations show that the outlier numbers
for Mantri are similar for small jobs.

Small jobs are particularly sensitive to outliers because
they execute in a single wave of simultaneously running
tasks. Therefore even a single task being an outlier slows
down the entire job. The single-waved property also
limits the efficacy of traditional outlier mitigation strate-
gies that rely on comparing different tasks of the same
job. Any meaningful comparison requires waiting to ob-
tain statistically significant samples of task performance,
which single-waved small jobs cannot afford.

In this work, we focus on improving the completion
time of these small jobs, which are often interactive
queries, where the response time is important to the hu-
man operator awaiting its response. The idea we explore
in this paper is to take speculative execution to its logical
extreme and run full clones of jobs to reduce job comple-

tion times. Two trends make this approach viable.

First, most jobs are small and consume few resources.
Our analysis shows that job sizes have a power-law
distribution, with the absolute majority of the jobs be-
ing small, while the absolute majority of the cluster re-
sources are spent on a small number of large jobs. Thus,
the aggregate resources consumed by small jobs is mod-
erate. Running clones of small jobs has the potential to
impact most jobs, without using much resources.

Second, most clusters are highly underutilized. Sev-
eral of the clusters that we analyzed have a very low av-
erage utilization. In particular, CPU and memory utiliza-
tion in these clusters has a median less than 20%. In fact,
cluster utilization exceeds the 50% mark only 8% of the
time. There is thus room for running extra clones of jobs.

A key question is whether running job clones will
negatively impact energy efficiency. Despite research
on powering down machines for energy efficiency, we
note that most clusters today do not shut off machines
to save energy. Thus, machines are on most of the
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ABSTRACT
Low latency is critical for interactive networked appli-
cations. But while we know how to scale systems to in-
crease capacity, reducing latency — especially the tail of
the latency distribution — can be much more di⇤cult.

We argue that the use of redundancy in the context
of the wide-area Internet is an e�ective way to convert a
small amount of extra capacity into reduced latency. By
initiating redundant operations across diverse resources
and using the first result which completes, redundancy
improves a system’s latency even under exceptional con-
ditions. We demonstrate that redundancy can signifi-
cantly reduce latency for small but critical tasks, and
argue that it is an e�ective general-purpose strategy
even on devices like cell phones where bandwidth is rel-
atively constrained.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: Gen-
eral

General Terms
Performance, Reliability

1. INTRODUCTION
Low latency is important for humans. Even slightly

higher web page load times can significantly reduce vis-
its from users and revenue, as demonstrated by several
sites [21]. For example, injecting just 400 milliseconds
of artificial delay into Google search results caused the
delayed users to perform 0.74% fewer searches after 4-6
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republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Hotnets ’12, October 29–30, 2012, Seattle, WA, USA.
Copyright 2012 ACM 978-1-4503-1776-4/10/12 ...$10.00.

weeks [7]. A 500 millisecond delay in the Bing search en-
gine reduced revenue per user by 1.2%, or 4.3% with a 2-
second delay [21]. Human-computer interaction studies
similarly show that people react to small di�erences in
the delay of operations (see [12] and references therein).

Achieving consistent low latency is challenging. Mod-
ern applications are highly distributed, and likely to get
more so as cloud computing separates users from their
data and computation. Moreover, application-level op-
erations often require tens or hundreds of tasks to com-
plete — due to many objects comprising a single web
page [19], or aggregation of many back-end queries to
produce a front-end result [1,10]. This means individual
tasks may have latency budgets on the order of a few
milliseconds or tens of milliseconds, and the tail of the
latency distribution is critical. Thus, latency is a di⇤-
cult challenge for networked systems: How do we make
the other side of the world feel like it is right here, even
under exceptional conditions?

One powerful technique to reduce latency is redun-
dancy : Initiate an operation multiple times, using as
diverse resources as possible, and use the first result
which completes. For example, a host may query mul-
tiple DNS servers in parallel to resolve a name. The
overall latency is the minimum of the delays across each
instance, thus potentially reducing both the mean and
the tail of the latency distribution. The power of this
technique is that it reduces latency precisely under the
most challenging conditions: when delays or failures are
unpredictable.

Redundancy has been employed in several past net-
worked systems: notably, as a way to deal with failures
in DTNs [15], and in a multi-homed web proxy over-
lay [3]. But beyond these specific research projects, re-
dundancy is typically eschewed across the Internet. We
argue this is a missed opportunity.

The contribution of this paper is to argue for redun-
dancy as a general technique for the wide-area Internet.
The combination of interactive applications, high la-
tency, and variability of latency make redundancy well
suited to this environment. Even in a well-provisioned

1

ar
X

iv
:1

30
1.

12
94

v1
  [

cs
.N

I]
  7

 Ja
n 

20
13

1

FAST CLOUD: Pushing the Envelope on Delay
Performance of Cloud Storage with Coding

Guanfeng Liang, Member, IEEE, and Ulaş C. Kozat, Senior Member, IEEE

Abstract—Our paper presents solutions that can significantly
improve the delay performance of putting and retrieving data
in and out of cloud storage. We first focus on measuring the
delay performance of a very popular cloud storage service
Amazon S3. We establish that there is significant randomness
in service times for reading and writing small and medium size
objects when assigned distinct keys. We further demonstrate that
using erasure coding, parallel connections to storage cloud and
limited chunking (i.e., dividing the object into a few smaller
objects) together pushes the envelope on service time distributions
significantly (e.g., 76%, 80%, and 85% reductions in mean,
90th, and 99th percentiles for 2 Mbyte files) at the expense of
additional storage (e.g., 1.75×). However, chunking and erasure
coding increase the load and hence the queuing delays while
reducing the supportable rate region in number of requests per
second per node. Thus, in the second part of our paper we focus
on analyzing the delay performance when chunking, FEC, and
parallel connections are used together. Based on this analysis, we
develop load adaptive algorithms that can pick the best code rate
on a per request basis by using off-line computed queue backlog
thresholds. The solutions work with homogeneous services with
fixed object sizes, chunk sizes, operation type (e.g., read or write)
as well as heterogeneous services with mixture of object sizes,
chunk sizes, and operation types. We also present a simple greedy
solution that opportunistically uses idle connections and picks
the erasure coding rate accordingly on the fly. Both backlog and
greedy solutions support the full rate region and provide best
mean delay performance when compared to the best fixed coding
rate policy. Our evaluations show that backlog based solutions
achieve better delay performance at higher percentile values than
the greedy solution.
Index Terms—FEC, Cloud storage, Queueing, Delay

I. INTRODUCTION

Public clouds have been utilized by web services and
Internet applications widespread. They provide high degree of
availability, scalability, and data durability. Yet, there exists
significant skew in network bound I/O performance neces-
sitating solutions that provide robustness in a cost effective
manner [1], [2]. In this paper, we focus on the cloud storage
and present solutions that can provide much better delay
performance for putting files into the cloud storage as well
as for retrieving them back on demand. In particular, we base
our analysis on Amazon S3 service as one of the most popular
cloud storage service.

A typical cloud storage stores and retrieves objects via their
unique keys. Each object is replicated several times within the
cloud and sometimes also further protected by erasure codes to
more efficiently use the storage capacity while attaining very

G. Liang and U.C. Kozat are with DOCOMO Innovations Inc.,
Palo Alto, California USA. G. Liang is the contact author. E-mail:
gliang@docomoinnovations.com

high durability guarantees [3]. Storage provider also monitors
the load on each storage node and employs dynamic load
balancing to prevent hot storage nodes that might observe high
loads or slow nodes that have excessively high response times.
Although mainly used for repairing data in unavailable storage
nodes, some cloud providers also access coded blocks in
parallel to uncoded blocks when uncoded blocks are stored in
slow nodes [3]. Despite all these mechanisms, still evaluations
of large scale systems indicate that there is a high degree
of randomness in delay performance [1]. Thus, the services
that require better delay performance must deploy their own
solutions such as sending multiple requests (in parallel or
sequentially), chunking large objects into smaller ones and
read/write each chunk in parallel, replicate the same object
using multiple distinct keys, etc.

To this end, we conducted our own measurements on
Amazon S3 for various object sizes to model its delay dis-
tribution. Our measurement results confirm that the delay
spread is significant even when object sizes are in the order of
megabytes. Moreover, our study indicates that when the server
accessing the storage cloud is not the bottleneck (in terms of
CPU and network access speed), we can substantially improve
the distribution of read/write delays. To achieve these gains,
one has to consider not only chunking and parallel access to
each chunk, but also erasure coding. In fact without erasure
coding, more chunking starts hurting the performance at lower
percentile values. The gains when forward error correction
(FEC) is employed are significant in the average delay perfor-
mance and they are much better at higher percentile delays.

Nonetheless, server accessing the storage cloud has limited
CPU and network access speed limiting the number of con-
current connections to the storage cloud without going into
a processor sharing mode. With limited system capacity, one
has to consider the load and its impact on queueing delays
to quantify the total delay. Unfortunately, FEC and chunking
create redundant load multiplying the arrival rate into the
system. Unless mean service rate is improved to the same
extent, the maximum rate at which end users can be served
is reduced. Our observations over Amazon S3 indicate that
indeed lower code rates reduce the supportable rate region
inducing queue instability earlier than higher code rates. Thus,
it is imperative to design a load adaptive strategy for changing
FEC rates on the fly to keep total average delays at the
minimum level while remaining in the achievable rate region
of the uncoded system.

To come up with meaningful solutions, one needs to analyze
queuing delay for the system. As one of the main contributions
of the paper, we analyze the average delay performance of a

When do	

redundant requests	

reduce latency ?	
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SYSTEMS THAT RESPOND to user actions quickly (within 
100ms) feel more fluid and natural to users than 
those that take longer.3 Improvements in Internet 
connectivity and the rise of warehouse-scale computing 
systems2 have enabled Web services that provide fluid 
responsiveness while consulting multi-terabyte datasets 
spanning thousands of servers; for example, the Google 
search system updates query results interactively as 
the user types, predicting the most likely query based 
on the prefix typed so far, performing the search and 
showing the results within a few tens of milliseconds. 
Emerging augmented-reality devices (such as the 
Google Glass prototype7) will need associated Web 
services with even greater responsiveness in order to 
guarantee seamless interactivity. 

It is challenging for service providers to keep the tail 
of latency distribution short for interactive services  
as the size and complexity of the system scales up or 

as overall use increases. Temporary 
high-latency episodes (unimportant in 
moderate-size systems) may come to 
dominate overall service performance at 
large scale. Just as fault-tolerant comput-
ing aims to create a reliable whole out of 
less-reliable parts, large online services 
need to create a predictably responsive 
whole out of less-predictable parts; 
we refer to such systems as “latency 
tail-tolerant,” or simply “tail-tolerant.” 
Here, we outline some common causes 
for high-latency episodes in large online 
services and describe techniques that 
reduce their severity or mitigate their 
effect on whole-system performance. 
In many cases, tail-tolerant techniques 
can take advantage of resources already 
deployed to achieve fault-tolerance, re-
sulting in low additional overhead. We 
explore how these techniques allow sys-
tem utilization to be driven higher with-
out lengthening the latency tail, thus 
avoiding wasteful overprovisioning. 

Why Variability Exists? 
Variability of response time that leads 
to high tail latency in individual com-
ponents of a service can arise for many 
reasons, including: 

Shared resources. Machines might 
be shared by different applications 
contending for shared resources (such 
as CPU cores, processor caches, mem-
ory bandwidth, and network band-
width), and within the same applica-
tion different requests might contend 
for resources; 

Daemons. Background daemons 
may use only limited resources on aver-
age but when scheduled can generate 
multi-millisecond hiccups; 

The Tail 
at Scale 

DOI:10.1145/2408776.2408794

Software techniques that tolerate latency 
variability are vital to building responsive 
large-scale Web services. 

BY JEFFREY DEAN AND LUIZ ANDRÉ BARROSO 

 key insights
    Even rare performance hiccups affect 

a significant fraction of all requests in 
large-scale distributed systems. 

    Eliminating all sources of latency 
variability in large-scale systems 
is impractical, especially in shared 
environments. 

    Using an approach analogous to 
fault-tolerant computing, tail-tolerant 
software techniques form a predictable 
whole out of less-predictable parts. 

Erasure Coding in Windows Azure Storage
Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus, Brad Calder, Parikshit Gopalan, Jin Li, and Sergey Yekhanin

Microsoft Corporation

Abstract
Windows Azure Storage (WAS) is a cloud storage sys-

tem that provides customers the ability to store seem-
ingly limitless amounts of data for any duration of time.
WAS customers have access to their data from anywhere,
at any time, and only pay for what they use and store. To
provide durability for that data and to keep the cost of
storage low, WAS uses erasure coding.
In this paper we introduce a new set of codes for era-

sure coding called Local Reconstruction Codes (LRC).
LRC reduces the number of erasure coding fragments
that need to be read when reconstructing data fragments
that are offline, while still keeping the storage overhead
low. The important benefits of LRC are that it reduces the
bandwidth and I/Os required for repair reads over prior
codes, while still allowing a significant reduction in stor-
age overhead. We describe how LRC is used in WAS to
provide low overhead durable storage with consistently
low read latencies.

1 Introduction
Windows Azure Storage (WAS) [1] is a scalable cloud

storage system that has been in production since Novem-
ber 2008. It is used inside Microsoft for applications
such as social networking search, serving video, music
and game content, managing medical records, and more.
In addition, there are thousands of customers outside Mi-
crosoft using WAS, and anyone can sign up over the In-
ternet to use the system. WAS provides cloud storage
in the form of Blobs (user files), Tables (structured stor-
age), Queues (message delivery), and Drives (network
mounted VHDs). These data abstractions provide the
overall storage and work flow for applications running
in the cloud.
WAS stores all of its data into an append-only dis-

tributed file system called the stream layer [1]. Data is
appended to the end of active extents, which are repli-
cated three times by the underlying stream layer. The
data is originally written to 3 full copies to keep the data
durable. Once reaching a certain size (e.g., 1 GB), ex-
tents are sealed. These sealed extents can no longer be
modified and thus make perfect candidates for erasure
coding. WAS then erasure codes a sealed extent lazily in
the background, and once the extent is erasure-coded the
original 3 full copies of the extent are deleted.
The motivation for using erasure coding in WAS

comes from the need to reduce the cost of storage. Era-
sure coding can reduce the cost of storage over 50%,

which is a tremendous cost saving as we will soon sur-
pass an Exabyte of storage. There are the obvious cost
savings from purchasing less hardware to store that much
data, but there are significant savings from the fact that
this also reduces our data center footprint by 1/2, the
power savings from running 1/2 the hardware, along with
other savings.
The trade-off for using erasure coding instead of keep-

ing 3 full copies is performance. The performance hit
comes when dealing with i) a lost or offline data frag-
ment and ii) hot storage nodes. When an extent is
erasure-coded, it is broken up into k data fragments, and
a set of parity fragments. In WAS, a data fragment may
be lost due to a disk, node or rack failure. In addition,
cloud services are perpetually in beta [2] due to frequent
upgrades. A data fragment may be offline for seconds to
a few minutes due to an upgrade where the storage node
process may be restarted or the OS for the storage node
may be rebooted. During this time, if there is an on-
demand read from a client to a fragment on the storage
node being upgraded, WAS reads from enough fragments
in order to dynamically reconstruct the data being asked
for to return the data to the client. This reconstruction
needs to be optimized to be as fast as possible and use
as little networking bandwidth and I/Os as possible, with
the goal to have the reconstruction time consistently low
to meet customer SLAs.
When using erasure coding, the data fragment the

client’s request is asking for is stored on a specific stor-
age node, which can greatly increase the risk of a storage
node becoming hot, which could affect latency. One way
that WAS can deal with hot storage nodes is to recog-
nize the fragments that are hot and then replicate them to
cooler storage nodes to balance out the load, or cache the
data and serve it directly from DRAM or SSDs. But, the
read performance can suffer for the potential set of reads
going to that storage node as it gets hot, until the data
is cached or load balanced. Therefore, one optimization
WAS has is if it looks like the read to a data fragment is
going to take too long, WAS in parallel tries to perform a
reconstruction of the data fragment (effectively treating
the storage node with the original data fragment as if it
was offline) and return to the client whichever of the two
results is faster.
For both of the above cases the time to reconstruct a

data fragment for on-demand client requests is crucial.
The problem is that the reconstruction operation is only
as fast as the slowest storage node to respond to reading
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Abstract

Despite prior research on outlier mitigation, our anal-
ysis of jobs from the Facebook cluster shows that out-
liers still occur, especially in small jobs. Small jobs
are particularly sensitive to long-running outlier tasks
because of their interactive nature. Outlier mitigation
strategies rely on comparing different tasks of the same
job and launching speculative copies for the slower tasks.
However, small jobs execute all their tasks simultane-
ously, thereby not providing sufficient time to observe
and compare tasks. Building on the observation that clus-
ters are underutilized, we take speculation to its logical
extreme—run full clones of jobs to mitigate the effect

of outliers. The heavy-tail distribution of job sizes im-
plies that we can impact most jobs without using much
resources. Trace-driven simulations show that average
completion time of all the small jobs improves by 47%
using cloning, at the cost of just 3% extra resources.

1 Introduction

Cloud computing has become a significant technologi-
cal breakthrough. An increasing number of organizations
use datacenters to run a mixed variety of computations,
ranging from long-running batch jobs to interactive short
queries that operators launch on the fly.

The importance of these datacenter computations has
led to much effort being spent on optimizing their perfor-
mance. The prevalence of outlier tasks was early identi-
fied as a common source of performance problem [1].
Initial research suggested the use of speculative execu-
tion to mitigate such outliers. These methods were later
improved by LATE [2] and Mantri [3], which provide
more intelligent outlier mitigation based on speculative
execution of tasks. Similar techniques have also been
used to deal with outliers in other settings [4, 5].

Despite this research on outlier mitigation, our anal-
yses of traces from a 3,500 node Facebook cluster, that
applies the LATE technique, shows that outliers are still
common, especially in small jobs. The small jobs, on av-

erage, have outlier tasks that are 12 times slower than that
job’s median task, which significantly delays completion
of jobs. Our simulations show that the outlier numbers
for Mantri are similar for small jobs.

Small jobs are particularly sensitive to outliers because
they execute in a single wave of simultaneously running
tasks. Therefore even a single task being an outlier slows
down the entire job. The single-waved property also
limits the efficacy of traditional outlier mitigation strate-
gies that rely on comparing different tasks of the same
job. Any meaningful comparison requires waiting to ob-
tain statistically significant samples of task performance,
which single-waved small jobs cannot afford.

In this work, we focus on improving the completion
time of these small jobs, which are often interactive
queries, where the response time is important to the hu-
man operator awaiting its response. The idea we explore
in this paper is to take speculative execution to its logical
extreme and run full clones of jobs to reduce job comple-

tion times. Two trends make this approach viable.

First, most jobs are small and consume few resources.
Our analysis shows that job sizes have a power-law
distribution, with the absolute majority of the jobs be-
ing small, while the absolute majority of the cluster re-
sources are spent on a small number of large jobs. Thus,
the aggregate resources consumed by small jobs is mod-
erate. Running clones of small jobs has the potential to
impact most jobs, without using much resources.

Second, most clusters are highly underutilized. Sev-
eral of the clusters that we analyzed have a very low av-
erage utilization. In particular, CPU and memory utiliza-
tion in these clusters has a median less than 20%. In fact,
cluster utilization exceeds the 50% mark only 8% of the
time. There is thus room for running extra clones of jobs.

A key question is whether running job clones will
negatively impact energy efficiency. Despite research
on powering down machines for energy efficiency, we
note that most clusters today do not shut off machines
to save energy. Thus, machines are on most of the
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ABSTRACT
Low latency is critical for interactive networked appli-
cations. But while we know how to scale systems to in-
crease capacity, reducing latency — especially the tail of
the latency distribution — can be much more di⇤cult.

We argue that the use of redundancy in the context
of the wide-area Internet is an e�ective way to convert a
small amount of extra capacity into reduced latency. By
initiating redundant operations across diverse resources
and using the first result which completes, redundancy
improves a system’s latency even under exceptional con-
ditions. We demonstrate that redundancy can signifi-
cantly reduce latency for small but critical tasks, and
argue that it is an e�ective general-purpose strategy
even on devices like cell phones where bandwidth is rel-
atively constrained.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: Gen-
eral

General Terms
Performance, Reliability

1. INTRODUCTION
Low latency is important for humans. Even slightly

higher web page load times can significantly reduce vis-
its from users and revenue, as demonstrated by several
sites [21]. For example, injecting just 400 milliseconds
of artificial delay into Google search results caused the
delayed users to perform 0.74% fewer searches after 4-6
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weeks [7]. A 500 millisecond delay in the Bing search en-
gine reduced revenue per user by 1.2%, or 4.3% with a 2-
second delay [21]. Human-computer interaction studies
similarly show that people react to small di�erences in
the delay of operations (see [12] and references therein).

Achieving consistent low latency is challenging. Mod-
ern applications are highly distributed, and likely to get
more so as cloud computing separates users from their
data and computation. Moreover, application-level op-
erations often require tens or hundreds of tasks to com-
plete — due to many objects comprising a single web
page [19], or aggregation of many back-end queries to
produce a front-end result [1,10]. This means individual
tasks may have latency budgets on the order of a few
milliseconds or tens of milliseconds, and the tail of the
latency distribution is critical. Thus, latency is a di⇤-
cult challenge for networked systems: How do we make
the other side of the world feel like it is right here, even
under exceptional conditions?

One powerful technique to reduce latency is redun-
dancy : Initiate an operation multiple times, using as
diverse resources as possible, and use the first result
which completes. For example, a host may query mul-
tiple DNS servers in parallel to resolve a name. The
overall latency is the minimum of the delays across each
instance, thus potentially reducing both the mean and
the tail of the latency distribution. The power of this
technique is that it reduces latency precisely under the
most challenging conditions: when delays or failures are
unpredictable.

Redundancy has been employed in several past net-
worked systems: notably, as a way to deal with failures
in DTNs [15], and in a multi-homed web proxy over-
lay [3]. But beyond these specific research projects, re-
dundancy is typically eschewed across the Internet. We
argue this is a missed opportunity.

The contribution of this paper is to argue for redun-
dancy as a general technique for the wide-area Internet.
The combination of interactive applications, high la-
tency, and variability of latency make redundancy well
suited to this environment. Even in a well-provisioned
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FAST CLOUD: Pushing the Envelope on Delay
Performance of Cloud Storage with Coding

Guanfeng Liang, Member, IEEE, and Ulaş C. Kozat, Senior Member, IEEE

Abstract—Our paper presents solutions that can significantly
improve the delay performance of putting and retrieving data
in and out of cloud storage. We first focus on measuring the
delay performance of a very popular cloud storage service
Amazon S3. We establish that there is significant randomness
in service times for reading and writing small and medium size
objects when assigned distinct keys. We further demonstrate that
using erasure coding, parallel connections to storage cloud and
limited chunking (i.e., dividing the object into a few smaller
objects) together pushes the envelope on service time distributions
significantly (e.g., 76%, 80%, and 85% reductions in mean,
90th, and 99th percentiles for 2 Mbyte files) at the expense of
additional storage (e.g., 1.75×). However, chunking and erasure
coding increase the load and hence the queuing delays while
reducing the supportable rate region in number of requests per
second per node. Thus, in the second part of our paper we focus
on analyzing the delay performance when chunking, FEC, and
parallel connections are used together. Based on this analysis, we
develop load adaptive algorithms that can pick the best code rate
on a per request basis by using off-line computed queue backlog
thresholds. The solutions work with homogeneous services with
fixed object sizes, chunk sizes, operation type (e.g., read or write)
as well as heterogeneous services with mixture of object sizes,
chunk sizes, and operation types. We also present a simple greedy
solution that opportunistically uses idle connections and picks
the erasure coding rate accordingly on the fly. Both backlog and
greedy solutions support the full rate region and provide best
mean delay performance when compared to the best fixed coding
rate policy. Our evaluations show that backlog based solutions
achieve better delay performance at higher percentile values than
the greedy solution.
Index Terms—FEC, Cloud storage, Queueing, Delay

I. INTRODUCTION

Public clouds have been utilized by web services and
Internet applications widespread. They provide high degree of
availability, scalability, and data durability. Yet, there exists
significant skew in network bound I/O performance neces-
sitating solutions that provide robustness in a cost effective
manner [1], [2]. In this paper, we focus on the cloud storage
and present solutions that can provide much better delay
performance for putting files into the cloud storage as well
as for retrieving them back on demand. In particular, we base
our analysis on Amazon S3 service as one of the most popular
cloud storage service.

A typical cloud storage stores and retrieves objects via their
unique keys. Each object is replicated several times within the
cloud and sometimes also further protected by erasure codes to
more efficiently use the storage capacity while attaining very

G. Liang and U.C. Kozat are with DOCOMO Innovations Inc.,
Palo Alto, California USA. G. Liang is the contact author. E-mail:
gliang@docomoinnovations.com

high durability guarantees [3]. Storage provider also monitors
the load on each storage node and employs dynamic load
balancing to prevent hot storage nodes that might observe high
loads or slow nodes that have excessively high response times.
Although mainly used for repairing data in unavailable storage
nodes, some cloud providers also access coded blocks in
parallel to uncoded blocks when uncoded blocks are stored in
slow nodes [3]. Despite all these mechanisms, still evaluations
of large scale systems indicate that there is a high degree
of randomness in delay performance [1]. Thus, the services
that require better delay performance must deploy their own
solutions such as sending multiple requests (in parallel or
sequentially), chunking large objects into smaller ones and
read/write each chunk in parallel, replicate the same object
using multiple distinct keys, etc.

To this end, we conducted our own measurements on
Amazon S3 for various object sizes to model its delay dis-
tribution. Our measurement results confirm that the delay
spread is significant even when object sizes are in the order of
megabytes. Moreover, our study indicates that when the server
accessing the storage cloud is not the bottleneck (in terms of
CPU and network access speed), we can substantially improve
the distribution of read/write delays. To achieve these gains,
one has to consider not only chunking and parallel access to
each chunk, but also erasure coding. In fact without erasure
coding, more chunking starts hurting the performance at lower
percentile values. The gains when forward error correction
(FEC) is employed are significant in the average delay perfor-
mance and they are much better at higher percentile delays.

Nonetheless, server accessing the storage cloud has limited
CPU and network access speed limiting the number of con-
current connections to the storage cloud without going into
a processor sharing mode. With limited system capacity, one
has to consider the load and its impact on queueing delays
to quantify the total delay. Unfortunately, FEC and chunking
create redundant load multiplying the arrival rate into the
system. Unless mean service rate is improved to the same
extent, the maximum rate at which end users can be served
is reduced. Our observations over Amazon S3 indicate that
indeed lower code rates reduce the supportable rate region
inducing queue instability earlier than higher code rates. Thus,
it is imperative to design a load adaptive strategy for changing
FEC rates on the fly to keep total average delays at the
minimum level while remaining in the achievable rate region
of the uncoded system.

To come up with meaningful solutions, one needs to analyze
queuing delay for the system. As one of the main contributions
of the paper, we analyze the average delay performance of a
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FASTCLOUD:PushingtheEnvelopeonDelay
PerformanceofCloudStoragewithCoding

GuanfengLiang,Member,IEEE,andUlaşC.Kozat,SeniorMember,IEEE

Abstract—Ourpaperpresentssolutionsthatcansignificantly
improvethedelayperformanceofputtingandretrievingdata
inandoutofcloudstorage.Wefirstfocusonmeasuringthe
delayperformanceofaverypopularcloudstorageservice
AmazonS3.Weestablishthatthereissignificantrandomness
inservicetimesforreadingandwritingsmallandmediumsize
objectswhenassigneddistinctkeys.Wefurtherdemonstratethat
usingerasurecoding,parallelconnectionstostoragecloudand
limitedchunking(i.e.,dividingtheobjectintoafewsmaller
objects)togetherpushestheenvelopeonservicetimedistributions
significantly(e.g.,76%,80%,and85%reductionsinmean,
90th,and99thpercentilesfor2Mbytefiles)attheexpenseof
additionalstorage(e.g.,1.75×).However,chunkinganderasure
codingincreasetheloadandhencethequeuingdelayswhile
reducingthesupportablerateregioninnumberofrequestsper
secondpernode.Thus,inthesecondpartofourpaperwefocus
onanalyzingthedelayperformancewhenchunking,FEC,and
parallelconnectionsareusedtogether.Basedonthisanalysis,we
developloadadaptivealgorithmsthatcanpickthebestcoderate
onaperrequestbasisbyusingoff-linecomputedqueuebacklog
thresholds.Thesolutionsworkwithhomogeneousserviceswith
fixedobjectsizes,chunksizes,operationtype(e.g.,readorwrite)
aswellasheterogeneousserviceswithmixtureofobjectsizes,
chunksizes,andoperationtypes.Wealsopresentasimplegreedy
solutionthatopportunisticallyusesidleconnectionsandpicks
theerasurecodingrateaccordinglyonthefly.Bothbacklogand
greedysolutionssupportthefullrateregionandprovidebest
meandelayperformancewhencomparedtothebestfixedcoding
ratepolicy.Ourevaluationsshowthatbacklogbasedsolutions
achievebetterdelayperformanceathigherpercentilevaluesthan
thegreedysolution.

IndexTerms—FEC,Cloudstorage,Queueing,Delay

I.INTRODUCTION

Publiccloudshavebeenutilizedbywebservicesand
Internetapplicationswidespread.Theyprovidehighdegreeof
availability,scalability,anddatadurability.Yet,thereexists
significantskewinnetworkboundI/Operformanceneces-
sitatingsolutionsthatproviderobustnessinacosteffective
manner[1],[2].Inthispaper,wefocusonthecloudstorage
andpresentsolutionsthatcanprovidemuchbetterdelay
performanceforputtingfilesintothecloudstorageaswell
asforretrievingthembackondemand.Inparticular,webase
ouranalysisonAmazonS3serviceasoneofthemostpopular
cloudstorageservice.

Atypicalcloudstoragestoresandretrievesobjectsviatheir
uniquekeys.Eachobjectisreplicatedseveraltimeswithinthe
cloudandsometimesalsofurtherprotectedbyerasurecodesto
moreefficientlyusethestoragecapacitywhileattainingvery

G.LiangandU.C.KozatarewithDOCOMOInnovationsInc.,
PaloAlto,CaliforniaUSA.G.Liangisthecontactauthor.E-mail:
gliang@docomoinnovations.com

highdurabilityguarantees[3].Storageprovideralsomonitors
theloadoneachstoragenodeandemploysdynamicload
balancingtopreventhotstoragenodesthatmightobservehigh
loadsorslownodesthathaveexcessivelyhighresponsetimes.
Althoughmainlyusedforrepairingdatainunavailablestorage
nodes,somecloudprovidersalsoaccesscodedblocksin
paralleltouncodedblockswhenuncodedblocksarestoredin
slownodes[3].Despiteallthesemechanisms,stillevaluations
oflargescalesystemsindicatethatthereisahighdegree
ofrandomnessindelayperformance[1].Thus,theservices
thatrequirebetterdelayperformancemustdeploytheirown
solutionssuchassendingmultiplerequests(inparallelor
sequentially),chunkinglargeobjectsintosmalleronesand
read/writeeachchunkinparallel,replicatethesameobject
usingmultipledistinctkeys,etc.

Tothisend,weconductedourownmeasurementson
AmazonS3forvariousobjectsizestomodelitsdelaydis-
tribution.Ourmeasurementresultsconfirmthatthedelay
spreadissignificantevenwhenobjectsizesareintheorderof
megabytes.Moreover,ourstudyindicatesthatwhentheserver
accessingthestoragecloudisnotthebottleneck(intermsof
CPUandnetworkaccessspeed),wecansubstantiallyimprove
thedistributionofread/writedelays.Toachievethesegains,
onehastoconsidernotonlychunkingandparallelaccessto
eachchunk,butalsoerasurecoding.Infactwithouterasure
coding,morechunkingstartshurtingtheperformanceatlower
percentilevalues.Thegainswhenforwarderrorcorrection
(FEC)isemployedaresignificantintheaveragedelayperfor-
manceandtheyaremuchbetterathigherpercentiledelays.

Nonetheless,serveraccessingthestoragecloudhaslimited
CPUandnetworkaccessspeedlimitingthenumberofcon-
currentconnectionstothestoragecloudwithoutgoinginto
aprocessorsharingmode.Withlimitedsystemcapacity,one
hastoconsidertheloadanditsimpactonqueueingdelays
toquantifythetotaldelay.Unfortunately,FECandchunking
createredundantloadmultiplyingthearrivalrateintothe
system.Unlessmeanservicerateisimprovedtothesame
extent,themaximumrateatwhichenduserscanbeserved
isreduced.OurobservationsoverAmazonS3indicatethat
indeedlowercoderatesreducethesupportablerateregion
inducingqueueinstabilityearlierthanhighercoderates.Thus,
itisimperativetodesignaloadadaptivestrategyforchanging
FECratesontheflytokeeptotalaveragedelaysatthe
minimumlevelwhileremainingintheachievablerateregion
oftheuncodedsystem.

Tocomeupwithmeaningfulsolutions,oneneedstoanalyze
queuingdelayforthesystem.Asoneofthemaincontributions
ofthepaper,weanalyzetheaveragedelayperformanceofa
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ABSTRACT
Lowlatencyiscriticalforinteractivenetworkedappli-
cations.Butwhileweknowhowtoscalesystemstoin-
creasecapacity,reducinglatency—especiallythetailof
thelatencydistribution—canbemuchmoredi⇤cult.

Wearguethattheuseofredundancyinthecontext
ofthewide-areaInternetisane�ectivewaytoconverta
smallamountofextracapacityintoreducedlatency.By
initiatingredundantoperationsacrossdiverseresources
andusingthefirstresultwhichcompletes,redundancy
improvesasystem’slatencyevenunderexceptionalcon-
ditions.Wedemonstratethatredundancycansignifi-
cantlyreducelatencyforsmallbutcriticaltasks,and
arguethatitisane�ectivegeneral-purposestrategy
evenondeviceslikecellphoneswherebandwidthisrel-
ativelyconstrained.

CategoriesandSubjectDescriptors
C.2.0[Computer-CommunicationNetworks]:Gen-
eral

GeneralTerms
Performance,Reliability

1.INTRODUCTION
Lowlatencyisimportantforhumans.Evenslightly

higherwebpageloadtimescansignificantlyreducevis-
itsfromusersandrevenue,asdemonstratedbyseveral
sites[21].Forexample,injectingjust400milliseconds
ofartificialdelayintoGooglesearchresultscausedthe
delayeduserstoperform0.74%fewersearchesafter4-6

Permissiontomakedigitalorhardcopiesofallorpartofthisworkfor
personalorclassroomuseisgrantedwithoutfeeprovidedthatcopiesare
notmadeordistributedforprofitorcommercialadvantageandthatcopies
bearthisnoticeandthefullcitationonthefirstpage.Tocopyotherwise,to
republish,topostonserversortoredistributetolists,requirespriorspecific
permissionand/orafee.
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weeks[7].A500milliseconddelayintheBingsearchen-
ginereducedrevenueperuserby1.2%,or4.3%witha2-
seconddelay[21].Human-computerinteractionstudies
similarlyshowthatpeoplereacttosmalldi�erencesin
thedelayofoperations(see[12]andreferencestherein).

Achievingconsistentlowlatencyischallenging.Mod-
ernapplicationsarehighlydistributed,andlikelytoget
moresoascloudcomputingseparatesusersfromtheir
dataandcomputation.Moreover,application-levelop-
erationsoftenrequiretensorhundredsoftaskstocom-
plete—duetomanyobjectscomprisingasingleweb
page[19],oraggregationofmanyback-endqueriesto
produceafront-endresult[1,10].Thismeansindividual
tasksmayhavelatencybudgetsontheorderofafew
millisecondsortensofmilliseconds,andthetailofthe
latencydistributioniscritical.Thus,latencyisadi⇤-
cultchallengefornetworkedsystems:Howdowemake
theothersideoftheworldfeellikeitisrighthere,even
underexceptionalconditions?

Onepowerfultechniquetoreducelatencyisredun-
dancy:Initiateanoperationmultipletimes,usingas
diverseresourcesaspossible,andusethefirstresult
whichcompletes.Forexample,ahostmayquerymul-
tipleDNSserversinparalleltoresolveaname.The
overalllatencyistheminimumofthedelaysacrosseach
instance,thuspotentiallyreducingboththemeanand
thetailofthelatencydistribution.Thepowerofthis
techniqueisthatitreduceslatencypreciselyunderthe
mostchallengingconditions:whendelaysorfailuresare
unpredictable.

Redundancyhasbeenemployedinseveralpastnet-
workedsystems:notably,asawaytodealwithfailures
inDTNs[15],andinamulti-homedwebproxyover-
lay[3].Butbeyondthesespecificresearchprojects,re-
dundancyistypicallyeschewedacrosstheInternet.We
arguethisisamissedopportunity.

Thecontributionofthispaperistoargueforredun-
dancyasageneraltechniqueforthewide-areaInternet.
Thecombinationofinteractiveapplications,highla-
tency,andvariabilityoflatencymakeredundancywell
suitedtothisenvironment.Eveninawell-provisioned
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Abstract

Despitepriorresearchonoutliermitigation,ouranal-
ysisofjobsfromtheFacebookclustershowsthatout-
liersstilloccur,especiallyinsmalljobs.Smalljobs
areparticularlysensitivetolong-runningoutliertasks
becauseoftheirinteractivenature.Outliermitigation
strategiesrelyoncomparingdifferenttasksofthesame
jobandlaunchingspeculativecopiesfortheslowertasks.
However,smalljobsexecutealltheirtaskssimultane-
ously,therebynotprovidingsufficienttimetoobserve
andcomparetasks.Buildingontheobservationthatclus-
tersareunderutilized,wetakespeculationtoitslogical
extreme—runfullclonesofjobstomitigatetheeffect

ofoutliers.Theheavy-taildistributionofjobsizesim-
pliesthatwecanimpactmostjobswithoutusingmuch
resources.Trace-drivensimulationsshowthataverage
completiontimeofallthesmalljobsimprovesby47%
usingcloning,atthecostofjust3%extraresources.

1Introduction

Cloudcomputinghasbecomeasignificanttechnologi-
calbreakthrough.Anincreasingnumberoforganizations
usedatacenterstorunamixedvarietyofcomputations,
rangingfromlong-runningbatchjobstointeractiveshort
queriesthatoperatorslaunchonthefly.

Theimportanceofthesedatacentercomputationshas
ledtomucheffortbeingspentonoptimizingtheirperfor-
mance.Theprevalenceofoutliertaskswasearlyidenti-
fiedasacommonsourceofperformanceproblem[1].
Initialresearchsuggestedtheuseofspeculativeexecu-
tiontomitigatesuchoutliers.Thesemethodswerelater
improvedbyLATE[2]andMantri[3],whichprovide
moreintelligentoutliermitigationbasedonspeculative
executionoftasks.Similartechniqueshavealsobeen
usedtodealwithoutliersinothersettings[4,5].

Despitethisresearchonoutliermitigation,ouranal-
ysesoftracesfroma3,500nodeFacebookcluster,that
appliestheLATEtechnique,showsthatoutliersarestill
common,especiallyinsmalljobs.Thesmalljobs,onav-

erage,haveoutliertasksthatare12timesslowerthanthat
job’smediantask,whichsignificantlydelayscompletion
ofjobs.Oursimulationsshowthattheoutliernumbers
forMantriaresimilarforsmalljobs.

Smalljobsareparticularlysensitivetooutliersbecause
theyexecuteinasinglewaveofsimultaneouslyrunning
tasks.Thereforeevenasingletaskbeinganoutlierslows
downtheentirejob.Thesingle-wavedpropertyalso
limitstheefficacyoftraditionaloutliermitigationstrate-
giesthatrelyoncomparingdifferenttasksofthesame
job.Anymeaningfulcomparisonrequireswaitingtoob-
tainstatisticallysignificantsamplesoftaskperformance,
whichsingle-wavedsmalljobscannotafford.

Inthiswork,wefocusonimprovingthecompletion
timeofthesesmalljobs,whichareofteninteractive
queries,wheretheresponsetimeisimportanttothehu-
manoperatorawaitingitsresponse.Theideaweexplore
inthispaperistotakespeculativeexecutiontoitslogical
extremeandrunfullclonesofjobstoreducejobcomple-

tiontimes.Twotrendsmakethisapproachviable.

First,mostjobsaresmallandconsumefewresources.
Ouranalysisshowsthatjobsizeshaveapower-law
distribution,withtheabsolutemajorityofthejobsbe-
ingsmall,whiletheabsolutemajorityoftheclusterre-
sourcesarespentonasmallnumberoflargejobs.Thus,
theaggregateresourcesconsumedbysmalljobsismod-
erate.Runningclonesofsmalljobshasthepotentialto
impactmostjobs,withoutusingmuchresources.

Second,mostclustersarehighlyunderutilized.Sev-
eraloftheclustersthatweanalyzedhaveaverylowav-
erageutilization.Inparticular,CPUandmemoryutiliza-
tionintheseclustershasamedianlessthan20%.Infact,
clusterutilizationexceedsthe50%markonly8%ofthe
time.Thereisthusroomforrunningextraclonesofjobs.

Akeyquestioniswhetherrunningjobcloneswill
negativelyimpactenergyefficiency.Despiteresearch
onpoweringdownmachinesforenergyefficiency,we
notethatmostclusterstodaydonotshutoffmachines
tosaveenergy.Thus,machinesareonmostofthe
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Abstract
WindowsAzureStorage(WAS)isacloudstoragesys-
temthatprovidescustomerstheabilitytostoreseem-
inglylimitlessamountsofdataforanydurationoftime.
WAScustomershaveaccesstotheirdatafromanywhere,
atanytime,andonlypayforwhattheyuseandstore.To
providedurabilityforthatdataandtokeepthecostof
storagelow,WASuseserasurecoding.

Inthispaperweintroduceanewsetofcodesforera-
surecodingcalledLocalReconstructionCodes(LRC).
LRCreducesthenumberoferasurecodingfragments
thatneedtobereadwhenreconstructingdatafragments
thatareoffline,whilestillkeepingthestorageoverhead
low.TheimportantbenefitsofLRCarethatitreducesthe
bandwidthandI/Osrequiredforrepairreadsoverprior
codes,whilestillallowingasignificantreductioninstor-
ageoverhead.WedescribehowLRCisusedinWASto
providelowoverheaddurablestoragewithconsistently
lowreadlatencies.

1Introduction
WindowsAzureStorage(WAS)[1]isascalablecloud
storagesystemthathasbeeninproductionsinceNovem-
ber2008.ItisusedinsideMicrosoftforapplications
suchassocialnetworkingsearch,servingvideo,music
andgamecontent,managingmedicalrecords,andmore.
Inaddition,therearethousandsofcustomersoutsideMi-
crosoftusingWAS,andanyonecansignupovertheIn-
ternettousethesystem.WASprovidescloudstorage
intheformofBlobs(userfiles),Tables(structuredstor-
age),Queues(messagedelivery),andDrives(network
mountedVHDs).Thesedataabstractionsprovidethe
overallstorageandworkflowforapplicationsrunning
inthecloud.

WASstoresallofitsdataintoanappend-onlydis-
tributedfilesystemcalledthestreamlayer[1].Datais
appendedtotheendofactiveextents,whicharerepli-
catedthreetimesbytheunderlyingstreamlayer.The
dataisoriginallywrittento3fullcopiestokeepthedata
durable.Oncereachingacertainsize(e.g.,1GB),ex-
tentsaresealed.Thesesealedextentscannolongerbe
modifiedandthusmakeperfectcandidatesforerasure
coding.WASthenerasurecodesasealedextentlazilyin
thebackground,andoncetheextentiserasure-codedthe
original3fullcopiesoftheextentaredeleted.

ThemotivationforusingerasurecodinginWAS
comesfromtheneedtoreducethecostofstorage.Era-
surecodingcanreducethecostofstorageover50%,

whichisatremendouscostsavingaswewillsoonsur-
passanExabyteofstorage.Therearetheobviouscost
savingsfrompurchasinglesshardwaretostorethatmuch
data,buttherearesignificantsavingsfromthefactthat
thisalsoreducesourdatacenterfootprintby1/2,the
powersavingsfromrunning1/2thehardware,alongwith
othersavings.

Thetrade-offforusingerasurecodinginsteadofkeep-
ing3fullcopiesisperformance.Theperformancehit
comeswhendealingwithi)alostorofflinedatafrag-
mentandii)hotstoragenodes.Whenanextentis
erasure-coded,itisbrokenupintokdatafragments,and
asetofparityfragments.InWAS,adatafragmentmay
belostduetoadisk,nodeorrackfailure.Inaddition,
cloudservicesareperpetuallyinbeta[2]duetofrequent
upgrades.Adatafragmentmaybeofflineforsecondsto
afewminutesduetoanupgradewherethestoragenode
processmayberestartedortheOSforthestoragenode
mayberebooted.Duringthistime,ifthereisanon-
demandreadfromaclienttoafragmentonthestorage
nodebeingupgraded,WASreadsfromenoughfragments
inordertodynamicallyreconstructthedatabeingasked
fortoreturnthedatatotheclient.Thisreconstruction
needstobeoptimizedtobeasfastaspossibleanduse
aslittlenetworkingbandwidthandI/Osaspossible,with
thegoaltohavethereconstructiontimeconsistentlylow
tomeetcustomerSLAs.

Whenusingerasurecoding,thedatafragmentthe
client’srequestisaskingforisstoredonaspecificstor-
agenode,whichcangreatlyincreasetheriskofastorage
nodebecominghot,whichcouldaffectlatency.Oneway
thatWAScandealwithhotstoragenodesistorecog-
nizethefragmentsthatarehotandthenreplicatethemto
coolerstoragenodestobalanceouttheload,orcachethe
dataandserveitdirectlyfromDRAMorSSDs.But,the
readperformancecansufferforthepotentialsetofreads
goingtothatstoragenodeasitgetshot,untilthedata
iscachedorloadbalanced.Therefore,oneoptimization
WAShasisifitlookslikethereadtoadatafragmentis
goingtotaketoolong,WASinparalleltriestoperforma
reconstructionofthedatafragment(effectivelytreating
thestoragenodewiththeoriginaldatafragmentasifit
wasoffline)andreturntotheclientwhicheverofthetwo
resultsisfaster.

Forbothoftheabovecasesthetimetoreconstructa
datafragmentforon-demandclientrequestsiscrucial.
Theproblemisthatthereconstructionoperationisonly
asfastasthesloweststoragenodetorespondtoreading
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SYSTEMS THAT RESPOND to user actions quickly (within 
100ms) feel more fluid and natural to users than 
those that take longer.3 Improvements in Internet 
connectivity and the rise of warehouse-scale computing 
systems2 have enabled Web services that provide fluid 
responsiveness while consulting multi-terabyte datasets 
spanning thousands of servers; for example, the Google 
search system updates query results interactively as 
the user types, predicting the most likely query based 
on the prefix typed so far, performing the search and 
showing the results within a few tens of milliseconds. 
Emerging augmented-reality devices (such as the 
Google Glass prototype7) will need associated Web 
services with even greater responsiveness in order to 
guarantee seamless interactivity. 

It is challenging for service providers to keep the tail 
of latency distribution short for interactive services  
as the size and complexity of the system scales up or 

as overall use increases. Temporary 
high-latency episodes (unimportant in 
moderate-size systems) may come to 
dominate overall service performance at 
large scale. Just as fault-tolerant comput-
ing aims to create a reliable whole out of 
less-reliable parts, large online services 
need to create a predictably responsive 
whole out of less-predictable parts; 
we refer to such systems as “latency 
tail-tolerant,” or simply “tail-tolerant.” 
Here, we outline some common causes 
for high-latency episodes in large online 
services and describe techniques that 
reduce their severity or mitigate their 
effect on whole-system performance. 
In many cases, tail-tolerant techniques 
can take advantage of resources already 
deployed to achieve fault-tolerance, re-
sulting in low additional overhead. We 
explore how these techniques allow sys-
tem utilization to be driven higher with-
out lengthening the latency tail, thus 
avoiding wasteful overprovisioning. 

Why Variability Exists? 
Variability of response time that leads 
to high tail latency in individual com-
ponents of a service can arise for many 
reasons, including: 

Shared resources. Machines might 
be shared by different applications 
contending for shared resources (such 
as CPU cores, processor caches, mem-
ory bandwidth, and network band-
width), and within the same applica-
tion different requests might contend 
for resources; 

Daemons. Background daemons 
may use only limited resources on aver-
age but when scheduled can generate 
multi-millisecond hiccups; 

The Tail 
at Scale 

DOI:10.1145/2408776.2408794

Software techniques that tolerate latency 
variability are vital to building responsive 
large-scale Web services. 
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 key insights
    Even rare performance hiccups affect 

a significant fraction of all requests in 
large-scale distributed systems. 

    Eliminating all sources of latency 
variability in large-scale systems 
is impractical, especially in shared 
environments. 

    Using an approach analogous to 
fault-tolerant computing, tail-tolerant 
software techniques form a predictable 
whole out of less-predictable parts. 
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When do redundant requests reduce latency ? 

?#
#
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as#r#=#2#jobs#

A1# A2#

B1# B2#

C1# C2#

D1# D2#

request#redundantly#
sent#to#r#servers#
#
here,#r#=#2#
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Theorem'1'
Higher%r%%�#lower%average%latency%



B3#

B2# #
#

A3# B1#

C1# C2# C3#

A2#

arbitrary#arrival#process#

i.i.d.#memoryless#service#
no#cost#of#removal#

general#k#

Theorem'2'
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i.i.d.#memoryless#service:#exp(1)#

Theorem'2'
r%=%n%minimizes%average%latency%among%all%possible%redundantJrequest%policies.#

no#cost#of#removal#

n#=#10#
k#=#5#

Simula/ons #

1 1.2 1.4 1.6 1.8 20

5

10

15

Arrival Rate(h)

Av
er

ag
e 

La
te

nc
y

 

 

r = 5
r = 6
r = 7
r = 8
r = 9
r = 10

arrivals:#Po(λ)#



B3#

B2# #
#

A3# B1#

C1# C2# C3#

A2#

arbitrary#arrival#process#

i.i.d.#memoryless#service# nonIzero#cost#of#
removal#

k#=#1#

Theorem'3'
r%=%k%minimizes%average%latency%under%high%loads.#



i.i.d.#memoryless#service:#exp(1)#

Theorem'3'
r%=%k%minimizes%average%latency%under%high%loads.#

removal#entails#wait#of#exp(10)#

n#=#4#
k#=#1#

Simula/ons # arrivals:#Po(λ)#

2 2.5 3 3.5 40

1

2

3

4

5

Arrival Rate(h)

Av
er

ag
e 

La
te

nc
y

 

 

i =1
i =2
i =3
i =4

1 1.5 2 2.5 3 3.50

2

4

6

8

10

Arrival Rate(h)

Av
er

ag
e 

La
te

nc
y

 

 

r =1
r =2
r =3
r =4



Heavy-everywhere distribution 

Memoryless:###
#####P(#X>s+t|X>t#)#=#P(#X>s#)#�s≥0,#t>0###



Heavy-everywhere distribution 

P(#X>s+t|X>t#)#≥#P(#X>s#)#�s≥0,#t>0#



Heavy-everywhere distribution 

P(#X>s+t|X>t#)#≥#P(#X>s#)#�s≥0,#t>0#

Example:##
mixture#of#independent#exponen>als#

w.p.##q#

w.p.##1Iq#



Light-everywhere distribution 

P(#X>s+t|X>t#)#≤#P(#X>s#)#�s≥0,#t>0#



Light-everywhere distribution 

P(#X>s+t|X>t#)#≤#P(#X>s#)#�s≥0,#t>0#
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#
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Distributed Buffers 
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Distributed Buffers 
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Theorem'6'
i.i.d.#memoryless#service:%r%=%n%minimizes%average%latency.#
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distributed%buffers%

Theorem'7'
i.i.d.#heavyIeverywhere#service:#r%=%n%minimizes%average%latency%under%high%loads.#

Theorem'8'
i.i.d.#lightIeverywhere#service:#r%=%1%minimizes%average%latency%under%high%loads.#



General Proof Technique 
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Summary 

n% k% arrival% service% buffers% removal%
cost%

load% result%

any# 1# any# iid#memoryless# centralized# 0# any# higher#r#be[er#

any# any# any# iid#memoryless# centralized# 0# any# r#=#n#op>mal#

any# 1# any# iid#heavyIeverywhere# centralized# 0# high# r#=#n#op>mal#

any# 1# any# iid#lightIeverywhere# centralized# any# high# r#=#1#op>mal#

any# 1# any# iid#memoryless# centralized# >0# high# r#=#1#op>mal#

any# any# any# iid#memoryless# distributed# 0# any# r#=#n#op>mal#

any# 1# any# iid#heavyIeverywhere# distributed# 0# high# r#=#n#op>mal#

any# 1# any# iid#lightIeverywhere# distributed# any# high# r#=#1#op>mal#

•  Redundant#requests#empirically#observed#to#help#in#several#
sesngs,#hurt#in#some#others#

• We#aim#for#a#theore>cal#characteriza>on#
•  Propose#a#basic#model#and#show:#

•  Combinatorial#proof#techniques#of#independent#interest#
–  For#any#interval#of#>me#(not#just#for#steady#state)#/#Any#arrival#process#



•  Simula>ons#show#redundantIrequests#stop#helping#beyond#
certain#threshold:#analy>cal#characteriza>on#?#

•  Requests#or#the#servers#are#heterogeneous#or#correlated#?#

•  If#allowed#to#choose#“r”#adap>vely,#op>mal#redundantIreques>ng#
policy#?#

•  Sesngs#when#a#request#can#be#processed#by#only#specific#servers#

• Without#cancella>on?#Without#observa>on?#

•  Other#metrics:#tails#of#latency;#quan>fica>on#of#amount#of#gains#?#

Open problems 

(Joshi#et#al.:#bounds#when#sending#to#all#n)#
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