
GRAPH-THEORETIC MODELS OF SPREAD AND

COMPETITION

BY STEPHEN G. HARTKE

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Mathematics

Written under the direction of

Fred S. Roberts

and approved by

New Brunswick, New Jersey

October, 2004

c© 2004

Stephen G. Hartke

ALL RIGHTS RESERVED

ABSTRACT OF THE DISSERTATION

Graph-theoretic Models of Spread and Competition

by Stephen G. Hartke

Dissertation Director: Fred S. Roberts

We consider three graph-theoretical models of spread and competition motivated by

biological applications and also by spread of opinions in social networks and fires in

geographical areas. We modify the voter model of Clifford, Sudbury, Holley, and Liggett

by introducing confidence levels. In the voter model, a group of voters has opinions “yes”

or “no,” interpreted as infected or non-infected in a disease application. As time progresses

each voter’s opinion is influenced by his or her neighbors, with the confidence level of a

voter determining how quickly the voter reconsiders his or her opinion (how quickly a

person might change disease state). We show that the voter model with confidence levels

always results in a uniform opinion, and we determine the probability of each uniform

opinion based on the initial opinions and–what is unusual in this subject–on the structure

of the underlying graph.

We also consider a perfectly contagious disease, where vertices adjacent to infected

vertices become infected at every discrete time step. The only intervention allowed is a

limited number of vaccinations per time step. This model of disease spread is equivalent to

a model of fire spread introduced by Hartnell where firefighters correspond to vaccinations.

We prove a conjecture of Wang and Moeller about the number of firefighters needed per

time step to contain an outbreak starting at a single vertex in an infinite square grid

with dimension at least three. We then show that no constant number of firefighters per

ii

time step is sufficient to contain every finite outbreak of fire. We also present a new

proof of MacGillivray and Wang’s result that finding an optimal firefighter strategy is

NP-complete for general graphs.

Finally, we study questions arising from competition between species and phylogenetic

tree reconstruction, considering elimination procedures for the competition number and

the phylogeny number of a graph. We provide a simpler proof of Kim and Roberts’

theorem that their elimination procedure calculates the competition number for “kite-

free” graphs. We answer a question in the literature by showing that their procedure

does not calculate the competition number for all graphs. We introduce an elimination

procedure for the phylogeny number and show it computes the phylogeny number for

“kite-free” graphs, but that it does not calculate the phylogeny number for all graphs.

iii

Acknowledgements

I first thank my advisor Fred Roberts for providing guidance, encouragement, and inspi-

ration while working on this thesis. His insight and patience while listening and reading

many revisions enabled me produce this thesis. I also thank József Beck, Doron Zeilberger,

and Yehuda Vardi for serving on my thesis committee.

I thank all of the faculty at Rutgers from whom I have taken classes or have had

discussions during my years at Rutgers, particularly József Beck, Jeff Kahn, Doron Zeil-

berger, and Endre Boros. I also thank my fellow graduate students for lively discussions

and encouragement, particularly Eva Curry, Pieter Blue, Nick Weininger, Klay Kruczek,

and Eric Sundberg. I thank Mike Develin for countless evenings watching the fog and

discussing life and mathematics.

Several people have provided specific suggestions for improving my thesis. I thank

Yehuda Vardi for suggesting the waiting function in the voter model with confidence

levels, Michael Weingart for pointing out the simple proof of Lemma 2.6, Larry Shepp

for helpful discussions about semi-Markov processes with infinite holding times, Mike

Develin for joint work on the firefighter problem on grids with dimension at least three,

and Suh-Ryung Kim for explaining the strength of the kite-free property in graphs.

I gratefully acknowledge being supported from many sources while I was a graduate

student. I was a National Science Foundation Graduate Research Fellows and a Na-

tional Defense Science and Engineering Graduate Fellow, I received a DIMACS Graduate

Student Research Award, and I received support from the National Science Foundation

through DIMACS under grants EIA-0205116, DBI-9982983, and SBR-9709134. DIMACS

has also funded the Graduate Student Combinatorics Seminar, which has been a very

successful catalyst for discussion among the graduate students.

Finally, I thank for my parents for their constant love and support.

iv

Table of Contents

Abstract . ii

Acknowledgements . iv

List of Figures . vii

1. Introduction . 1

1.1. Overview . 1

1.2. Basic Definitions . 4

1.2.1. Graph Theory . 4

1.2.2. Markov and Semi-Markov Processes 6

1.2.3. Complexity Theory and NP-completeness 7

1.2.4. Linear and Integer Programming 9

References . 10

2. The Voter Model with Confidence Levels 12

2.1. Introduction . 12

2.2. The Voter Model . 14

2.3. The Voter Model with Confidence Levels 18

2.4. Specific Choices for the Waiting Function f 29

2.5. Conclusion . 33

References . 36

3. Response Strategies in Deterministic Models of Spread: Vaccination

and Firefighting . 38

3.1. Introduction . 38

v

3.2. Grids . 41

3.2.1. Three and Higher Dimensional Square Grids 42

3.2.2. Two Dimensional Square Grid . 53

3.3. NP-Completeness . 57

3.3.1. Number of Vertices and Average Degree Comparison 71

3.4. Miscellaneous Results and Future Work 73

3.4.1. Trees . 73

3.4.1.1. Greedy Algorithm . 74

3.4.1.2. Linear Programming Approximations for the Firefighter

Problem on Trees . 77

3.4.1.3. Defending One Child Per Burnt Vertex in Trees 81

3.4.2. Other Questions . 85

References . 87

4. The Elimination Procedures for the Competition Number and the Phy-

logeny Number . 88

4.1. Introduction . 88

4.2. The Elimination Procedure for the Competition Number 92

4.3. Kite-free Graphs . 98

4.4. Counterexample Showing the Kim-Roberts Elimination Procedure Does

Not Always Obtain k(G) . 102

4.5. The Elimination Procedure for the Phylogeny Number 104

4.6. Open Problems . 111

References . 114

Vita . 116

vi

List of Figures

2.1. {Xs} progresses backwards in time relative to {Zt}. 16

2.2. Initial opinions Z0 on G. Vertices with initial opinion Z0(vi) = 1 are marked

with black dots, while vertices with initial opinion 0 are marked with hollow

dots. We refer to the three trusted components as K(v1), K(v2), and K(v6). 30

2.3. Pr{Zt enters the uniform 1 opinion state | Z0} as a function of �. 31

2.4. Pr{Zt enters the uniform 1 opinion state | Z0} as a function of λ. 32

2.5. Pr{Zt enters the uniform 1 opinion state | Z0} as a function of θ. 33

3.1. Optimal solution of the integer program used in the proof of Theorem 3.11.

The fire outbreak starts at time 0 at the root, and then spreads to the black

vertices at the times written next to the vertices. The square firefighters

ai are placed at time i. This placement of two firefighters per time step

in L2 completely contains the outbreak in 8 time steps, allowing only the

minimum number of 18 burned vertices. 55

3.2. Reduction of the formula ϕ = (x1 ∨ x2) ∧ (x̄1 ∨ x2 ∨ x3) ∧ (x̄2 ∨ x̄3) to a

binary tree. 58

3.3. Construction of the tree T1 for ϕ = (x1 ∨ x2) ∧ (x̄1 ∨ x2 ∨ x3) ∧ (x̄2 ∨ x̄3).

Clause vertices of ϕ are marked with double circles, and clause vertices of

ϕ̃ are labeled. Vertices on level 1 that contain x1 or x̄1 and vertices on level

2 that contain x2 or x̄2 are also labeled. 60

3.4. Construction of the tree T2 for ϕ = (x1 ∨ x2) ∧ (x̄1 ∨ x2 ∨ x3) ∧ (x̄2 ∨ x̄3).

Vertices that are also in T1 are marked with hollow dots, and new vertices

are marked with black dots. 61

vii

3.5. Construction of the tree T3 for ϕ = (x1 ∨ x2) ∧ (x̄1 ∨ x2 ∨ x3) ∧ (x̄2 ∨ x̄3).

Vertices that are also in T1 are marked with hollow dots, and new vertices

on subdivided edges are marked with gray dots. 62

3.6. Construction of the tree T4 for ϕ = (x1 ∨ x2) ∧ (x̄1 ∨ x2 ∨ x3) ∧ (x̄2 ∨ x̄3).

Vertices that are also in T1 are marked with hollow dots, vertices added

when forming T3 are marked by gray dots, and those added when forming

T4 are marked by gray squares. 63

3.7. The decision widget for xi. The vertices v, a, b, and c shown in T4 on the

left correspond to the vertices with the same labels shown in G5 on the

right. The vertex labeled z is removed when forming G5. 64

3.8. Construction of the graph G5 for ϕ = (x1 ∨ x2)∧ (x̄1 ∨ x2 ∨ x3)∧ (x̄2 ∨ x̄3).

Vertices added when forming T3 are marked by gray dots, and those added

when forming T4 are marked by gray squares. Super-spreader vertices are

marked with a hollow diamond. 65

3.9. Construction of the graph G6 for ϕ = (x1 ∨ x2)∧ (x̄1 ∨ x2 ∨ x3)∧ (x̄2 ∨ x̄3).

Vertices added when forming T3 are marked by gray dots, and those added

when forming T4 are marked by gray squares. Super-spreader vertices are

marked with a hollow diamond. 67

3.10. Pictorially “charging” bi to gj . 75

3.11. Construction showing that asymptotically the greedy algorithm saves 1/2

of the number of vertices saved by an optimal firefighter sequence. 76

3.12. In this example on 13 vertices, the LP optimal is 8.5, whereas the IP optimal

is 8. The nonzero values of x(v) for the LP optimal solution appear next

to the vertices, and the optimal firefighter sequence is indicated with black

vertices. 79

3.13. In this example on 12 vertices, the LP optimal when using constraint (3.26)

is 7.5, whereas the IP optimal is 7. The nonzero values of x(v) for the LP

optimal solution appear next to the vertices, and the optimal vaccination

sequence is indicated with black vertices. 80

viii

3.14. In this example on 13 vertices, the LP optimal when using constraint (3.27)

is 7.5, whereas the IP optimal is 7. The nonzero values of x(v) for the LP

optimal solution appear next to the vertices, and the optimal vaccination

sequence is indicated with black vertices. 80

3.15. When defending one child per burnt vertex in this tree, the greedy algo-

rithm is not optimal. The greedy algorithm defends the square vertices G1

and G2, saving 5 vertices, while the optimal firefighter sequence marked

with black dots saves 6 vertices. 83

3.16. This example demonstrates the model of one defended child per burnt

vertex. In this example on 7 vertices, the LP optimal is 5, whereas the IP

optimal is 4. The nonzero values of x(v) for the LP optimal solution appear

next to the vertices, and the optimal firefighter sequence is indicated with

black vertices. 84

4.1. A kite and a kite-body. 98

4.2. The graph L. 102

ix

1

Chapter 1

Introduction

1.1 Overview

Discrete mathematics has many applications to other fields. In this thesis, we are going

to consider several models that are motivated by biological applications, mainly modeling

the spread of diseases and interventions attempting to contain this spread, and modeling

competition between species. The models that we investigate also arise in other areas,

such as the spread of opinions in social networks and the spread of fire in geographic

areas, and the results that we present are applicable to an array of topics.

This thesis consists of three major chapters. In Chapter 2 we present a modification

of the voter model by introducing the concept of confidence levels. In the voter model, we

have a group of voters and each voter has an opinion about some issue, either 1 (“yes”)

or 0 (“no”). By considering the voters as vertices and the neighbor relation as edges,

we naturally have an underlying graph G. We define a stochastic process on G where as

time progresses each voter’s opinion is influenced by his or her neighbors. In a disease

interpretation, 1 signifies that an individual is infected with a disease and 0 indicates that

the individual is uninfected. The voter model was introduced independently by Clifford

and Sudbury [2] and by Holley and Liggett [9]. The basic conclusion is that the model

always results in a uniform opinion and that the probability of ending with a given opinion

is essentially independent of the graph structure. Motivated by ideas of Hoffman [8] and

Roberts [13], we introduce a notion of confidence into the voter model. The confidence

that a voter has in his or her current opinion determines how quickly the voter reconsiders

his or her opinion. Confidence levels can also be interpreted as resistance to infection by a

disease. We show that the voter model with confidence levels always results in a uniform

2

opinion, and we determine the probability of each outcome (uniform 1 or 0) based on the

initial opinions and–what is different than the classic voter model–on the structure of the

graph.

In Chapter 3 we focus on a deterministic process and how it behaves when various

interventions are occurring. This is particularly relevant in disease spread processes, where

vaccinations and quarantines are being used to contain a disease outbreak. We consider

a simple spread mechanism on a graph G: that of a perfectly contagious disease with no

cure, where vertices adjacent to infected vertices become infected at every discrete time

step and, once infected, remain infected from then on. The response allowed is only a

limited number of vaccinations of non-infected vertices per time step. The main question

we investigate is finding an optimal strategy for vaccinations in order to minimize the

total number of infected vertices. We are primarily interested in the situation when there

is only one initially infected root vertex, and there are exactly f vaccinations allowed per

time step. The model of disease spread that we consider in Chapter 3 is equivalent to

a model of fire spread introduced by Hartnell [7]. In this model, fire spreads from an

outbreak to adjacent vertices at each time step. In response, firefighters can be deployed

to defend vertices and prevent the fire from spreading to them. The motivating question is

again to find an optimal sequence of defended vertices that minimizes the total number of

burnt vertices. In light of the literature on the firefighter model, we will primarily use the

terminology of that model in presenting our results. In the case of infinite square grids,

we prove a conjecture of Wang and Moeller [17] about the number of firefighters needed

per time step to contain an outbreak starting at a single vertex. Motivated by work of

Fogarty [4] on two-dimensional square grids, we also show that no constant number of

firefighters per time step is sufficient to contain every finite outbreak of fire. MacGillivray

and Wang [11] proved that the problem of finding an optimal sequence of vertices defended

by firefighters is NP-complete for general graphs. We present a new proof of this result

which holds under the assumption of small average vertex degree, which is more realistic

in the disease applications than the larger average vertex degree of the MacGillivray-Wang

proof. Finally, we discuss an approximation technique for the problem on trees.

3

In Chapter 4 we study elimination procedures for the competition number and the

phylogeny number of a graph. Given an acyclic digraph D, the competition graph C(D)

is defined to be the undirected graph with V (D) as its vertex set and where vertices x and

y are adjacent if there exists another vertex z such that the arcs (x, z) and (y, z) are both

present in D. The competition number k(G) for an undirected graph G is the least number

r such that there exists an acyclic digraph F on |V (G)|+r vertices where C(F) is G along

with r isolated vertices. Kim and Roberts [10] introduced an elimination procedure for

the competition number and asked whether the procedure calculated the competition

number for all graphs. We provide a simpler proof of Kim and Roberts’ theorem that

their elimination procedure calculates the competition number for the so-called “kite-free”

graphs. However, we answer their question for all graphs in the negative by demonstrating

a graph where the elimination procedure does not calculate the competition number.

We also study in Chapter 4 a variant of the competition number known as the phy-

logeny number. Given an acyclic digraph D, the phylogeny graph P (D) is defined to be

the undirected graph with V (D) as its vertex set and with adjacencies as follows: two

vertices x and y are adjacent if one of the arcs (x, y) or (y, x) is present in D, or if there

exists another vertex z such that the arcs (x, z) and (y, z) are both present in D. Phy-

logeny graphs were introduced by Roberts and Sheng [14] from an idealized model for

reconstructing phylogenetic trees in molecular biology and are closely related to competi-

tion graphs. The phylogeny number p(G) for an undirected graph G is the least number r

such that there exists an acyclic digraph D on |V (G)| + r vertices where G is an induced

subgraph of P (D). We introduce an elimination procedure for the phylogeny number anal-

ogous to the elimination procedure of Kim and Roberts [10] for the competition number

and show that our elimination procedure computes the phylogeny number for “kite-free”

graphs. We also show that the elimination procedure does not calculate the phylogeny

number for all graphs.

4

1.2 Basic Definitions

We assume that basic concepts in graph theory, combinatorics, probability, discrete op-

timization, and complexity theory are understood by the reader. We will present basic

terminology and notation here, and introduce other terms and notation throughout the

thesis as necessary.

1.2.1 Graph Theory

Diestel [3] and West [18] provide good introductions to graph theory, and Van Lint and

Wilson [16] is a useful reference for general combinatorics. A graph G = (V,E) consists

of a set V of vertices and a set E of unordered pairs of vertices called edges. We often

write V (G) and E(G) to denote the vertex and edge set, respectively, to emphasize the

graph G. If e = (v,w) is an edge of G, then we call v and w the endvertices or endpoints

of e. We also say that v is adjacent to w and often write v ∼ w or that vw (and wv) is an

edge in G. All of the vertices that are adjacent to v are called neighbors of v and the set

of neighbors is denoted N(v) or NG(v) to emphasize the graph G. If B is a subset of the

vertices of G, then N(B) = ∪v∈BN(v). Sometimes N(v) and N(B) are called the open

neighborhood of v and B, respectively. The closed neighborhood N [v] of v is N(v) ∪ {v}
and the closed neighborhood N [B] of B is N(B) ∪ B. The degree deg(v) (or degG(v)) of

a vertex v is |N(v)|. If deg(v) = deg(w) for all vertices v,w ∈ V (G), then G is regular.

A vertex v with deg(v) = 0 is called an isolated vertex, and a vertex w with deg(w) = 1

is called a pendant. A multigraph is a graph with multiple edges between two vertices.

A loop is an edge where the two endvertices are the same. Most of the graphs that we

consider are simple graphs that do not have multiple edges or loops.

A graph H = (V ′, E′) is a subgraph of G = (V,E) if V ⊆ V ′ and E ⊆ E′. H is an

induced subgraph of G if for all vertices v,w ∈ V ′, v is adjacent to w in H if and only if v

is adjacent to w in G. If H is an induced subgraph, then we say that H is the subgraph

of G induced by V ′. H is a spanning subgraph of G if |V ′| = |V | . For convenience, we will

sometimes describe a subgraph H of a graph G only as “consisting of” certain edges of G.

It is understood that H has no isolated vertices: the vertices of H are only the endpoints

5

of edges in H.

A sequence of vertices v1, v2, . . . , vk is a path from v1 to vk if all of the vi are distinct

and if vi is adjacent to vi+1 for 1 ≤ i < k. The length of a path v1, v2, . . . , vk is k − 1.

A cycle is a path with the additional property that vk is adjacent to v1. We call a graph

with no cycles acyclic. If there is a path from v to w for every pair v,w of vertices in G,

then we say that G is connected. A subgraph H of G is a connected component of G if H

is connected and is a maximal subgraph with this property. The distance d(v,w) from v

to w is the length of the shortest path from v to w if v and w are in the same connected

component, and ∞ otherwise.

A rooted graph (G, r) is a graph G where we have distinguished a specific vertex

r called the root. The vertex set V (G) can be partitioned as V (G) = V∞ ∪ V0 ∪
V1 ∪ · · · , where V0 = {r}, Vi = {v ∈ V : d(v, r) = i} for i > 0, and V∞ = {v ∈ V :

v is not in the same connected component as r}. The vertices in Vi for i ≥ 0 are said to

be on level i or at level i from the root.

A tree is an acyclic connected graph. We call the pendants in a tree leaves. Let (T, r)

be a rooted tree, and for a nonroot vertex v, let v = v1, v2, . . . , vk = r be a shortest path

from v to the root r. We say that v2 is the parent of v, v is a child of v2, vi is an ancestor

of v for 2 ≤ i ≤ k, and that v is a descendant of vi for 2 ≤ i ≤ k.

A complete graph is a graph where every vertex is adjacent to every other vertex. A

clique H of G is a subgraph of G that is also complete. An edge clique covering of G is a

collection {H1,H2, . . . ,Ht} of cliques of G such that every edge of G appears in at least

one clique Hi.

The disjoint union of two graphs G = (V,E) and H = (V ′, E′) where V ∩V ′ = ∅ and

E ∩E′ = ∅ is the graph G∪H = (V ′′, E′′), where V ′′ = V ∪ V ′ and E′′ = E ∪E′. We let

Ir denote the graph with r isolated vertices. Thus, G ∪ Ir is the graph formed by adding

r isolated vertices to G.

A directed graph, or digraph, D = (V,A) consists of a set V of vertices and a set A

of ordered pairs of vertices called arcs or directed edges. We often write V (D) and A(D)

to denote the vertex and arc set, respectively, to emphasize the digraph D. If e = (v,w)

6

is an arc of D, then we say that e is directed or oriented from v to w, and we write

vw is an arc in G. The out-neighborhood Nout
D (v) of a vertex v is {w ∈ V (D) : vw ∈

A(D)}, and the in-neighborhood N in
D (v) is {w ∈ V (D) : wv ∈ A(D)}. These sets are

sometimes called the open out-neighborhood and the open in-neighborhood, respectively.

The closed out-neighborhood Nout
D [v] is Nout(v) ∪ {v}, and the closed in-neighborhood

N in
D [v] is N in(v) ∪ {v}. If B is a subset of the vertices of D, then the corresponding

definitions are Nout
D (B) = ∪v∈BNout

D (v), N in
D (B) = ∪v∈BN in

D (v), Nout
D [B] = ∪v∈BNout

D (v)∪
B, and N in

D [B] = ∪v∈BN in
D (v) ∪ B. If the digraph D is clear, then we will often drop the

subscripted “D” from the neighborhood notation. The in-degree degin
D(v) of a vertex v

is
∣∣N in

D (v)
∣∣, and the out-degree degout

D (v) is
∣∣Nout

D (v)
∣∣. A sink is a vertex with out-degree

zero, and a source is a vertex with in-degree zero.

A sequence of vertices v1, v2, . . . , vk is a directed path from v1 to vk if all of the vi are

distinct and if vivi+1 is an arc in D for 1 ≤ i < k. A directed cycle is a directed path

with the additional property that vkv1 is an arc in D. We call a digraph with no directed

cycles acyclic. If there is a directed path from v to w for every pair v,w of vertices in D,

then we say that D is strongly connected.

1.2.2 Markov and Semi-Markov Processes

Roberts [12] and Gallager [5] contain introductions to Markov chains and semi-Markov

processes. A Markov chain is a discrete-time stochastic process {Xn}n≥0 such that the

probability of Xn being in state j is dependent only on the state Xn−1 and independent

of n and X0,X1, . . . Xn−2; formally,

Pr {Xn = j | X0,X1, . . . ,Xn−1} = Pr {Xn = j | Xn−1} = Pr {X1 = j | X0} .

The probabilities pij = Pr {Xn = j | Xn−1 = i} are called transition probabilities, and the

matrix P with entries pij is called the transition matrix. If there are only a finite number

of states that Xn can take on, then we say that {Xn}n≥0 is a finite-state Markov chain.

An ergodic set is a nonempty set E of states such that Pr {Xn = j | Xn−1 = i} = 0 for all

states i ∈ E and j /∈ E , and such that no proper subset of E also has this property. A

Markov chain is ergodic if the entire set of states is an ergodic state. A regular Markov

7

chain is an ergodic finite-state Markov chain where there exists a positive integer N such

that Pr {XN+n = j | Xn = i} > 0 for all states i, j. If {Xn}n≥0 is a regular Markov

chain, then limn→∞ Pr {Xn = j} exists and is independent of the initial condition X0.

The distribution of Xn as n gets large tends to the stationary distribution of {Xn}.
An absorbing state is an ergodic set of size one. If {Xn}n≥0 is a finite-state Markov

chain where the only ergodic sets are absorbing states, then {Xn}n≥0 is absorbing and

limn→∞ Pr {Xn is in an absorbing state} = 1.

A semi-Markov process {Zt}t≥0 is a continuous-time stochastic process with an asso-

ciated discrete process {Tn}n≥0. We use the convention that T0 = 0. The times {Tn}
indicate when Zt changes state. For n > 0 and Tn−1 ≤ t < Tn, Zt is constant. At time

Tn, Zt transitions into a new state according to the probability

Pr
{
ZTn = j | ZTn−1 , ZTn−2 , . . . , Z0

}
= Pr

{
ZTn | ZTn−1

}
.

The probabilities pij = Pr
{
ZTn = j | ZTn−1 = i

}
are called transition probabilities. The

length of the time interval Tn − Tn−1 is a random variable with distribution determined

by the state ZTn−1 . If ZTn−1 = i, then this random variable, which we shall call Hi, is

known as the holding time in state i. The embedded Markov chain
{
X̂n

}
n≥0

is defined as

X̂n = ZTn . The embedded Markov chain
{

X̂n

}
n≥0

has the same transition probabilities

as the semi-Markov process {Zt}t≥0. If {Zt} has a finite number of states and the expected

holding time is finite for each state, then the limiting probability of Zt being in state j is

lim
t→∞Pr {Zt = j} =

∑
states i

(
E[Hi] lim

n→∞Pr
{

X̂n = j
})

∑
states i

E[Hi]
.

A special case of a semi-Markov process is when the holding times are indepen-

dent identically distributed exponential random variables. In this case, the process is

a continuous-time Markov process.

1.2.3 Complexity Theory and NP-completeness

Garey and Johnson [6] is the standard text for the theory of NP-completeness. A decision

problem L is a “yes” or “no” question about a specific type of input. An instance I of

8

a decision problem is the question asked about a specific input of length n. A decision

problem L is said to be in the complexity class P or solvable in polynomial time if there

exists a deterministic algorithm A such that if the answer to the instance I is “yes,” then A

produces this answer in a deterministic running time bounded by a polynomial in n. If the

answer to the instance is “no,” then A either returns “no” or does not halt. A decision

problem L is said to be in the complexity class NP if there exists a nondeterministic

algorithm A such that if the answer to the instance I is “yes,” then A produces this

answer in a nondeterministic running time bounded by a polynomial in n. If the answer

to the instance is “no,” then A either returns “no” or does not halt. A decision problem

K is polynomial-time reducible to a decision problem L if there exists a transformation f

computable in polynomial time that maps an instance of K to an instance of L with the

same answer. A decision problem L in NP is NP-complete if every decision problem K in

NP is reducible to L.

A boolean form ϕ in conjunctive normal form is written as a conjunction of disjunctive

clauses:

ϕ = C1∧C2∧. . .∧C� = (c1,1∨c1,2∨. . .∨c1,k1)∧(c2,1∨c2,2∨. . .∨c2,k2)∧. . .∧(c�,1∨c�,2∨. . .∨c�,k�
).

A truth assignment τ of the boolean variables x1, x2, . . . , xk satisfies ϕ if ϕ evaluates to

true when substituting the truth values into ϕ for the variables. The boolean formula

satisifiability problem SAT is to determine whether a boolean formula ϕ in conjunctive

normal form has a satisfying truth assignment τ for the variables x1, x2, . . . , xk. Cook’s

Theorem states that SAT is NP-complete.

9

1.2.4 Linear and Integer Programming

Chvátal [1] and Schrijver [15] discuss the theory and background of linear and integer

programming. A linear program L is the optimization problem

minimizef(x1, x2, . . . , xk) (1.1)

subject tog1(x1, x2, . . . , xk) �1 c1 (1.2)

g2(x1, x2, . . . , xk) �2 c2

...

g�(x1, x2, . . . , xk) �� c�

where x1, x2, . . . , xk are real variables, f, g1, g2, . . . , g� are linear functions of x1, x2, . . . , xk,

and �i∈ {=, <,>,≤,≥}. The function f is known as the objective function, and a linear

program also results by replacing “minimize” in (1.1) with “maximize.” The conditions

(1.2) are known as the constraints. If x1, x2, . . . , xk satisfy the constraints and minimize

the objective function, then x1, x2, . . . , xk is an optimal solution and f(x1, x2, . . . , xk) is

an optimal value. Solving a linear program can be done in polynomial time and in practice

can be done quickly.

An integer program I is a linear program with the added constraints that xi is an

integer for 1 ≤ i ≤ k. The linear program relaxation L is the linear program formed

from I by removing the integrality constraints. If m is the optimal value of I and m∗ is

the optimal value of L, then m ≤ m∗ if I is a minimization problem, and m ≥ m∗ if I

is a maximization problem. The difference |m∗ − m| is known as the integrality gap. In

general, solving an integer program is NP-complete.

10

References

[1] V. Chvátal, Linear Programming, W. H. Freeman and Company, New York, 1983.

[2] P. Clifford and A. Sudbury, A Model for Spatial Conflict, Biometrika, 60 (1973),
581-588.

[3] R. Diestel, Graph Theory, 2nd ed., Graduate Texts in Mathematics, no. 173, Springer-
Verlag, New York, 1997.

[4] P. Fogarty, Catching the Fire on Grids, M.Sc. Thesis, Department of Mathematics,
University of Vermont, 2003.

[5] R. G. Gallager, Discrete Stochastic Processes, Kluwer Academic Publishers, Boston,
1996, 174-178.

[6] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, W. H. Freeman and Company, New York, 1979.

[7] B. Hartnell, Firefighter! An Application of Domination, presentation, Twentieth
Conference on Numerical Mathematics and Computing, University of Manitoba in
Winnipeg, Canada, Sept. 1995.

[8] F. Hoffman, presentation at the Twenty-Sixth Southeastern International Confer-
ence on Combinatorics, Graph Theory, and Computing. Held at Florida Atlantic
University in Boca Raton, Florida, March 6-10, 1995.

[9] R. Holley and T. M. Liggett, Ergodic Theorems for Weakly Interacting Systems and
the Voter Model, Ann. Probab., 3 (1975), no. 4, 643-663.

[10] S.-R. Kim and F. S. Roberts, The Elimination Procedure for the Competition Num-
ber, Ars Combinatoria, 50 (1998), 97-113.

[11] G. MacGillivray and P. Wang, On the Firefighter Problem, J. Combin. Math. Com-
bin. Comput., 47 (2003), 83-96.

[12] F. S. Roberts, Discrete Mathematical Models, with Applications to Social, Biological,
and Environmental Problems, Prentice-Hall, Upper Saddle River, New Jersey, 1976.

[13] F. S. Roberts, unpublished notes, 1999.

[14] F. S. Roberts and L. Sheng, Phylogeny Numbers, Discrete Applied Mathematics, 87
(1998), 213-228.

[15] A. Schrijver, Theory of Linear and Integer Programming, John Wiley and Sons, New
York, 1986.

11

[16] J. H. van Lint and R. M. Wilson, A Course in Combinatorics, Cambridge University
Press, Cambridge, United Kingdom, 1992.

[17] P. Wang and S. A. Moeller, Fire Control on Graphs, J. Combin. Math. Combin.
Comput., 41 (2002), 19-34.

[18] D. B. West, Introduction to Graph Theory, Prentice Hall, Upper Saddle River, New
Jersey, 1996.

12

Chapter 2

The Voter Model with Confidence Levels

2.1 Introduction

Groups of people often have to decide together on some issue or course of action. We wish

to form a model from which we can make conclusions about the group as a whole. In the

model, we will incorporate the group dynamics on a local scale, including how and when

a person changes his or her opinion and how other people influence this decision. The

voter model is one stochastic process that models such interactions. In the voter model,

there is a group of voters, each of whom has an opinion 1 or 0 representing yes or no on

some issue. Each voter has relationships to a subset of the other voters, whom we call

neighbors, and as time passes, each voter’s opinion is influenced by its neighbors. We wish

to know how the voters’ opinions evolve as a whole. Do they ever come to a consensus on

the issue? If consensus occurs, which outcome (1 or 0) is more likely, given every voter’s

initial opinion? If the vertices of a graph G represent voters and the edges neighbor

relationships between voters, then how does the structure of G affect the outcome?

Our work on the voter model was also motivated by an interest in the spread of

infectious diseases. Here, the opinions correspond to disease states and a disease spreads

from individuals to “neighbors,” individuals with whom someone has social contact. We

wish to determine how the distribution of infected individuals evolves over time. Do we

ever end up in the state when no one is infected or the state where everyone is infected?

How does the structure of the edge neighbor relationships affect the outcome? The voter

model does not precisely capture disease dynamics since being infected and uninfected is

not symmetric in the same way the 1 and 0 opinions are. However, insights into the voter

model may lead to insights into more complicated epidemiological models.

13

The voter model was introduced independently by Clifford and Sudbury [3] and by

Holley and Liggett [16]. Clifford and Sudbury were interested in modeling spatial conflicts

and geographic dominance between two competing species, and Holley and Liggett viewed

the voter model as describing the configuration of spins in a particle system. As the name

suggests, the voter model also can be viewed as representing the opinions of a group of

voters. Our terminology will come from this last interpretation.

In the extensive literature on the voter model, the limiting behavior of the process

is completely described. Unfortunately, the dependence of the limiting behavior on the

graph G is minimal and hence not very interesting. Because of the interaction mechanism

usually used in such models for determining how a voter is influenced by its neighbors, the

final outcome is based only a simple graph theoretic property: the sum of the degrees of

the vertices where the voters’ initial opinions are 1. In this chapter, we present a different

interaction mechanism involving a voter’s confidence level. In this modified voter model,

the structure of G has a large impact on evolution of the voters’ opinions. When G is

finite and connected, consensus always occurs, and we can explicitly calculate how likely

each outcome is. The remarkable feature of the voter model with confidence levels is that

determining the likelihood of each outcome remains tractable despite this dependence on

the structure of G.

The standard reference for the voter model and related interacting particle systems is

Liggett [20] and its continuation [21]. Griffeath [14] and Durrett [9] are also widely used

sources that provide slightly different perspectives. While the previous authors consider

the voter model on infinite graphs, particularly the square lattices in various dimensions,

Aldous and Fill [1] is a very readable account of the theory on finite graphs. Also on

finite graphs, Donnelly and Welsh [7] consider the probability of each outcome and the

time needed to reach consensus.

The area of social influence has an extensive literature on the models of opinion for-

mulation. Poljak and Sûra [25] developed a model where each person has one of a finite

set of opinions, each person has some measure of influence on the opinion of every other

14

person, and these influences are symmetric. At each discrete time step, a person’s opin-

ion is updated to the opinion held by the most neighbors, weighted by their influences.

DeGroot [5] and French [12] proposed a similar model with opinions taken from a real

interval, and where a person’s opinion is updated to an average of his or her neighbor’s

opinions, the average being weighted according to the neighbors’ influence. Both of these

models are related to the Delphi method ([4], [22]) developed at the RAND Corporation

for consensus finding and problem solving in groups. Latané used neural networks to

in [17], [18], and [19] to model social impact, and Merrill presented similar models in

[24]. Falmagne and his colleagues in [6], [10], and [11] explored models for approval vot-

ing [2], where voters’ opinions varied according to a stochastic stream of tokens or simple

messages.

The idea of confidence levels was inspired by the work of Hoffman [15] and Roberts [27]

who considered the use of confidence levels in deterministic models of opinion formulation

on graphs. Confidence in models of opinion formulation is analogous to disease resistance

in epidemiological models since both dynamically affect how quickly an individual can have

his or her opinion changed, or be infected. Insights into the effect of confidence levels may

lead to a greater understanding of how resistance affects epidemiological models.

In section 2.2 we provide a brief discussion of the original voter model to establish

terminology and some of the tools that we will be using. In section 2.3 we present our

version of the voter model with confidence levels and determine the limiting probability

of entering the uniform 1 opinion, given the graph and the initial opinions. In section 2.4

we present some sample waiting functions and calculate the limiting probability for these

functions on a sample graph. Section 2.5 mentions open questions and potential alterna-

tive ways to bring confidence levels into the voter model.

2.2 The Voter Model

The voter model is well studied, though often many authors focus on infinite graphs.

We present here the voter model on arbitrary finite graphs, using our own terminology

and notation. Let G be a finite, connected, undirected graph on n vertices labeled v1

15

through vn. We define a continuous-time Markov process {Zt}t≥0 on the finite state

space {0, 1}V (G) as follows. At every time t ≥ 0, each vertex vi has an opinion Zt(vi) in

{0, 1}. Each vertex vi asynchronously updates its opinion at times {T�(vi)}∞�=1, where the

sequence {T�(vi)} is a Poisson process with rate 1; that is, T�+1(vi)−T�(vi) is independently

exponentially distributed with mean 1 for each �. The {T�(vi)} are also independent for

each vi. We set T0(vi) = 0 for convenience.

Vertex vi updates its opinion at the times {T�(vi)}∞�=1 according to the following rule:

for T�(vi) < t ≤ T�+1(vi),

Zt(vi) =

⎧⎪⎪⎨⎪⎪⎩
0, with probability #{x ∈ NG(vi) : ZT�(vi)(x) = 0}/#NG(vi),

1, with probability #{x ∈ NG(vi) : ZT�(vi)(x) = 1}/#NG(vi).

Note that Zt(vi) is updated only at the times {T�(vi)}1, and is constant on each interval

(T�(vi), T�+1(vi)]. Also observe that the update mechanism is probabilistically the same

as vi adopting the opinion of a neighbor N�(vi) chosen uniformly at random from NG(vi):

for T�(vi) < t ≤ T�+1(vi),

Zt(vi) = ZT�(vi)(N�(vi)), where N�(vi) is chosen uniformly from NG(vi).

We will use this view of the update mechanism for analyzing the voter model.

Because G is finite and connected, the only absorbing states for the process {Zt}t≥0

are the states of uniform opinion where either Zt(vi) = 0 for all i, or Zt(vi) = 1 for all

i. Since the process will eventually enter one of these absorbing states with probability

1, we wish to know the probability of entering the uniform 1 opinion given the initial

configuration Z0 of opinions. All vertices have the same opinion in the absorbing states,

and so this probability is the same as the limiting probability of vi’s opinion being 1, for

any vertex vi. Thus,

Pr{Zt enters the uniform 1 opinion state | Z0} = lim
t→∞Pr{Zt(vi) = 1 | Z0}.

This probability can be found by considering another continuous-time Markov process

{Xs} that is dual to {Zt}. The process {Xs}s≥0 is a system of random walks, with one

1Strictly speaking, this isn’t true since vi’s opinion does not change until immediately after T�(vi).
However, we will stick to the terminology that “vi updates at T�(vi).”

16

s = 0

T0(vi) T1(vi) T2(vi)

t = t0t = 0

T0(vj)

T0(vk)

s = t0

T1(vk)

T1(vj)

T�(vi)

T�′(vj)

T�−1(vi)

T�′+1(vj)

T�′′+1(vk)

S0(vi)
vi

vk S2(vi)

S1(vi)
vj

T�+1(vi)

Figure 2.1: {Xs} progresses backwards in time relative to {Zt}.

random walk Xs(vi) starting at each vertex vi. Formally, the process {Xs} is defined on

the finite state space V (G)V (G), where at every s ≥ 0, each vertex has as its state Xs(vi) a

vertex in V (G). The random walk Xs(vi) updates at the discrete times {Sm(vi)}∞m=0. We

think of the dual process as progressing backwards in time relative to {Zt}, as shown in

Figure 2.1. Fix a time t0 > 0. The time t = t0 for {Zt} corresponds to the time s = 0 for

{Xs}. For each vertex vi, Xs(vi) traces where vi’s opinion at time t0 came from. We start

with X0(vi) = vi and S0(vi) = 0. At some time T�(vi), where T�(vi) < t0 ≤ T�+1(vi), vi

adopted the opinion of a neighbor vj := N�(vi). We set S1(vi) := t0 − T�(vi) and update

XS1(vi)(vi) to vj . For those s such that 0 ≤ s < S1(vi), Xs(vi) is constant. At some

time T�′(vj), where T�′(vj) < T�(vi) ≤ T�′+1(vj), vj adopted the opinion of a neighbor

vk := N�′(vj). We set S2(vi) := t0 − T�′(vj) and update XS2(vi)(vi) = vk. For those s

such that S1(vi) ≤ s < S2(vi), Xs(vi) is constant. We continue this process, following

vi’s opinion backwards in time, for s ≤ t0. Since vi’s opinion at time t0 is the opinion of

Xs(vi) at time t0 − s, we have that

Zt0(vi) = Zt0−s(Xs(vi)).

Since these random variables are equal, we also have

Pr{Zt0(vi) = 1 | Z0} = Pr{Zt0−s(Xs(vi)) = 1 | Z0}.

17

By setting s = t0 and taking the limit as t0 → ∞, we conclude that

lim
t0→∞Pr{Zt0(vi) = 1 | Z0} = lim

t0→∞Pr{Z0(Xt0(vi)) = 1 | Z0}. (2.1)

The left hand limit in equation (2.1) is the quantity we want, and thus we have reduced

the problem to calculating the limiting distribution of Xs(vi). The process Xs(vi) is

simply a random walk where Xs(vi) moves to a neighbor chosen uniformly at random at

the discrete times {Sm(vi)}∞m=0. How is {Sm(vi)} distributed? Again, fix t0 > 0, and let

m be such that Sm+1(vi) < t0. Set vj := XSm(vi)(vi), and let � be such that T�(vj) <

t0 − Sm(vi) ≤ T�+1(vj). Note that Sm+1(vi) = t0 − T�(vj). The length of the interval

T�+1(vj) − T�(vj) is exponentially distributed with mean 1, and indicates no information

about the direction of time. Thus, the random variable T�+1(vj) − T�(vj) conditioned

on T�(vj) and the random variable T�+1(vj) − T�(vj) conditioned on T�+1(vj) are both

exponentially distributed with mean 1. Since exponential distributions are memoryless,

the distribution of when all the random walks Xs(vi) move from a vertex vj is independent

of when the random walks arrived at vj . Hence, Sm+1(vi) − Sm(vi) is exponentially

distributed with mean 1. Since the {T�+1(vj)−T�(vj)} are independent for each vj and �,

the {Sm+1(vi)− Sm(vi)} are also independent for each vi and m. Therefore, {Xs(vi)}s≥0

is a standard continuous-time random walk on G; that is, {Xs(vi)}s≥0 is a random walk

that moves to a neighbor chosen uniformly at random according to a Poisson process with

rate 1. From the theory of random walks (see, for example, [23]),

lim
s→∞Pr{Z0(Xs(vi)) = 1} =

∑
x∈V (G):Z0(x)=1

degG(x)

∑
x∈V (G)

degG(x)
. (2.2)

Note again that the graph structure does not enter into equation (2.2) and the degrees of

the vertices do. The theory of random walks actually gives us more precise information,

in that we can calculate lims→∞ Pr{Xs(vi) = x}. Summing these values over all x such

that Z0(x) = 1 gives us equation (2.2) above.

The random processes {Xs(vi)} for different vertices vi are coupled together in the

following way. Suppose that Xs(vi) = Xs(vj) = vk for T�(vk) < t0 − s ≤ T�+1(vk). Then

Xt0−T�(vk)(vi) = Xt0−T�(vk)(vj) = N�(vk). In words, if Xs(vi) and Xs(vj) are both at vk,

18

then Xs(vi) and Xs(vj) move together to the vertex N�(vk) that is chosen uniformly from

vk’s neighborhood. From that point on, Xs(vi) and Xs(vj) remain coupled, in the sense

that Xs(vi) = Xs(vj) for s ≥ t0 − T�(vj). The random walks {Xs} are called coalescing

random walks, and two random walks Xs(vi) and Xs(vj) are said to coalesce when the two

random walks hit and move together thereafter. With probability 1, all of the random

walks coalesce (see [20]); that is, there is some time S such that Xs(vi) = Xs(vj) for s > S

and for all vi and vj . This provides another proof of the fact that the only absorbing states

for the process {Zt}t≥0 are the states of uniform opinion.

2.3 The Voter Model with Confidence Levels

We now extend the voter model to include the confidence a voter has in its opinion.

Specifically, we include the idea that a voter is less likely to consider the opinions of

neighbors the higher its confidence level is. We present one specific set of assumptions for

this extension, and in section 2.5 we point out other possibilities for the assumptions for

future consideration.

To motivate this extension, we consider a group of voters in a two-party political

system. All of the relationships between voters are known and are represented as edges

in the graph G. We assume that the two parties have opposing views on some issue, and

that the members of each party initially assume their party’s position by default before

discussion begins. As the discussion progresses, a voter vi is equally swayed by all of its

neighbors in G, whether they are in its party or not. However, members of the same

party are trusted associates in the sense that if trusted associate vj convinces vi of its

opinion, then vj also convinces vi of vj’s confidence level in that opinion. In fact, vi’s new

confidence level is even one greater than vj ’s confidence level Ct(vj). Not only does vi

accept vj’s confidence in the opinion, but vj ’s own credibility is added to vi’s confidence

level. When vi adopts the opinion of a non-trusted associate, then its confidence level

simply resets to a level of 0. The effect of a higher confidence level is that it takes longer

for any of vi’s neighbors to convince vi of a new opinion.

We now formally specify the voter model with confidence levels. As above, we have a

19

finite connected undirected graph G and a continuous-time stochastic process {(Zt, Ct)}t≥0

defined on the state space ({0, 1} × N)V (G). At every time t ≥ 0, each vertex vi has an

opinion Zt(vi) in {0, 1} and a confidence level Ct(vi) in N. We use the confidence level

to count, in some sense, the number of times that vi’s current opinion has been affirmed

by other voters. A vertex vi asynchronously updates its opinion at times {T�(vi)}∞�=1 by

adopting the opinion of a neighbor vj := N�(vi) chosen uniformly at random; that is, for

T�(vi) < t ≤ T�+1(vi),

Zt(vi) = ZT�(vi)(vj), where vj := N�(vi) is chosen uniformly from NG(vi).

Vertex vi’s confidence level is updated at the same times {T�(vi)}. However, these

times are not distributed as before, so we will specify their distribution below. To specify

how the confidence level is updated, we define vj to be a trusted associate of vi if and only

if vj’s initial opinion Z0(vj) agrees with vi’s initial opinion Z0(vi). The trusted component

K(vi) of vi is the component containing vi of the subgraph of G induced by vertices whose

initial opinions agree with vi’s. Note that while opinions and confidence levels change as

the process progresses, the trusted relationship does not. For T�(vi) < t ≤ T�+1(vi), Ct(vi)

is updated as follows:

Ct(vi) =

⎧⎪⎪⎨⎪⎪⎩
CT�(vi)(vj) + 1 if vj = N�(vi) is a trusted associate of vi,

0 if not.
(2.3)

Notice that vi increments vj’s confidence level if vj = N�(vi) is a trusted associate, and

not vi’s own confidence level.

Rather than specifying the initial confidence level C0(vi) as a single value, we instead

define C0(vi) to be a random variable with distribution

Pr{C0(vi) = �} = Pr{Xs(vi) leaves K(vi) in exactly � steps}.

We will explain this assumption during our analysis of the voter model, particularly

what the process Xs(vi) is. However, the reason for this choice is that C0(vi) is a “typ-

ical” value representative of the values that occur as the process {(Zt, Ct)} is progress-

ing. This assumption simplifies the analysis since the initial condition for Ct(vi) looks

20

the same as when the process is running. When computing the limiting probability

limt→∞ Pr{Z0(Xt(vi)) = 1 | Z0}, we condition on Z0 (and intrinsically on G), but not on

C0.

The length of the time interval (T�(vi), T�+1(vi)] is dependent purely on the confidence

level Ct(vi) that vi has during that time interval. In most cases, we want a higher confi-

dence level to mean a longer time before opinions are updated. Let the waiting function

f : N → R+ be a positive function whose differences f(c) − f(c − 1) are increasing for

positive integers c. If c = CT�(vi)(vi), then T�+1(vi) − T�(vi) is exponentially distributed

with mean f(c) − f(c − 1) if c is positive, and exponentially distributed with mean f(0)

if c = 0. We set T0(vi) = 0 for convenience. This choice of how confidence levels affects

update times is again chosen to simplify the analysis of the voter model. However, it is

flexible enough to consider several different waiting functions f , and we consider several

examples in section 2.4.

To analyze {(Zt, Ct)}, we form the dual process {(Xs,Ds)}s≥0, where, as described

above, the dual is progressing backwards in time relative to {(Zt, Ct)}. Fix a time t0 > 0.

Again, {Xs(vi)}s≤t0
s≥0 traces where vi’s opinion at time t0 came from, and so we have

Zt0(vi) = Zt0−s(Xs(vi)), and

Zt0(vi) = Z0(Xt0(vi)), by setting s = t0.

The process {Xs(vi)}s≥0 is a random walk on G that moves to a neighbor Nm(vi) chosen

uniformly at random at the discrete times {Sm(vi)}∞m=0, where S0(vi) is defined to be 0.

In keeping with our view of the dual progressing backwards in time, the variable Ds(vi) is

defined to be the confidence level Ct0−s(Xs(vi)) of the vertex Xs(vi). The distribution of

Sm+1(vi)−Sm(vi) is dependent on c := Ds(vi), for Sm(vi) ≤ s < Sm+1(vi). Note that c is

constant for s in this interval. As before, since the exponential distribution is independent

of the direction of time and is memoryless, Sm+1(vi)−Sm(vi) is exponentially distributed

with mean f(c) − f(c − 1) if c is positive, and exponentially distributed with mean f(0)

if c = 0.

Note that Ds(vi) updates only when Xs(vi) updates, and that when Xs(vi) does not

leave the current trusted component K(Xs(vi)), then Ds(vi) simply decrements by 1. In

21

fact, Xs(vi) does not leave the trusted component until Ds(vi) = 0. The critical observa-

tion is that Ds(vi) thus counts the number of steps that Xs(vi) will take in the current

trusted component before leaving. It is slightly disconcerting that Ds(vi) is dependent

on the future (in the sense of the s time variable). However, since the random variable

Nm(vi) of a randomly chosen neighbor at time Sm(vi) is independent of Nm′(vj) for any

m′ and vj = vi, of Nm′(vi) for any m′ = m, and of Sm′(vj) for any m′ and vj , and since

Ds(vi) is dependent only on the choices {Nm(vi)}, we will be able to analyze the situation

with only a little extra difficulty. This explains our choice of the distribution of C0(vi):

Pr{C0(vi) = �} = Pr{Xs(vi) leaves K(vi) in exactly � steps}.

The random walks {Xs} are again coupled in that if Xs′(vi) = Xs′(vj) for some s′,

then Xs(vi) = Xs(vj) for all s ≥ s′. The random variables Ds also are coupled since if

Xs(vi) = Xs(vj) for all s ≥ s′, then so Ds(vi) = Ds(vj) for all s ≥ s′. The system of

random walks {Xs} do coalesce into a single random walk. However, this is not immediate,

and will be proved in Theorem 2.3.

From the construction of the dual, we immediately have

Proposition 2.1 (Duality). The process {(Xs,Ds)}s≥0 is dual to {(Zt, Ct)}t≥0 in the

sense that

Pr{Zt0(vi) = 1 | Z0} = Pr{Z0(Xt0(vi)) = 1 | Z0}, and so

lim
t0→∞Pr{Zt0(vi) = 1 | Z0} = lim

s→∞Pr{Z0(Xs(vi)) = 1 | Z0},

if at least one of the limits exists.

Definition 2.2. Let {X̂m(vi)}∞m=0 be the discrete-time Markov chain given by X̂m(vi) =

XSm(vi)(vi). Known as the embedded chain or jump chain for the process {(Xs(vi),Ds(vi)}s≥0,

{X̂m(vi)} is defined by the state transition probabilities without respect to the holding

times at each state. In our case, {X̂m(vi)} is a standard discrete-time random walk on

G; that is, {X̂m(vi)}∞m=0 is a random walk that moves to a neighbor chosen uniformly at

random at each discrete time unit.

22

Theorem 2.3 (Coalescence). If Z0 is not a uniform opinion state, then the system

{(Xs,Ds)}s≥0 of random walks almost surely coalesces to a single random walk; that is,

with probability 1 there exists a time Sc such that for all s ≥ Sc and any vi and vj,

Xs(vi) = Xs(vj).

Proof. For the sake of clarity and simplicity of notation, we will refer to the random

variables Xs(vi), Xs(vj), and X̂m(vi) as Xs, X ′
s, and X̂m, respectively. For the rest of the

proof, vi and vj will simply be arbitrary vertices, and not necessarily the starting vertices

of the random walks.

If G is connected and non-bipartite, then the state space of {X̂m} contains cycles of

both even and odd length. By Corollary 1 of section 5.6 of [26], {X̂m} is a regular Markov

chain. Thus, there exists an integer M such that

Pr{X̂m = vk | X̂0 = vi} > ε (2.4)

for any m ≥ M , any vi and vk, and for some positive constant ε. Let Ei,k,s′ be the event

that the number of updates of Xs (or “steps” of X̂m) that occur between s = 0 and s = s′

is at least M , given that X0 = vi and that Xs′ = vk. Because Z0 is not a uniform opinion

state, K(vi) is not all of G. Thus, there exists a sequence of at most 2M steps of X̂m

from vi to vk to some vertex vj ∈ K(vk) such that the sequence leaves K(vi). If vi and

vk are in the same trusted component, then one possibility is that the sequence starts at

vi, visits vk, and then exits K(vi) to vj. If vi and vk are in different trusted components,

then the sequence could start at vi, leave K(vi) to visit vk, and then exit K(vi) to vj.

Note that vj is the first vertex visited when X̂m exits K(vk). Since the sequence leaves

both K(vi) and K(vk), the confidence level at each step is bounded by 2M , and so the

time to take each of these steps has finite expectation bounded by f(2M) − f(2M − 1).

Thus, there exists a time Si,k and a positive constant δi,k, both dependent on vi and vk,

such that the probability of Ei,k,Si,k
is greater than δi,k. Let S be the maximum of Si,k

over all i and k, and similarly let δ be the minimum of δi,k over all i and k. Then Ei,k,S

23

has probability greater than δ, for any choice of vi and vk. Thus,

Pr{XS = vk | X0 = vi}

=
∞∑

m=0

Pr{Xs takes m steps during s ∈ (0, S]}Pr{X̂m = vk | X̂0 = vi}

≥
∞∑

m=M

Pr{Xs takes m steps during s ∈ (0, S]}Pr{X̂m = vk | X̂0 = vi}

>

∞∑
m=M

Pr{Xs takes m steps during s ∈ (0, S]}ε by (2.4),

> δε,

and so

Pr{XS = vk | X0 = vi} > δε. (2.5)

If G is bipartite, we need to consider the parity of the number of steps taken. By

Theorem 5.13 of [26], {X̂m} is an ergodic Markov chain of period two. Thus, there exists

an integer M such that

vi, vk in the same partite set ⇒ Pr{X̂m = vk | X̂0 = vi} > ε if m is even, (2.6)

and

vi, vk in different partite sets ⇒ Pr{X̂m = vk | X̂0 = vi} > ε if m is odd, (2.7)

where m ≥ M and ε is some positive constant. Let Ee
i,k,s′ be the event that the number

of updates of Xs (or “steps” of X̂m) that occur between s = 0 and s = s′ is at least M

and of the appropriate parity, given that X0 = vi and that Xs′ = vk. Because Z0 is not

a uniform opinion state, K(vi) is not all of G. Thus, there exists a sequence of at most

2M +2 steps of X̂m from vi to vk to some vertex vj ∈ K(vk) such that the sequence leaves

K(vi). As before, if vi and vk are in the same trusted component, then one possibility

is that the sequence starts at vi, visits vk, and then exits K(vi) to vj . If vi and vk are

in different trusted components, then the sequence could start at vi, leave K(vi) to visit

vk, and then exit K(vi) to vj. Note that vj is the first vertex visited when X̂m exits

K(vk). Since the sequence leaves both K(vi) and K(vk), the confidence level at each step

is bounded by 2M + 2, and so the time to take each of these steps has finite expectation

24

bounded by f(2M + 2) − f(2M + 1). Hence, there exists an Si,k and a positive constant

δi,k, both dependent on vi and vk, such that the probability of Ee
i,k,Si,k

is greater than δi,k.

Let S be the maximum of Si,k over all i and k, and similarly let δ be the minimum of δi,k

over all i and k. Then Ee
i,k,S has probability greater than δ, for any choice of vi and vk.

Thus,

Pr{XS = vk | X0 = vi}

=
∞∑

m=0, m even

Pr{Xs takes m steps during s ∈ (0, S]}Pr{X̂m = vk | X̂0 = vi}

≥
∞∑

m=M , m even

Pr{Xs takes m steps during s ∈ (0, S]}Pr{X̂m = vk | X̂0 = vi}

>

∞∑
m=M , m even

Pr{Xs takes m steps during s ∈ (0, S]}ε by (2.6),

> δε,

and so

Pr{XS = vk | X0 = vi} > δε. (2.8)

Similarly, if vi and vk are in different partite sets, then the same proof works by considering

only an odd number of steps.

Note that the bounds (2.5), (2.8), and the analogous bound when vi and vk are in

different partite sets are time translation invariant, in the sense that for any s > 0,

Pr{XS+s = vk | Xs = vi} > δε.

This is because Xs is independent of the past.

We now consider a second random walk {X ′
s}. We wish to determine the probability

of Xs and X ′
s hitting; that is, of there existing a time Sc such that XSc = X ′

Sc
. Let Sh

be the first time when Xs = X ′
s if Xs and X ′

s hit, and let Sh = ∞ if Xs and X ′
s never

hit. Given that X0 = vi and X ′
0 = vj , the probability that Sh is at most the parameter

S from above is exactly equal to the probability that XS and X ′
S both equal a vertex vk,

25

for some vertex vk. Thus, we have

Pr{Sh ≤ S | X0 = vi,X
′
0 = vj} =

n∑
k=1

Pr{XS = vk | X0 = vi}Pr{X ′
S = vk | X ′

0 = vj}

>

n∑
k=1

(δε) Pr{X ′
S = vk | X ′

0 = vj} by (2.5) and (2.8),

= δε.

This result is also time translation invariant, in that

Pr{Sh ≤ S + s | Xs = vi,X
′
s = vj} > δε

for any s > 0.

We now consider what happens in q consecutive time intervals each of length S. The

probability that Xs and X ′
s do not hit in any of the intervals is at most (1− δε)q, and so

Pr{Sc ≤ Sq | X0 = vi,X
′
0 = vj} ≥ 1 − (1 − δε)q → 1 as q → ∞.

Thus, with probability 1, the random walks Xs and X ′
s hit and so coalesce. Applying this

result to all n random walks in the system {(Xs,Ds)}, we have that with probability 1,

the system {(Xs,Ds)} coalesces into a single random walk.

Note that Theorem 2.3 trivially implies that {Ds}s≥0 also coalesces, i.e., that Ds(vi) =

Ds(vj) for all s ≥ Sc. This is true because Ds(vi) = Ds(vj) whenever Xs(vi) = Xs(vj).

Since the system coalesces, we will now drop the vertex name and only write Xs,

Ds, and X̂m. We wish to calculate lims→∞ Pr{Z0(Xs) = 1 | Z0}; what we will actually

calculate is the more detailed lims→∞ Pr{Xs ∈ K(vi) | Z0} for vertex vi. Note that

because of our setup it would be very difficult to calculate lims→∞ Pr{Xs = vi | Z0} as is

done in the original voter model.

To analyze the limiting probability distribution of Xs we create a new semi-Markov

process X̃s that captures the movement of Xs between different trusted components. Since

this only makes sense when there are different trusted components, we henceforth assume

that the initial set of opinions Z0 is not uniform.

Definition 2.4. The continuous-time process {X̃s}s≥0 is defined on the state space of

vertices v1, . . . , vn of G, where we assume that Z0 is not uniform. Given that Xs ∈ K(vi),

26

let X̃s be the vertex vj in K(vi) that Xs first visited when entering K(vi). Formally, let

s′ be the least time such that Xs′′ ∈ K(vi) for all s′ ≤ s′′ ≤ s. Then let X̃s = Xs′ .

Since Xs is dependent only on its immediate future that is spent in the current trusted

component before leaving, X̃s is a semi-Markov process. The transition probability pik

from vi to vk is the probability that Xs first exits K(vi) to vk given that X0 = vi. Note

that pik = 0 if vk ∈ K(vi) or if vk is not a neighbor to any vertex in K(vi). The holding

time Hi of X̃s at vi is the time Xs takes to leave K(vi), given that X0 = vi. 2 Note also

that the definition of C0 as a random variable representing a typical value of Ct allows

us to form the semi-Markov process without needing to condition on the initial condition

C0.

Lemma 2.5. The process {X̃s}s≥0 is dual to {Xs}s≥0 in the sense that

Pr{Xs ∈ K(vi) | Z0} = Pr{X̃s ∈ K(vi) | Z0}, and so

lim
s→∞Pr{Xs ∈ K(vi) | Z0} = lim

s→∞Pr{X̃s ∈ K(vi) | Z0},

if at least one of the limits exists.

Proof. Note that if Xs ∈ K(vi), then X̃s = vj for some vj ∈ K(vi). Then

Pr{Xs ∈ K(vi) | Z0} = Pr
⋃

vj∈K(vi)

{Xs ∈ K(vi) and X̃s = vj | Z0}

= Pr
⋃

vj∈K(vi)

{X̃s = vj | Z0} since X̃s = vj implies Xs ∈ K(vi),

= Pr{X̃s ∈ K(vi) | Z0}.

The last statement of the proposition follows by taking the limit as s → ∞ of both sides

of the above equation.

If we know the limiting probability of X̃s, then summing these probabilities over all

2Since Xs is independent of its past, the transition probability pik and the holding time Hi are the
same if the definitions condition on Xs′ = vi for some specific time s′. However, for convenience, we
simply shift time so that s′ = 0.

27

vertices with initial opinion 1, we have

∑
vi:Z0(vi)=1

lim
s→∞Pr{X̃s = vi | Z0} =

∑
vi:Z0(vi)=1

lim
s→∞Pr{Xs ∈ K(vi) | Z0}

= lim
s→∞Pr{Z0(Xs) = 1 | Z0}

where the last expression is the quantity we are interested in. The theory of semi-Markov

processes enables us to calculate the limiting probability distribution of X̃s, if the expected

holding time E[Hi] is finite for each i (see [13]). Let { ̂̃Xr}∞r=0 be the embedded Markov

chain for X̃s. Then

lim
s→∞Pr{X̃s ∈ K(vi) | Z0} =

∑
vj∈K(vi)

(
E[Hj] lim

r→∞Pr{ ̂̃Xr = vj}
)

n∑
k=1

E[Hk]

. (2.9)

Note that { ̂̃Xr} is defined by the transition probabilities pik, which in turn can be deter-

mined from the Markov chain {X̂m}. Since {X̂m} ignores waiting times, {X̂m} and hence

{ ̂̃Xr} is independent of the choice of the waiting function f . To explicitly calculate pik,

let A denote the transition matrix of X̂m on G, and let AH denote the restriction of A to

a subgraph H of G. We denote the complement in G of a subgraph H by H. Let AH×H

denote the restriction of A to transitions from H to H. Given that X0 = vi, we wish to

compute the probability that Xs exits K(vi) to vertex vk ∈ K(vi). This probability is

exactly the probability that, given that X̂0 = vi, X̂m leaves K(vi) by going to vertex vk.

Using Markov chain theory (see, for example, chapter 5 of [26]), the matrix

B = (I − AK(vi))
−1AK(vi)×K(vi)

gives the exit probabilities of X̂m from K(vi). That is, if B = [bjk], then

bjk = Pr{X̂m exits K(vi) to vk ∈ K(vi) | X̂0 = vj ∈ K(vi)}.

We also need to calculate the expected holding time E[Hi], which is just the ex-

pected time s when Xs exits K(vi), given that X0 = vi. Recall that the ikth entry of

Ad
K(vi)

A
K(vi)×K(vi)

gives the probability that X̂m exits K(vi) to vk ∈ K(vi) in exactly

28

d + 1 steps, given that X̂0 = vi. Thus,

E[time for Xs to exit K(vi) to vk | X0 = vi and Xs exits to vk]

=
∞∑

d=0

(
E[time for Xs to exit K(vi) | X̂m exits to vk in d + 1 steps and X̂0 = vi]×

Pr{X̂m exits to vk in d + 1 steps | X̂0 = vi}
)

The value of Ds determines the distribution of the holding time of Xs at vi: Ds is the num-

ber of steps that will be taken in K(vi) before exiting K(vi). Let vi = u0, u1, . . . , ud+1 = vk

be the path taken by X̂m in K(vi) before exiting K(vi) to vk. The holding time of Xs at

vi is thus independent of vi, vk, and the sequence u1, . . . , ud of steps taken within K(vi)

from vi to vk. Thus,

E[time for Xs to exit K(vi) | X̂m exits in d + 1 steps to vk and X̂0 = vi]

= E[time for Xs to exit K(vi) | X̂m exits in d + 1 steps]

=
d∑

q=0

E[holding time for Xs at uq | X̂m exits K(vi) in d + 1 − q steps (i.e., Ds = d + 1 − q)]

= f(0) + [f(1) − f(0)] + [f(2) − f(1)] + . . . + [f(d) − f(d − 1)]

= f(d),

where the second to last equality follows from how the confidence level and f affects the

time between updates. Thus, the expected time until Xs exits K(vi), given that X0 = vi

and that Xs = vk, is

E[time for Xs to exit K(vi) | X̂m exits to vk and X̂0 = vi]

=
∞∑

d=0

E[time for Xs to exit K(vi) | X̂m exits in d + 1 steps to vk and X̂0 = vi]×

Pr[Xs exits K(vi) in d + 1 steps | X̂m exits to vk and X̂0 = vi]

=
∞∑

d=0

f(d)
Pr[Xs exits K(vi) in d + 1 steps to vk | X̂0 = vi]

Pr[X̂m exits to vk | X̂0 = vi]

=
1
bik

(
ikth entry of

∞∑
d=0

f(d)Ad
K(vi)

A
K(vi)×K(vi)

)
.

If the series is convergent, then the expected time is finite, and formula (2.9) for the

29

limiting distribution of X̃s holds. In the next section, we will consider specific choices for

the waiting function f and examine how the process {(Xs,Ds)} behaves with each choice.

2.4 Specific Choices for the Waiting Function f

We first need a standard result about power series of matrices.

Lemma 2.6. Let
∑∞

d=0 f(d)xd be a power series in the complex variable x with radius

of convergence R. Then
∑∞

d=0 f(d)Md is a convergent power series in the matrix M if

all of the eigenvalues of M have modulus less than R. Furthermore, if r(x) is a rational

function in x such that r(x) =
∑∞

d=0 f(d)xd for all |x| < R, then r(M) =
∑∞

d=0 f(d)Md

if all of the eigenvalues of M have modulus less than R.

This result follows from the fact that a power series formula r clearly holds for diago-

nalizable matrices, and the diagonalizable matrices are dense in the space of all matrices.

Definition 2.7. Let G1 denote the subgraph of G induced by vertices vi whose initial

opinions Z0(vi) are 1, and similarly define G0. Let A denote the transition matrix of X̂m

on G, and let AH denote the restriction of A to a subgraph H of G. For each connected

component K of G1 or G0, let e(K) denote the largest modulus of eigenvalues of AK .

Define µ(G,Z0) to be the maximum e(K) taken over all components K of G1 and G0. If

every component that attains the maximum µ(G,Z0) has the same initial opinion, then

define µ′(G,Z0) to be the maximum e(K) taken over all components K that have the

opposite opinion.

Lemma 2.8. For any non-uniform set of initial opinions Z0, µ(G,Z0) < 1.

Proof. This statement follows immediately from the fact that X̂m will leave each trusted

component with probability 1.

We now consider several specific waiting functions, and show how the voter model

with confidence levels behaves with these choices. To make the examples concrete, we

calculate lims→∞ Pr{Zt(vi) = 1 | Z0} for the graph G shown in Figure 2.2 and for various

parameters of the waiting functions. In the figure, vertices with initial opinion Z0(vi) = 1

30

v1 v2 v3

v5 v6

v7 v8

v4

v9

Figure 2.2: Initial opinions Z0 on G. Vertices with initial opinion Z0(vi) = 1 are marked

with black dots, while vertices with initial opinion 0 are marked with hollow

dots. We refer to the three trusted components as K(v1), K(v2), and K(v6).

are marked with black dots, while vertices with initial opinion 0 are marked with hollow

dots. We will refer to the three trusted components as K(v1), K(v2), and K(v6). The

transition matrix A of X̂m on G is

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1/2 0 1/2 0 0 0 0 0

1/3 0 1/3 0 1/3 0 0 0 0

0 1/3 0 0 0 1/3 0 0 1/3

1/3 0 0 0 1/3 0 1/3 0 0

0 1/5 0 1/5 0 1/5 0 1/5 1/5

0 0 1/3 0 1/3 0 0 0 1/3

0 0 0 1/3 0 0 0 1/3 1/3

0 0 0 0 1/3 0 1/3 0 1/3

0 0 1/5 0 1/5 1/5 1/5 1/5 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It is interesting to note the behavior of the classic voter model, where limt→∞ Pr{Zt(vi) =

1 | Z0} = 8/15 ≈ .5333 from equation (2.2).

Lemma 2.6 enables us to calculate the limiting probability for any polynomial waiting

function. We present one specific class of polynomials here.

31

8
15

≈ .5333 when � = 1

�

lim t→
∞

P
r{

Z
t(

v i
)
=

1
|Z

0
}

30252015105

1

0.8

0.6

0.4

0.2

0

Figure 2.3: Pr{Zt enters the uniform 1 opinion state | Z0} as a function of �.

Example 2.9. Let f be the polynomial f(d) =
(
d+�

�

)
, where � is a positive integer. Note

that
∞∑

d=0

(
d + �

�

)
xd =

1
(1 − x)�+1

by integrating the power series � times. This series is convergent for |x| < 1, and so∑∞
d=0

(d+�
�

)
Ad

K(vi)
= (I − AK(vi))

−(�+1) holds for any component K(vi). Figure 2.3 shows

the limiting distribution for � = 1, . . . , 30 for our example graph G. Note that when � = 1,

f(d) = d+1, and the voter model with confidence levels reduces to the special case of the

classic voter model. Thus, at � = 1, lims→∞ Pr{Zt(vi) = 1 | Z0} = 8/15.

Example 2.10. Let f be the exponential function f(d) = λd, where λ > 1. If λ <

1/µ(G,Z0), then all of the eigenvalues of λAK(vi) are less than 1 in modulus for any

component K(vi). Thus,
∑∞

d=0 λdAd
K(vi)

is a convergent power series, and, using the

formula for a convergent geometric series, is equal to (I − λAK(vi))
−1AK(vi)×K(vi)

. For

λ ≥ 1/µ(G,Z0), it is not clear that the limiting probability exists, since the theory of

semi-Markov processes in general does not deal with infinite expected holding times. It

is an open problem to determine the behavior beyond the threshold 1/µ(G,Z0).

When λ = 1, f(d) is a constant function. Thus, the expected time for Xs to leave a

trusted component is 1, regardless of the number of steps taken. The limiting probability

32

1
2

when λ = 1

1
µ
≈ 1.6566

λ

lim t→
∞

P
r{

Z
t(

v i
)
=

1
|Z

0
}

1.61.51.41.31.21.11

1

0.8

0.6

0.4

0.2

0

Figure 2.4: Pr{Zt enters the uniform 1 opinion state | Z0} as a function of λ.

reduces to the stationary distribution of the embedded Markov chain ̂̃
Xr of the semi-

Markov process X̃s. Since there are two opinions, the underlying graph of ̂̃Xr is always a

bipartite graph, and hence limt→∞ Pr{Zt(vi) = 1 | Z0} = 1/2.

For our example graph G, the largest eigenvalue in modulus of AK(v1), AK(v2), and

AK(v6) is µ(G,Z0) ≈ .6037 from AK(v6). We can thus calculate lims→∞ Pr{Zt(vi) = 1 | Z0}
for 1 < λ < 1/µ(G,Z0) ≈ 1.6566 using the geometric series formula.

We can also create a waiting function that is increasing with d yet bounded.

Example 2.11. Let f be the function f(d) = 2−θd, for 0 < θ < 1. Here 2 is an arbitrary

constant chosen for concreteness. Since

∞∑
d=0

(2 − θd)xd =
2

1 − x
− 1

1 − θx

for |x| < 1,
∑∞

d=0(2 − θd)Ad
K(vi)

is convergent for any component K(vi). The limiting

probability as a function of θ is shown in Figure 2.5. When θ is 0 or 1, f(d) is constant,

and, as seen above, the limiting probability is 1/2. Interestingly, the limiting probability

is less than 1/2 for 0 < θ < 1, attaining a minimum at θ ≈ .6430. However, because the

waiting function is bounded, high confidence levels do not significantly affect the limiting

probability, and the limiting probability varies little for θ in the range 0 < θ < 1.

33

1
2

when θ = 0, 1

θ ≈ .6430

θ

lim t→
∞

P
r{

Z
t(

v i
)
=

1
|Z

0
}

10.80.60.40.20

0.505

0.500

0.495

0.490

0.485

Figure 2.5: Pr{Zt enters the uniform 1 opinion state | Z0} as a function of θ.

2.5 Conclusion

As with the classic voter model, the results we have presented on the voter model with

confidence levels hold in slightly more general situations. More opinions than 0 and 1

are allowed, and the influence of a neighbor can be more general. If we allow G to be

a digraph, have loops, and have weights on the edges, then we might modify the model

so that when vi updates, vi randomly picks a neighbor vj from N in
G (vi) with probability

proportional to the weight of the directed edge (vj , vi). In the digraph case, the digraph

must be strongly connected for coalescence to occur, and the proof of Theorem 2.3 also

needs to be strengthened in a straightforward way to handle larger periods in Markov

chains. Also, trusted components can be any connected induced subgraphs as long as

the initial opinions within the trusted components are uniform. Unfortunately, if certain

features of the model are weakened, then the type of arguments we have made no longer

work. The independence of the confidence level and the opinion held is absolutely crucial

for the dual to be tractable. Similarly, the 1 added to the confidence level when adopting

a trusted associate’s opinion must remain constant for all vertices and trusted associates

within a trusted component so that the expected time for Xs to leave a trusted component

can be calculated. Distinguishing between trusted associates and non-trusted associates

allows the process to reset itself in a Markov-like property. When treating all neighbors

34

the same, there is no control over how fast the confidence levels are increasing.

Our model of confidence levels presented here was chosen primarily for tractability.

However, there are other possibilities both for how the confidence level is updated and

for how the confidence level affects the time period until a vertex updates again. Perhaps

a more natural choice for how the confidence level updates is that the confidence level

increases by one if vi adopts vj ’s opinion and vj’s opinion is the same as vi’s. If vi’s and

vj ’s opinions are different, then vi’s confidence level decreases by 1. A different model

would be to reset vi’s confidence level to 0 in the latter case. Confidence levels could also

be bounded above and stay at the upper bound once reached until they decrease. The

confidence level could also increase or decrease by amounts determined by which neighbor

the opinion was adopted from.

The choice of exponential distributions for the time periods between updates is com-

mon in stochastic models. In our model they are crucial for being able to define the

holding time at each vertex for the dual random walk Xs. However, if other techniques

can be used, then other distributions could be considered. The use of the differences

f(c) − f(c− 1) is purely for notational ease and does not restrict the waiting function f .

The main restriction on f from the point of view of analysis of the model is that the lim-

iting probability of the semi-Markov process must exist. One necessary condition is that

the expected holding times of X̃s are finite. However, it seems that little is known about

the existence of the limiting probability when the expected holding times are infinite.

This remains an interesting open question.

One reason our modification to the voter model seems appealing is that it is a stochas-

tic system with nontrivial dependence of the limiting behavior on the structure of G but

which still remains tractable. It would be very interesting to construct other modifications

of the voter model that also have this property, or to construct similar modifications of

other stochastic models such as the contact process or the exclusion process (see [20]).

As mentioned in the introduction, confidence levels were introduced originally in some

simplistic deterministic models of opinion formulation. It would be interesting to incor-

porate confidence levels into other deterministic models, such as the majority process or

35

the k-threshold process (see [8]).

Since we were motivated to consider the voter model by our interest in epidemiological

models, it would be interesting to consider other modifications that are more biologically

motivated. Confidence levels can be thought of as modeling an individual’s resistance to

infection, but perhaps there are other ways of modeling resistance. More complicating

factors such as mutations and length of infection would also be interesting to consider.

36

References

[1] D. J. Aldous and J. A. Fill, Reversible Markov Chains and Ran-
dom Walks on Graphs, monograph in preparation, available from
http://www.stat.berkeley.edu/users/aldous.

[2] S. J. Brams and P. C. Fishburn, Approval Voting, Birkhauser, Boston, 1983.

[3] P. Clifford and A. Sudbury, A Model for Spatial Conflict, Biometrika, 60 (1973),
581-588.

[4] N. C. Dalkey, The Delphi Method: An Experimental Study of Group Opinion, Mem-
orandum RM-5888-PR, RAND Corporation, Santa Monica, June 1969.

[5] M. H. DeGroot, Reaching a Consensus, Journal of the American Statistical Associ-
ation, 69 (1974), 167-182.

[6] J.-P. Doignon and J.C. Falmagne, Well-graded Families of Relations, Discrete Math-
ematics, 173 (1997), 35-44.

[7] P. Donnelly and D. Welsh, Finite Particle Systems and Infection Models, Math. Proc.
Comb. Phil. Soc., 94 (1983), 167-182.

[8] P. Dreyer, Applications and Variations of Domination in Graphs, Ph.D. dissertation,
Rutgers University, 2000.

[9] R. Durrett, Lecture Notes on Particle Systems and Percolation, Wadsworth and
Brooks/Cole, Pacific Grove, California, 1988.

[10] J.-C. Falmagne, Stochastic Token Theory, Journal of Mathematical Psychology, 41
(1997), 129-143.

[11] J.-C. Falmagne and M. Regenwetter, A Random Utility Model for Approval Voting,
Journal of Mathematical Psychology, 40 (1996), 152-159.

[12] J. R. P. French, A Formal Theory of Social Power, Psychology Review, 63 (1956),
181-194.

[13] R. G. Gallager, Discrete Stochastic Processes, Kluwer Academic Publishers, Boston,
1996, 174-178.

[14] D. Griffeath, Additive and Cancellative Interacting Particle Systems, Lecture Notes
in Mathematics, vol. 724, Springer-Verlag, Berlin, 1979.

[15] F. Hoffman, presentation at the Twenty-Sixth Southeastern International Confer-
ence on Combinatorics, Graph Theory, and Computing. Held at Florida Atlantic
University in Boca Raton, Florida, March 6-10, 1995.

37

[16] R. Holley and T. M. Liggett, Ergodic Theorems for Weakly Interacting Systems and
the Voter Model, Ann. Probab., 3 (1975), no. 4, 643-663.

[17] B. Latané, The Emergence of Clustering and Correlation from Social Interaction, in:
R. Hegeselmann and H. O. Peitgen, eds., Models of Social Dynamics: Order, Chaos,
and Complexity, Holder-Pichler-Tempsky, Vienna, 1996, 79-104.

[18] B. Latané and E. Fink, Symposium: Dynamical Social Impact Theory and Commu-
nication, Journal of Communication, 46, no. 4 (1996), 4-77.

[19] B. Latané and A. Nowak, Attitudes as Catastrophes: From Dimensions to Categories
with Increasing Involvement, in: R. R. Vallacher and A. Nowak, eds., Dynamical
Systems in Social Psychology, Academic Press, New York, 1994, 219-249.

[20] T. M. Liggett, Interacting Particle Systems, Grundlehren der mathematicshen Wis-
senschaften, no. 276, Springer-Verlag, New York, 1985.

[21] T. M. Liggett, Stochastic Interacting Systems: Contact, Voter and Exclusion Pro-
cesses, Grundlehren der mathematicshen Wissenschaften, no. 324, Springer-Verlag,
Berlin, 1999.

[22] H. A. Linstone and M. Turoff, eds., The Delphi Method: Techniques and Applications,
Addison-Wesley, Reading, MA, 1975.

[23] L. Lovász, Random Walks on Graphs: A Survey, in: Combinatorics, Paul Erdős is
Eighty, vol. 2, Bolyai Soc. Math. Stud., 2, János Bolyai Math. Soc., Budapest, 1996.

[24] S. Merrill, A Unified Theory of Voting: Directional and Proximity Spatial Models,
Cambridge University Press, New York, 1999.

[25] S. Poljak and M. Sûra, On Periodical Behavior in Society with Symmetric Influences,
Combinatorica, 3 (1983), 119-121.

[26] F. S. Roberts, Discrete Mathematical Models, with Applications to Social, Biological,
and Environmental Problems, Prentice-Hall, Upper Saddle River, New Jersey, 1976,
258-363.

[27] F. S. Roberts, unpublished notes, 1999.

38

Chapter 3

Response Strategies in Deterministic Models of Spread:

Vaccination and Firefighting

3.1 Introduction

Traditionally, epidemiological models assume that the population being studied is well-

mixed in the sense that any pair of individuals are just as likely to come in contact and

transmit a disease as any other. This “mean-field” approximation, as physicists call it,

appears in such models as the SIR model (which tracks the numbers of Susceptibles,

Infected, and Recovered), and this simplifying assumption permits exact solutions using

ordinary differential equations. For some diseases and settings where the well-mixing

assumption is reasonable, such as influenza in an elementary school, these models come

quite close to observed data.

However, for other diseases and contexts, the spatial component is much more impor-

tant. The spread of rabies in rabbit populations in Switzerland is one such example. In

situations where the spatial component has a strong geometric structure, usually result-

ing from geographic locations, partial differential equation models have been successful in

modeling the “wave front” of the disease spread. When the spatial component does not

have a strong geometric structure, as is the case with AIDS and other sexually-spread dis-

eases, the relationships between people must be considered on a pair-by-pair basis [12, 1].

The mathematical structures of graphs are ideally suited to encode these relationships,

where vertices in a graph represent individuals, and edges represent the potential for

transmission of the disease between two individuals.

One avenue of exploring graph-based models has been the use of agent-based computer

simulations. In these simulations, the relationships and health of each individual (or

39

“agent”) is determined at each point in time [2]. Los Alamos’ EpiSIMS project [3] is

an example of a very large model, simulating the interactions of 1.6 million people in the

greater Portland, Oregon, area. Agent-based simulations are very useful for experimenting

with models and suggesting what the behavior of the model is. However, it is difficult

to use the simulations to prove precise statements about the behavior. The approach

followed here is to look at these problems from a more combinatorial and graph-theoretic

perspective.

In this chapter we focus on a deterministic process and how it behaves when various

interventions are occurring. This is particularly relevant in disease spread processes, where

vaccinations and quarantines are being used to contain a disease outbreak. From a graph

theoretic perspective, such interventions have the effect of a vertex or edge cut. However,

the dynamic nature of the disease spread makes the problem more difficult.

Epidemiologists have proposed several spread mechanisms based on the biological

properties of different diseases. These mechanisms determine the rate and likelihood

of transferring the disease from an infected individual to a susceptible individual. In this

chapter we consider the most simple spread mechanism: that of a perfectly contagious

disease with no cure, where vertices adjacent to infected vertices become infected at every

discrete time step and, once infected, remain infected from then on. The response allowed

is only a limited number of vaccinations of non-infected vertices. Specifically, let G be a

connected graph where the vertices represent people and the edge uv indicates that per-

sons u and v would transmit a disease from one person to another if one person became

infected. At time t = 0, some outbreak of disease occurs at several root vertices. Public

health officials immediately respond, vaccinating the vertices a1,1, a1,2, . . . , a1,c1 at time

t = 1. The disease then spreads to every non-vaccinated neighbor of an infected vertex.

There is another set of vaccinations a2,1, . . . , a2,c2 at time t = 2, and the disease spreads

again. This process continues until the disease can no longer spread; in other words, that

all of the neighbors of infected vertices are either themselves infected or vaccinated. The

main question we will investigate is finding an optimal strategy for vaccinating in order

to minimize the total number of infected vertices. We will be primarily interested in the

40

situation when there is only one initially infected root vertex, and there are exactly f

vaccinations allowed per time step. In section 3.2 we examine the case when G is a grid,

and in section 3.4.1 we discuss an approximation technique for the problem on trees. In

section 3.3 we present a proof that this problem is NP-complete for general graphs, and

in the last section we discuss future work.

The model of disease spread just presented is equivalent to a model of fire spread

introduced by Hartnell [9]. In this model, an outbreak of fire starts at the root vertices at

time t = 0. In response, firefighters are placed at the vertices a1,1, a1,2, . . . , a1,c1 at time

t = 1, where the firefighters defend or protect each vertex from the spreading fire. The

fire then spreads from burning vertices to non-defended neighbors. Firefighters are again

deployed to defend the vertices a2,1, . . . , a2,c2 at time t = 2 (the vertices a1,1, a1,2, . . . , a1,c1

remain defended), and the fire spreads again. The process continues until the fire can no

longer spread. We say that the fire outbreak is contained after t time steps if there is

some finite time t such that after the disease spreads during time t, only a finite number

of vertices are burnt and the disease can no longer spread. The motivating question is

again to find an optimal sequence of defended vertices that minimizes the total number

of burnt vertices.

When presenting our results, we will use the terminology of firefighters. During the

tth time step for t > 0, firefighters are deployed and then the fire spreads. If we describe

the state of vertices at the beginning of the tth time step, we mean before the firefighters

are deployed during the tth time step. If we describe the state of vertices at the end of

the tth time step, or equivalently, at the end of t time steps, we mean after the fire has

spread during the tth time step. A firefighter may defend neither a burnt vertex nor a

previously defended vertex. Once fire has spread to a vertex v, we say that v is a burnt

vertex. After being burnt or defended, a vertex remains in that state until the process

ends. In addition to the burnt and defended vertices, we say that a vertex v is saved at

the end of the tth time step if there is no path from v to the root consisting only of burnt

and non-defended vertices at the end of the tth time step. Thus, our motivating question

is equivalent to maximizing the number of saved vertices.

41

Several results are known about this model for various classes of graphs. Wang and

Moeller [13] studied grids and other product graphs. They determined that two firefighters

per time step is sufficient to contain a fire outbreak in a two dimensional square grid,

and conjectured that 2d − 1 firefighters are necessary to contain a fire outbreak in a d

dimensional square grid. We prove this conjecture in section 3.2. Fogarty [6] showed that

two firefighters suffice in the two dimensional square lattice to contain any finite outbreak

of fire where an arbitrarily large but finite number of vertices are initially on fire. However,

we prove that for any fixed number f of firefighters, there is a finite outbreak of fire in

which f firefighters per time step are insufficient to contain the outbreak.

MacGillivray and Wang [11] showed that the problem of determining an optimal se-

quence of firefighter placements that saves the most vertices is NP-complete for general

graphs. We present a different proof of NP-completeness in section 3.3 that uses graphs of

smaller average degree, a more realistic assumption for the disease application. Finbow,

King, MacGillivray, and Rizzi [5] show that the firefighter problem is NP-complete for

trees of maximum degree three. MacGillivray and Wang also presented bounds and algo-

rithms for trees and square grids. Hartnell and Li [10] showed that the greedy algorithm

on trees always saves at least 1/2 as many vertices as an optimal sequence of firefighter

placements. Finbow, Hartnell, Li, and Schmeisser [4] determine the graphs that have

the lowest number of expected burnt vertices when the initial root vertex where the fire

outbreak begins is random.

3.2 Grids1

Grids are a natural class of graphs to consider both disease and fire spread on since they

are often used to represent geographic areas. We consider here the infinite d-dimensional

square grids Ld. The vertices of Ld are the points of Rd with integer coordinates, and x

is adjacent to y if and only if x is distance 1 from y in the usual Euclidean �2 metric.

1This section contains joint work with Mike Develin.

42

3.2.1 Three and Higher Dimensional Square Grids

Wang and Moeller proved in [13] that an outbreak starting at a single point in a regular

graph of degree r can be contained with if r−1 firefighters can be deployed per time step.

Specifically, for the d dimensional square grid Ld, 2d − 1 firefighters suffice to contain an

outbreak starting at a single point. They conjectured that this bound is tight, and we

present a proof of this conjecture here.

Wang and Moeller observed that at least two firefighters per time step are needed for

containment in L2, and Fogarty showed in [6] that at least three firefighters per time step

are needed to contain the outbreak. Her main theorem involves a “Hall-type condition”

which we strengthen here in Theorem 3.2. First we state some definitions.

Definition 3.1. Let Dk denote the set of vertices in a rooted graph G that are distance

k from the root vertex r. Let rk denote the number of firefighters in Dk+1,Dk+2, . . . at

the end of the kth time step. These firefighters can be thought of as “reserve” firefighters

since they are not adjacent to the fire when deployed. We define r0 to be 0. Let Bk ⊆ Dk

denote the number of burned vertices in Dk at the end of the kth time step.

Theorem 3.2. Let G be a rooted graph, h a positive integer, and a0, a1, . . . , ah positive

integers each at least f such that the following holds:

1. Every A ⊆ D0, A = ∅, satisfies |N(A) ∩ D1| ≥ |A| + a0.

2. For 1 ≤ k ≤ h, every A ⊆ Dk such that |A| ≥ 1 +
∑k−1

i=0 (ai − f) satisfies

|N(A) ∩ Dk+1| ≥ |A| + ak.

3. For k > h, every A ⊆ Dk such that |A| ≥ 1+
∑h

i=0(ai−f) satisfies |N(A) ∩ Dk+1| ≥
|A| + f .

Suppose that at most f firefighters per time step are deployed. Then

|Bn| ≥

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1 if n = 0,

1 + rn +
∑n−1

i=0 (ai − f) if 1 ≤ n ≤ h + 1,

1 + rn +
∑h

i=0(ai − f) if n > h + 1,

(3.1)

43

regardless of the sequence of firefighter placements. Specifically, f firefighters per time

step are insufficient to contain an outbreak that starts at the root vertex.

Proof. Let pn+1 denote the number of firefighters placed in Dn+1 at time n + 1, and let

p≤n denote the number of firefighters placed in Dn+1 for times 1, . . . , n. Note that

rn+1 ≤ (rn − p≤n) + (f − pn+1) = rn + f − pn+1 − p≤n. (3.2)

This follows since rn−p≤n is the number of firefighters placed in Dn+2,Dn+3, . . . for times

1, . . . , n, and at most f − pn+1 firefighters are available to be placed in Dn+2,Dn+3, . . . at

time n + 1. Strict inequality occurs if a firefighter is placed in Dk for k < n + 1 at time

n + 1.

We prove (3.1) by induction on n. For n = 0, |B0| = 1 holds trivially. We assume the

result holds for n, 0 ≤ n ≤ h, and prove the result for n + 1. By inductive hypothesis,

|Bn| ≥

⎧⎪⎪⎨⎪⎪⎩
1 if n = 0,

1 + rn +
∑n−1

i=0 (ai − f) if 1 ≤ n ≤ h,
(3.3)

and so by hypotheses 1 and 2,

|N(Bn) ∩ Dn+1| ≥ |Bn| + an. (3.4)

Thus,

|Bn+1| = |N(Bn) ∩ Dn+1| − pn+1 − p≤n

≥ |Bn| + an − pn+1 − p≤n, by (3.4),

≥ 1 + rn +
n−1∑
i=0

(ai − f) + an − pn+1 − p≤n, by (3.3),

= 1 + (rn + f − pn+1 − p≤n) +
n−1∑
i=0

(ai − f) + (an − f)

≥ 1 + rn+1 +
n∑

i=0

(ai − f), by (3.2).

This proves (3.1) for 0 ≤ n ≤ h + 1.

We now prove (3.1) for n ≥ h + 1 using induction on n. Note that (3.1) holds for

n = h + 1 from above. We thus assume (3.1) holds for n ≥ h + 1, and we prove the result

44

for n + 1. By inductive hypothesis,

|Bn| ≥ 1 + rn +
h∑

i=0

(ai − f), (3.5)

and so by hypothesis 3, (3.4) holds for n > h. Thus,

|Bn+1| = |N(Bn) ∩ Dn+1| − pn+1 − p≤n

≥ |Bn| + f − pn+1 − p≤n, by (3.4),

≥ 1 + rn +
h∑

i=0

(ai − f) + f − pn+1 − p≤n, by (3.5),

= 1 + (rn + f − pn+1 − p≤n) +
h∑

i=0

(ai − f)

≥ 1 + rn+1 +
h∑

i=0

(ai − f), by (3.2).

We now turn our attention to square lattices of dimension three and higher.

Definition 3.3. The orthants of Rd are the 2d regions defined by the hyperplanes xi =

−1/2 in Rd, i = 1, . . . , d. Let the orthants in Ld be the subsets of vertices that lie in each

orthant of Rd. Thus, the jth coordinates of all the vectors in a given orthant of Rd are all

non-negative or are all negative, for j = 1, . . . , d. Let D+
k denote the vertices of Dk ⊆ Ld

in the orthant whose elements are all non-negative.

Let v = (v1, v2, . . . , vd) be an element of Dk ⊆ Ld. Let ci(v) denote vi, and for a set

A ⊆ Dk define Ai
r = {v ∈ A : ci(v) = r}. Let v→i denote (v1, v2, . . . , v

′
i, vi+1, . . . , vd) ∈

Dk+1, where v′i = vi +1 if vi ≥ 0 or v′i = vi − 1 if vi < 0. Thus, v→i is in the same orthant

as v.

Lemma 3.4. In Ld for d ≥ 3, if A ⊆ Dk where |A| ≥ 2d − 2, then |N(A) ∩ Dk+1| ≥
|A| + 2d − 2.

Proof. Given any nonempty set A ⊆ Dk ⊆ Ld completely contained in one orthant, we

will show that

|N(A) ∩ Dk+1| ≥ |A| + d − 1, for any d. (3.6)

We form a set B ⊆ N(A) ∩ Dk+1 in the following way:

45

1. For each v ∈ A, add v→1 to B.

2. For each 2 ≤ j ≤ d, let rj be the value of the jth coordinate of elements of A that

is greatest in absolute value. For each v ∈ Aj
rj , add v→j to B.

Each vector added to B in step 1 is unique, and each vector added to B in step 2 is

also unique since the jth coordinate was chosen to be maximum. Thus, |N(A) ∩ Dk+1| ≥
|B| ≥ |A| + d − 1.

Let A ⊆ Dk ⊆ Ld. If A is not completely contained in one orthant, then let A be

partitioned as

A = A1 ∪ A2 ∪ · · · ∪ Aq,

where each A� is in a different orthant O�. By (3.6), |N(A�) ∩ Dk+1| ≥ |A�|+ d− 1. Note

also that the corresponding sets B� in the proof above for A� do not overlap since they

are in different orthants. Hence,

|N(A) ∩ Dk+1| ≥
q∑

�=1

|N(A�) ∩ O� ∩ Dk+1|

≥
q∑

�=1

[|A�| + d − 1]

≥ |A| + 2d − 2.

Thus, we may assume that A is completely contained in one orthant, and, without loss of

generality, we assume that all coordinates of elements of A are non-negative.

We now proceed to prove the lemma by induction on d. Let A ⊆ D+
k ⊆ Ld, where

|A| ≥ 2d − 2. Suppose that d = 3. Let ni denote the number of nonempty Ai
r, or,

equivalently, the number of distinct ith coordinates of elements of A. Let i′ be a coordinate

where ni is maximized. We claim that ni′ ≥ 3. If ni′ is 1, then A contains only one element,

which is a contradiction since |A| ≥ 2d − 2 = 6. If ni′ is 2, then each coordinate has only

two different values it can assume. However, the sum of the coordinates must remain k.

It is straightforward to verify that the maximum number of elements in A is 3, which

contradicts the fact that|A| ≥ 2d − 2 = 6. Thus, ni′ ≥ 3.

For each r where Ai′
r is nonempty, form a set Âi′

r ⊆ Dd−1
k−r ⊆ Ld−1 by eliminating the i′

coordinate of each element in Ai′
r . By (3.6),

∣∣∣N(Âi′
r) ∩ Dd−1

k−r+1

∣∣∣ ≥ ∣∣∣Âi′
r

∣∣∣+d−2. For each v

46

in N(Âi′
r)∩Dd−1

k−r+1, form an element ṽ in N(Ai′
r)∩Dd

k+1 by inserting r as the i′ coordinate.

Notice that these elements are distinct when the i′ coordinates are distinct. Let m be

the maximum r such that Ai′
r is nonempty, or equivalently, the largest i′ coordinate. For

each v ∈ Ai′
m, we also have v→i′ ∈ N(A) ∩ Dk+1, and these vectors are distinct from any

formed above because the i′ coordinate is larger. Thus,

|N(A) ∩ Dk+1| ≥
∑

r:Ai′
r �=∅

(∣∣∣Ai′
r

∣∣∣+ d − 2
)

+
∣∣∣Ai′

m

∣∣∣
≥ |A| + ni′(d − 2) +

∣∣∣Ai′
m

∣∣∣ . (3.7)

Since
∣∣∣Ai′

m

∣∣∣ ≥ 1, (3.7) implies that

|N(A) ∩ Dk+1| ≥ |A| + 3d − 5, (3.8)

and when d = 3,

|N(A) ∩ Dk+1| ≥ |A| + 4 = |A| + 2d − 2.

Now suppose that d > 3. Again let ni denote the number of nonempty Ai
r, and let i′

be a coordinate where ni is maximized. If ni′ ≥ 3, then using the same construction as in

the d = 3 case, we have (3.8), and since d > 3, |N(A) ∩ Dk+1| ≥ |A| + 2d − 2. If ni′ = 1,

then A contains only one element, which is a contradiction since |A| ≥ 2d − 2 ≥ 4. We

are thus left with the case ni′ = 2. Let m be the maximum r such that Ai′
r is nonempty,

or equivalently, the largest i′ coordinate of elements of A, and let r′ = m be the minimum

value of r where Ai′
r is nonempty. If

∣∣∣Ai′
m

∣∣∣ ≥ 2, then using the same construction as in the

ni′ ≥ 3 case, we have by (3.7)

|N(A) ∩ Dk+1| ≥ |A| + ni′(d − 2) +
∣∣∣Ai′

m

∣∣∣
≥ |A| + (2d − 4) + 2, since

∣∣∣Ai′
m

∣∣∣ ≥ 2,

≥ |A| + 2d − 2.

If
∣∣∣Ai′

m

∣∣∣ = 1, then we again use the construction from the ni′ ≥ 3 case. However,
∣∣∣Âi′

r′

∣∣∣ ≥
2d−3, so by induction,

∣∣∣N(Âi′
r′) ∩ Dd−1

k−r′+1

∣∣∣ ≥ ∣∣∣Âi′
r′

∣∣∣+2d−4. Here, the notation Dd−1
z means

the set Dz ⊆ Ld−1, emphasizing the dimension of Ld−1. For each v in N(Âi′
r′) ∩ Dd−1

k−r′+1,

47

form an element ṽ in N(Ai′
r′) ∩ Dd

k+1 by inserting r′ as the i′ coordinate. Additionally,

for the single vector v ∈ Ai′
m and 1 ≤ j ≤ d, v→j ∈ N(A) ∩ Dk+1, and these vectors are

distinct from those formed above because the i′ coordinate is larger. Thus,

|N(A) ∩ Dk+1| ≥
(∣∣∣Ai′

r′

∣∣∣+ 2d − 4
)

+ d

= |A| + 3d − 3, since
∣∣∣Ai′

r′

∣∣∣ = |A| + 1,

≥ |A| + 2d − 2, since d > 3.

Lemma 3.5. In Ld for d ≥ 3, if A ⊆ D1 where |A| ≥ 2, then |N(A) ∩ D2| ≥ |A|+4d−6.

Proof. Let A ⊆ D1 ⊆ Ld where |A| ≥ 2. Every vector v ∈ A is of the form (0, 0, . . . , xi, . . . , 0),

where xi = ±1. Each vector v in A has 2(d − 1) neighbors in D2 formed by replacing

each of the zero coordinates in v with ±1, and one neighbor formed by replacing 1 in the

ith coordinate with 2 or replacing −1 with −2. If v and v′ are vectors of A with nonzero

entries in different coordinates, then v and v′ share exactly one neighbor in D2. If v and

v′ have nonzero entries in the same coordinate, then v and v′ share no neighbors in D2.

Thus,

|N(A) ∩ D2| ≥ |A| (2(d − 1) + 1) −
(|A|

2

)
= |A|

(
2d − |A|

2
− 1

2

)
≥ |A| + |A|

(
2d − |A|

2
− 3

2

)
.

It is straightforward to use calculus to verify that

|A|
(

2d − |A|
2

− 3
2

)
≥ 4d − 6,

where d ≥ 3 and 2 ≤ |A| ≤ 2d, and so

|N(A) ∩ D2| ≥ |A| + 4d − 6.

Theorem 3.6. In Ld, 2d−1 firefighters are needed to contain an outbreak of fire starting

at a single vertex.

48

Proof. Since Ld is vertex transitive, we may assume that the root vertex where the fire

outbreak starts is the origin. We use Theorem 3.2 with f = 2d − 2, h = 1, a0 = 2d − 1,

and a1 = 4d − 6. The one element set D0 has 2d neighbors in D1 so hypothesis 1 of

Theorem 3.2 holds, Lemma 3.5 shows hypothesis 2 of Theorem 3.2 holds for k = 1, and

Lemma 3.4 shows hypothesis 3 holds for k > 1. By Theorem 3.2, 2d − 2 firefighters are

insufficient to contain an outbreak starting at the origin.

Fogarty also showed in [6] that two firefighters suffice in L2 to contain any finite

outbreak of fire where an arbitrarily large but finite number of vertices are initially on

fire. However, we prove for Ld where d ≥ 3 that for any fixed number f of firefighters,

there is a finite outbreak of fire in which f firefighters per time step are insufficient to

contain the outbreak.

First we establish the following lemma. Essentially, the lemma says that if we have a

“front” of x elements, then it will grow outwards by at least Ω(
√

x) in the next time step.

Lemma 3.7. Let f be any positive integer. If A ⊆ D+
k ⊆ L3 where |A| ≥ 3

2f2, then∣∣N(A) ∩ D+
k+1

∣∣ ≥ |A| + f .

Proof. Let A ⊆ D+
k ⊆ L3 be a set where |A| ≥ 3

2f2. The elements of B := {v→1 : v ∈ A}
are distinct vertices in N(A)∩D+

k+1, and the set B has cardinality equal to |A|. Therefore,

it suffices to show that if |A| ≥ 3
2f2, then there are at least f distinct elements of the

form v→j which are not elements of B, where v ∈ A and j ∈ {2, 3}.
Let m be the largest first coordinate of elements of A, and let t be the smallest first

coordinate of elements of A. Recall that the sets A1
r , r = t, t + 1, . . . ,m, partition A. Let

σr equal
∣∣A1

r

∣∣, so that
∑m

r=t σr = |A|. Note that σt, σm > 0.

Suppose some σr is equal to zero, where t < r < m. Then A is partitioned into the sets

A1 consisting of all elements of A with first coordinate greater than r and A2 consisting

of all elements of A with first coordinate less than r. Clearly N(A1)∩N(A2)∩D+
k+1 = ∅.

Define A′
1 := {v→2 : v ∈ A1} and A′

2 := {v→1 : v ∈ A2}, so that A′
1 and A′

2 are subsets of

D+
k+1. Since A′

1 is simply a translate of A1 by 1 in the first coordinate, N(A′
1) ∩ D+

k+2 is

a translate of N(A1) ∩ D+
k+1 by 1 in the first coordinate. Similarly, N(A′

2) ∩ D+
k+2 is a

49

translate of N(A2) ∩ D+
k+1 by 1 in the second coordinate. Thus, we have that∣∣N(A′

1 ∪ A′
2) ∩ D+

k+2

∣∣ ≤ ∣∣N(A′
1) ∩ D+

k+2

∣∣+ ∣∣N(A′
2) ∩ D+

k+2

∣∣
=
∣∣N(A1) ∩ D+

k+1

∣∣+ ∣∣N(A2) ∩ D+
k+1

∣∣
=
∣∣N(A) ∩ D+

k+1

∣∣ ,
where the last equality follows since N(A1) ∩ D+

k+1 and N(A2) ∩ D+
k+1 do not intersect.

However, A′
1 ∪ A′

2 has the same size as A, but the separation between the largest first

coordinate of elements of A′
1 ∪A′

2 and the smallest first coordinate of A′
1 ∪A′

2 is less than

m − t. Therefore, by induction on m − t we reduce to the case where no σr is equal to

zero, i.e., there is an element of A with first coordinate r for every t ≤ r ≤ m.

Consider the sets Sr =
{
v→j : v ∈ A1

r, j ∈ {2, 3}} ⊆ N(A) ∩ D+
k+1. Observe that the

cardinality of Sr is at least σr +1. Clearly all Sr are disjoint, since all elements of Sr have

first coordinate r. The elements of St have t as their first coordinate, while all elements

of B have first coordinates at least t + 1, so no elements of St are in B. Furthermore, for

all r > t, if an element of Sr is in B, then by considering its first coordinate, the element

must be in the set
{
v→1 : v ∈ A1

r−1

}
. In particular, this set has size σr−1. If σr +1 > σr−1,

then there are at least σr + 1 − σr−1 elements in Sr not in B. Therefore, the number of

elements in N(A) ∩ D+
k+1 that are not in B is bounded below by

g(σ) :=
m∑

r=t

max (0, σr + 1 − σr−1), (3.9)

with the convention that σt−1 = 0.

Now take any nonzero sequence σt, σt+1, . . . , σm. We claim that if g(σ) < f , then∑m
r=t σr < 3

2f2, which would complete the proof of the theorem. Suppose we have some

sequence σt, σt+1, . . . , σm with g(σ) < f . First, suppose that there exists some r > t

where σr ≥ σr−1. Then adding 1 to σr−1 decreases the r-th term of (3.9) by 1, possibly

adds 1 to the (r − 1)-st term, and leaves all other terms unchanged; in particular, it does

not increase the value of g(σ) and increases
∑

σr. Therefore, we can reduce to the case

where σ is strictly decreasing.

Next, suppose we have σr < σr−1 − 1 for some t < r ≤ m. Then adding 1 to σr leaves

all terms of (3.9) unchanged. Similar to before, this operation does not change g(σ), while

50

increasing
∑

σr. Doing this repeatedly, we reduce to the case where

σr−1 = σr + 1 (3.10)

for all t < r ≤ m. However, this case is easy to evaluate; each term in (3.9) is zero except

the r = t term, which is equal to σt + 1, and by using (3.10), is equal to σm + (m− t + 1).

Since g(σ) = σm + (m − t + 1) < f and σm > 0, we have that

σm < f (3.11)

and m − t + 1 < f. (3.12)

Thus,

m∑
r=t

σr =
m∑

r=t

(σm + (m − r)) by (3.10)

= σm(m − t + 1) +
(m − t)(m − t + 1)

2

<
3
2
f2, by (3.11) and (3.12).

This allows us to prove the following theorem.

Theorem 3.8. For any dimension d ≥ 3 and any fixed positive integer f , f firefighters

per time step are not sufficient to contain all finite outbreaks in Ld.

Proof. Since L3 is contained in Ld for d ≥ 3, it suffices to prove the statement for d = 3.

We consider an initial outbreak consisting of all of D+
k for k large enough so that

∣∣D+
k

∣∣ ≥
3
2f2. To show that f firefighters are insufficient to contain this outbreak, we will construct

a related graph that captures the essential disease dynamics and then invoke Theorem 3.2.

Let G be the subgraph of L3 induced by vertices with non-negative coordinates that are

distance at least k from the origin. Let G′ be the graph formed from G by identifying all

of the vertices in D+
k as a single vertex r. An edge exists between vertices x and y in G′

if xy is an edge in G or if x = r and y ∈ NG(D+
k). Let D′

i denote the set of vertices in G′

that are distance i from the root r. By Lemma 3.7,

∣∣N(D+
k) ∩ D+

k+1

∣∣ ≥ ∣∣D+
k

∣∣+ f ≥ 3
2
f2 + f,

51

and so ∣∣N(r) ∩ D′
1

∣∣ ≥ ∣∣D′
0

∣∣+ (3
2
f2 − 1

)
+ f.

If A′ ⊆ D′
i, where i > 0 and |A′| ≥ 3

2f2, then A′ corresponds to a set A ⊆ D+
k+i and by

Lemma 3.7, ∣∣N(A) ∩ D+
k+i+1

∣∣ ≥ |A| + f,

and hence ∣∣N(A′) ∩ D′
i+1

∣∣ ≥ ∣∣A′∣∣+ f.

By Theorem 3.2 with h = 0, and a0 = f , f firefighters are insufficient to contain an

outbreak starting at r in G′, and hence f firefighters are insufficient to contain an outbreak

of D+
k in L3.

The essential problem here is that for d ≥ 3, the boundary of an outbreak grows

faster than the constant number of firefighters deployed at a given time step. Indeed, in

dimension d, the boundary grows as a polynomial of degree d − 2. This motivates the

following ambitious conjecture.

Conjecture 3.9. Suppose that f(t) is a function on N with the property that f(t)
td−2 goes to

0 as t gets large. Then there exists some outbreak which cannot be contained by deploying

f(t) firefighters at time t.

A weaker conjecture would require f(t) to be a polynomial.

Lemma 3.7 also allows us to resolve another conjecture of Wang and Moeller in [13].

They had conjectured that as n gets large, the proportion of elements in the three-

dimensional grid Pn × Pn × Pn which can be saved by using one firefighter per time

step when an outbreak at one vertex occurs goes to 0 as n gets large. We prove this

conjecture in the following

Theorem 3.10. Let v be any vertex of Pn × Pn × Pn. Then the maximum number

of vertices which can be saved by deploying one firefighter per time step with an initial

outbreak at v (for any choice of v) grows at most as O(n2). In particular, the proportion

of vertices which can be saved goes to 0 as n gets large.

52

Proof. We prove the theorem in the case v = (0, 0, 0). The general statement easily

follows by splitting Pn × Pn × Pn into orthants with apex v. We will actually prove a

stronger statement. Consider the graph G induced from the lattice L3 by vertices with

non-negative coordinates and coordinate sum at most 3n. We will prove the theorem for

the graph G. Note that G contains Pn × Pn × Pn as an induced subgraph.

Let rt be the number of firefighters deployed at vertices with coordinate sum greater

than t by time t, and let bt be the number of vertices with coordinate sum exactly t which

are burned at time t. We claim that bt − rt ≥ t2+t+2
2 for all t regardless of what firefighter

placements are made. There are
(t+2

2

)
= t2+3t+2

2 vertices with coordinate sum exactly

t, so this statement is saying that at time t, the number of reserve firefighters together

with the number of vertices with coordinate sum t which are unburned cannot exceed t.

Considering up to t = 3n, when all vertices have had a chance to be burned, we obtain

that at most 1 + 2 + . . . + 3n = O(n2) vertices are unburned. This implies the same

statement for the grid graph.

The proof of the claim is by induction. At time 0, there are no reserve firefighters, and

one vertex with coordinate sum 0 is burned; their difference is 1− 0 = 1 ≥ 1 = 02+0+2
2 as

desired.

Suppose t ≥ 0, and suppose that the statement is true for t. There are at least

t2+t+2
2 > t(t+1)

2 burned vertices at time t, so by Lemma 3.7, at time t+1 there are at least

t + 2 more potentially burned vertices. So if no firefighters prevent spread at this time,

then we have rt+1 = rt + 1 (the extra firefighter being deployed), and bt+1 ≥ bt + (t + 2),

so bt+1 − rt+1 ≥ bt − rt +(t+1) ≥ t2+t+2
2 +(t+1) = t2+3t+4

2 = (t+1)2+(t+1)+2
2 , proving the

claim. However, using a reserve firefighter to reduce the spread of the fire decreases rt+1

and bt+1 both by one from their would-be values, which does not change their difference.

Consequently, regardless of the deployment of the firefighters at time t + 1, the claim is

satisfied, which completes the proof of the theorem.

In practice, one can ensure (with an outbreak at (0, 0, 0)) that t vertices with coordi-

nate sum t are unburned at time t. However, because the fire doubles back on itself, it

is unclear that one can actually save a quadratic number of vertices. Wang and Moeller

53

exhibit the construction of building a “fire wall” at distance k from (n, n, n), consisting

of all of the vertices that (grid) distance from this antipodal vertex; in order for this to

be effective, we must be able to cover all (k+1)(k+2)
2 such vertices in the 3n− k time steps

it takes the fire to reach this hyperplane. This yields k = O(
√

n). The number of vertices

saved is the number of vertices at distance k or less from (n, n, n), which is (k+1)(k+2)(k+3)
6 .

This is O(k3) = O(n3/2). Therefore, the optimal number of vertices saved given an initial

outbreak at (0, 0, 0) in the grid graph Pn × Pn × Pn is between O(n3/2) and O(n2).

3.2.2 Two Dimensional Square Grid

According to Wang and Moeller in [13], Hartnell, Finbow, and Schmeisser first proved that

an outbreak of fire in L2 starting at a single vertex can be contained using two firefighters

per time step. Their sequence of firefighter placements contained the outbreak at the end

of 11 time steps. Wang and Moeller showed that the disease cannot be contained at the

end of 7 time steps when using two firefighters per time step and presented a sequence

of firefighter placements that attains this minimum. Their sequence allows 18 vertices to

be burned. Surprisingly, Wang and Moeller do not comment on whether their solution

attains the minimum number of burned vertices. In fact, 18 is the minimum number of

burned vertices, and we prove this using integer programming. The same technique also

gives a computer proof of Wang and Moeller’s result that at least 8 time steps are needed.

Their proof relies heavily on case analysis.

The tightness in the following theorem is due to Wang and Moeller [13].

Theorem 3.11. In L2, if an outbreak of fire starts an a single vertex, then when using

two firefighters per time step at least 18 vertices are burned. This bound is tight.

Proof. We formulate an integer program using the boolean variables bx,t and dx,t. The

variable bx,t is 1 if and only if vertex x is burned at or before time t, and dx,t is 1 if and

only if x is defended at or before time t. We wish to minimize the total number of vertices

that become burned. For the integer program to be implementable with a finite number of

variables and constraints, we restrict the graph to L = {(x, y) ∈ L2 : |x| ≤ � and |y| ≤ �}
and 0 ≤ t ≤ T , where � and T are chosen to be sufficiently large that the fire never

54

reaches the boundary and is completely contained by time T . In the actual computations

performed, � = 6 and T = 9 proved sufficient. We choose T > 8 to ensure that the fire is

actually contained and does not grow in the last time step.

The integer program is

minimize
∑
x∈L

bx,T

subject to:bx,t + dx,t − by,t−1 ≥ 0, for all x ∈ L, y ∈ N(x), and 1 ≤ t ≤ T , (3.13)

bx,t + dx,t ≤ 1, for all x ∈ L and 1 ≤ t ≤ T , (3.14)

bx,t − bx,t−1 ≥ 0, for all x ∈ L and 1 ≤ t ≤ T , (3.15)

dx,t − dx,t−1 ≥ 0, for all x ∈ L and 1 ≤ t ≤ T , (3.16)∑
x∈L

(dx,t − dx,t−1) ≤ 2, for 1 ≤ t ≤ T , (3.17)

bx,0 =

⎧⎪⎪⎨⎪⎪⎩
1 if x is the origin,

0 otherwise,
for all x ∈ L, (3.18)

dx,0 = 0, for all x ∈ L, (3.19)

bx,t, dx,t ∈ {0, 1}, for all x ∈ L and 0 ≤ t ≤ T . (3.20)

Condition (3.13) enforces the spread of the fire while respecting vertices defended by a

firefighter. Note that vertices can spontaneously combust, catching fire, but the minimiza-

tion of the objective function ensures that this does not happen in the optimal solution.

Condition (3.14) prevents a firefighter from defending a burnt vertex, while conditions

(3.15) and (3.16) ensure that once a vertex is burnt or defended, it stays in that state.

Condition (3.17) only allows two firefighters per time step. Conditions (3.18) and (3.19)

give the initial conditions at time t = 0, and condition (3.20) makes the program a binary

integer program.

The integer program was solved in about 1.83 hours using the GNU Linear Program-

ming Kit [8] running on a Pentium IV 2.6GHz processor, and 18 was the minimum number

of burnt vertices at time t = 9. Figure 3.1 shows the minimum solution. The fire was

completely contained and thus did not reach the sides of L. Also note that the solution

55

a1

a1

a2

a2

a6

a4

a5

a5

a6

a8

a8a7

a4a3

a3

a7

root 1

2

1 3 4 5

432

3 4 5 6

765

2

Figure 3.1: Optimal solution of the integer program used in the proof of Theorem 3.11.

The fire outbreak starts at time 0 at the root, and then spreads to the black

vertices at the times written next to the vertices. The square firefighters ai

are placed at time i. This placement of two firefighters per time step in L2

completely contains the outbreak in 8 time steps, allowing only the minimum

number of 18 burned vertices.

56

presented by Wang and Moeller in [13] also allows only 18 burnt vertices but is slightly

different from the solution presented here.

Lemma 3.12. If an outbreak of fire in L2 is contained by 14 defended vertices and (x, y)

is a burnt vertex, then |x| ≤ 5 and |y| ≤ 5.

Proof. Suppose that (x, y) is a burnt vertex, and, without loss of generality, that x > 5.

Since (x, y) is burnt, there is a path v0 = (x, y), v1, v2, . . . , vt = (0, 0) from (x, y) to the

origin consisting of burnt vertices. For each 0 ≤ a ≤ 6, there is a vertex vρ(a) such that the

first coordinate of vρ(a) is a. Since the fire is contained, there must be a defended vertex

above and below each of these seven vertices, and there must be at least one defended

vertex with first coordinate less than 0 and one with first coordinate greater than x. But

this requires 16 defended vertices, resulting in a contradiction.

Theorem 3.13 (Wang and Moeller). In L2, if an outbreak of fire starts at a single

vertex, then the fire cannot be contained at the end of 7 time steps when using two fire-

fighters per time step. Thus, at least 8 time steps are needed to contain the fire, and this

bound is tight.

Proof. We use a similar integer program to the one used in the proof of Theorem 3.11.

By Lemma 3.12, if the outbreak can be contained after 7 time steps, then no burnt vertex

will have either coordinate equaling 6 in absolute value. We thus use the finite grid L

where � = 6, and we use the objective function

minimize
∑

x=(a,b)∈L
|a|=6 or |b|=6

bx,T .

If the disease can be contained after 7 time steps, then the optimal value of the objective

function will be 0. All of the conditions from the previous integer program are included

except condition (3.17) is changed to

∑
x∈L

(dx,t − dx,t−1) ≤

⎧⎪⎪⎨⎪⎪⎩
2 for 1 ≤ t ≤ 7,

0 for 8 ≤ t ≤ T .
(3.21)

This prevents firefighters from being used after 7 time steps.

57

The integer program with T = 9 was solved in about 40 minutes using the GNU Linear

Programming Kit running on a Pentium M 900MHz processor. The minimum value was

1, meaning that in every feasible solution, the fire burned a vertex with one coordinate

equaling 6 in absolute value. This contradicts Lemma 3.12, and so at least 8 time steps

are needed to contain an outbreak in L2 when using two firefighters per time step.

3.3 NP-Completeness

MacGillivray and Wang [11] formulated the problem of finding the optimal placement of

firefighters as a decision problem and showed that the problem is NP-complete. While

straightforward, their construction does have a large number of vertices and an average

degree that asymptotically is four. We present here an alternate proof that is a reduction

to the satisfiability problem SAT. Our construction uses fewer vertices and the average

degree asymptotically is two. In some models of disease spread, a low average degree is

more realistic. For instance, in models of sexually transmitted diseases, most people have

few sexual partners in a given period of time such as a week. In these instances, our

construction is more appropriate. We show average degree calculations after we present

our construction.

Definition 3.14. Let FIREFIGHTER be the following decision problem:

Instance: A finite rooted graph (G, r) and an integer p ≥ 1.

Question: Is there a finite sequence a1, a2, . . . , at of vertices of G such that if an outbreak

of fire starts at the root r at time 0 and vertex ai is defended at time i, then

1. Vertex ai is neither burning nor defended at the beginning of the ith time step and

hence can be defended at time i.

2. There is no undefended unburnt vertex adjacent to a burning vertex at the end of

the tth time step.

3. At least p vertices are saved at the end of the tth time step.

Note that only one firefighter is deployed per time step.

58

x1 x̄1

x2 x̄2

x̄2 ∨ x̄3x1 ∨ x2

x3 x3x3

x̄1 ∨ x2 ∨ x3

x2

root

x̄3 x̄3 x̄3

x̄2

x3 x̄3

Figure 3.2: Reduction of the formula ϕ = (x1 ∨x2)∧ (x̄1 ∨x2 ∨x3)∧ (x̄2 ∨ x̄3) to a binary

tree.

Theorem 3.15 (MacGillivray and Wang). FIREFIGHTER is NP-complete.

To explain our construction, we first think of a binary tree (not necessarily complete),

where the root of the tree is where the fire outbreak begins. Each level of the tree

is associated with a boolean variable xi, and each leaf represents a disjunctive clause.

Figure 3.2 shows the construction of a tree for the formula ϕ = (x1 ∨ x2) ∧ (x̄1 ∨ x2 ∨
x3)∧ (x̄2∨ x̄3). Recall that for trees there is a sequence of vertices a1, a2, . . . attaining the

maximum number of saved vertices where vertex ai is on level i. The firefighter placements

correspond to a truth assignment for ϕ in a natural way: if a1 is the left vertex, then x1

is true, otherwise x1 is false; and so on for each ai and xi. If a leaf vertex is saved, then

some ancestor (or itself) was defended, indicating that some literal in the corresponding

clause is set to true. Thus, the formula evaluates to false if and only if the fire reaches one

of the leaves corresponding to a clause in ϕ. We add h pendant vertices to each clause

vertex, so that if a clause vertex is burned then at least h − 1 other vertices are as well.

We call such a vertex with h pendant vertices a “super-spreader vertex.” Thus, when h is

very large, there exists a truth assignment satisfying ϕ if and only if there is a firefighter

sequence that saves all of the vertices except at most h.

59

Clearly this construction is a reduction of SAT to FIREFIGHTER, but it is not a

polynomial reduction. The difficulty can be seen in Figure 3.2: several leaf vertices

may be associated to the same clause. To remedy this difficulty, we introduce a more

complicated construction, but the proof idea is still the same.

Proof of Theorem 3.15. FIREFIGHTER is in NP since it can be verified in polynomial

time whether a given sequence of firefighter placements saves p vertices. We show that

FIREFIGHTER is NP-hard by reducing SAT to FIREFIGHTER. Let

ϕ = C1∧C2∧. . .∧C� = (c1,1∨c1,2∨. . .∨c1,k1)∧(c2,1∨c2,2∨. . .∨c2,k2)∧. . .∧(c�,1∨c�,2∨. . .∨c�,k�
)

be a boolean formula in conjunctive normal form over the k variables x1, x2, . . . , xk. Let

ϕ̃ = ϕ ∧ x1 ∧ x2 ∧ . . . ∧ xk ∧ x̄1 ∧ x̄2 ∧ . . . ∧ x̄k. If ϕ already contains any of the singleton

literals, then the literal is not repeated.

Construct a rooted ternary tree T1 (not necessarily complete) of height k where each

vertex on level i encodes a clause Dv that contains at most the variables x1, . . . , xi. The

clause Dv can be empty. Define T1 inductively as follows:

Level i = 0: Place a single root vertex on level 0. This vertex encodes the empty clause.

To define level i from level i − 1: We say that a clause C of ϕ̃ is compatible with Dv if

every truth assignment τ of x1, . . . , xk that satisfies C also satisfies Dv. For

every vertex v on level i− 1 such that there exists a clause C of ϕ̃ compatible

with Dv, add three new children of v to level i, where the first child encodes

Dv ∨ xk, the second child Dv, and the third child Dv ∨ x̄k.

We call each of the vertices on level k that encodes a clause of ϕ a “clause vertex.” We

will also sometimes refer to a “clause vertex of ϕ̃” when a vertex on level k encodes a

clause of ϕ̃. Figure 3.3 shows the tree T1 for ϕ = (x1 ∨ x2) ∧ (x̄1 ∨ x2 ∨ x3) ∧ (x̄2 ∨ x̄3).

We construct a new tree T2 from T1 by subdividing edges. For 1 ≤ i ≤ k − 1, denote

by Li the vertices of T1 on level i that have a child. Let Li = {v1, v2, . . . , vqi}. We perform

the following operation for each 1 ≤ i ≤ k − 1 in order: for 1 ≤ r ≤ qi, add r − 1 vertices

to the edge above vr leading to the root and qi−r vertices to the edges below vr. Observe

60

root

x̄1x1

x
2

x
3

x̄
3

x̄
2

x̄
2
∨

x̄
3

x̄
1
∨

x
2
∨

x
3

x̄
1

x
1

x
1
∨

x
2

x̄2 x̄1 ∨ x2x2x1 ∨ x̄2x1 ∨ x2

x̄1 ∨ x̄2

Figure 3.3: Construction of the tree T1 for ϕ = (x1 ∨ x2) ∧ (x̄1 ∨ x2 ∨ x3) ∧ (x̄2 ∨ x̄3).

Clause vertices of ϕ are marked with double circles, and clause vertices of ϕ̃

are labeled. Vertices on level 1 that contain x1 or x̄1 and vertices on level 2

that contain x2 or x̄2 are also labeled.

that after the subdivisions are performed, the tree T2 is of height
∑k−1

i=1 (qi + 1) + 1 and

vertex vr ∈ Li is on level
∑i−1

j=1(qi + 1) + r − 1 in T2. Thus, except for levels 0 and∑k−1
i=1 (qi + 1) + 1 of T2, there is exactly one vertex from L1 ∪ . . . ∪ Lk−1 on each level of

T2. Figure 3.4 shows the tree T2 for ϕ = (x1 ∨ x2) ∧ (x̄1 ∨ x2 ∨ x3) ∧ (x̄2 ∨ x̄3).

Form a new tree T3 by subdividing every edge once. Figure 3.5 shows the tree T3 for

ϕ = (x1 ∨x2)∧ (x̄1 ∨x2 ∨x3)∧ (x̄2 ∨ x̄3). For 1 ≤ i ≤ k−1, let wi be the vertex of Li that

is on the lowest level of T3. Let Wi be the set of all vertices in T3 that are on the same

level as wi. Form a new tree T4 by subdividing each edge once below a vertex in Wi, for

1 ≤ i ≤ k − 1. Figure 3.6 shows the tree T4 for ϕ = (x1 ∨ x2) ∧ (x̄1 ∨ x2 ∨ x3) ∧ (x̄2 ∨ x̄3).

We are now going to add cycles to our construction, and hence it will no longer be a

tree. For every even level of T4 except the bottom level there is exactly one vertex from

T1. There are no vertices from T1 on the odd levels. Every vertex v from T1 encodes some

clause Dv. We extend this encoding to T4 where if a vertex u in T4 is not in T1, then u

encodes the clause Dv for its closest descendant v from T . Note that v is unambiguously

61

x1 ∨ x̄2

x
3

x̄
3

x̄
2

x̄
2
∨

x̄
3

x̄
1
∨

x
2
∨

x
3

x̄
1

x1

x1 ∨ x2

x̄1

x̄2

x2

x̄1 ∨ x2

x
1
∨

x
2

x
1

x
2

x̄1 ∨ x̄2

root

Figure 3.4: Construction of the tree T2 for ϕ = (x1 ∨ x2) ∧ (x̄1 ∨ x2 ∨ x3) ∧ (x̄2 ∨ x̄3).

Vertices that are also in T1 are marked with hollow dots, and new vertices are

marked with black dots.

62

x1 ∨ x̄2

x
3

x̄
3

x̄
2

x̄
2
∨

x̄
3

x̄
1
∨

x
2
∨

x
3

x̄
1

x1

x1 ∨ x2

x̄1

x̄2

x2

x̄1 ∨ x2

x
1
∨

x
2

x
1

x
2

x̄1 ∨ x̄2

root

Figure 3.5: Construction of the tree T3 for ϕ = (x1 ∨ x2) ∧ (x̄1 ∨ x2 ∨ x3) ∧ (x̄2 ∨ x̄3).

Vertices that are also in T1 are marked with hollow dots, and new vertices on

subdivided edges are marked with gray dots.

63

x
3

x̄
3

x̄
2

x̄
2
∨

x̄
3

x̄
1
∨

x
2
∨

x
3

x̄
1

root

x1

x̄1

x1 ∨ x̄2x1 ∨ x2

x̄2

x2

x̄1 ∨ x2

x
1
∨

x
2

x
1

x̄1 ∨ x̄2

x
2

Figure 3.6: Construction of the tree T4 for ϕ = (x1 ∨ x2) ∧ (x̄1 ∨ x2 ∨ x3) ∧ (x̄2 ∨ x̄3).

Vertices that are also in T1 are marked with hollow dots, vertices added when

forming T3 are marked by gray dots, and those added when forming T4 are

marked by gray squares.

64

=⇒

S1

x̄ixi

Bal2 v

v from T1 v from T1

b
S2

Bal1 v

cacba

z

Figure 3.7: The decision widget for xi. The vertices v, a, b, and c shown in T4 on the

left correspond to the vertices with the same labels shown in G5 on the right.

The vertex labeled z is removed when forming G5.

defined since the only vertices in T4 with more than one child are from T1. Form a new

graph G5 from T4 by replacing every vertex v from T1, its three children, and its three

grandchildren with the decision widget shown in Figure 3.7. Note that the vertices v, a,

b, and c shown in T4 on the left correspond to the vertices with the same labels shown in

G5 on the right, and that the vertex labeled z is removed when forming G5. We say the

decision widget “encodes the truth value for xi” if v is on level i in T1. The vertices marked

S1 and S2 are “super-spreader” vertices to which we will attach h pendant vertices. The

value of h will be specified below. Additionally, if Dv does not encode the empty clause,

create two new vertices called Bal1 v and Bal2 v, where Bal1 v is on the level below v

and Bal2 v is two levels below. Connect Bal1 v to all of the vertices on the level of v that

encode a singleton clause that is the negation of some literal appearing in Dv. Similarly

connect Bal2 v to all of the vertices on the level below v that encode a singleton clause

that is the negation of some literal appearing in Dv. For instance, if Dv = x1 ∨ x̄3, then

Bal1 v is connected to vertices that encode x̄1 and x3. Such vertices must exist since the

singleton clauses were added to ϕ̃. Both Bal1 v and Bal2 v are also super-spreader vertices.

Figure 3.8 shows the graph G5 for the formula ϕ = (x1 ∨ x2) ∧ (x̄1 ∨ x2 ∨ x3) ∧ (x̄2 ∨ x̄3).

For each 1 ≤ i ≤ k − 1, form a new graph G6 from G5 by adding two new vertices

called Sync xi and Sync x̄i on the level below wi. Connect Sync xi to each vertex u on

65

Bal1

Bal2

Bal1

Bal2

Bal1

Bal1

Bal2

Bal1

Bal2

Bal2

Bal2

Bal1

Bal2

Bal1

Bal1

Bal2

x
3

x̄
3

x1 ∨ x2

root

x1

x̄1

x
1
∨

x
2

x2

x̄2

x
2

x̄
1

x
1

x̄
1
∨

x
2
∨

x
3

x̄
2

x̄
2
∨

x̄
3

x1 ∨ x̄2 x̄1 ∨ x̄2

x̄1 ∨ x2

Figure 3.8: Construction of the graph G5 for ϕ = (x1 ∨ x2) ∧ (x̄1 ∨ x2 ∨ x3) ∧ (x̄2 ∨ x̄3).

Vertices added when forming T3 are marked by gray dots, and those added

when forming T4 are marked by gray squares. Super-spreader vertices are

marked with a hollow diamond.

66

the level of wi where the encoding Du contains xi, and connect Sync x̄i to each vertex

u on the level of wi where the encoding Du contains x̄i. Both Sync xi and Sync x̄i

are also super-spreader vertices. Figure 3.9 shows the graph G6 for the formula ϕ =

(x1 ∨ x2) ∧ (x̄1 ∨ x2 ∨ x3) ∧ (x̄2 ∨ x̄3).

Mark all of the clause vertices from T1 as super-spreader vertices. Form a new graph

G7 from G6 by adding h pendant vertices to each super-spreader vertex. This finishes the

construction of the graph.

To see that the construction is polynomial in size, we bound the number of vertices

present in various stages of the construction. The formula ϕ̃ has at most � + 2k clauses,

and so level k of T1 has at most 3(�+ 2k) vertices since every vertex’s parent has a clause

vertex of ϕ̃ as a descendant. Thus, T1 has at most (k + 1) · 3(� + 2k) vertices, since there

are k + 1 levels.

T2 also has at most 3(� + 2k) vertices on each level, and the height of the tree is∑k−1
i=1 (qi + 1) + 1. Note that qi ≤ 3(� + 2k) since every level on T1 has at most 3(� + 2k)

vertices. Thus, T2 has height at most 3k(� + 2k + 1) and at most 9k(� + 2k + 1)2 vertices.

T3 has at most twice the number of vertices of T2, and T4 adds at most k · 3(� + 2k)

vertices. Thus, T4 has at most 18k(� + 2k + 1)2 + 3k(� + 2k) vertices.

For each vertex v of T1 replaced by a decision widget, at most three new vertices are

added to T4 to form G5. Thus,

|V (G5)| ≤ 18k(� + 2k + 1)2 + 3k(� + 2k) + 3 |V (T1)|

= 18k(� + 2k + 1)2 + 3k(� + 2k) + 9(k + 1)(� + 2k)

≤ 18k(� + 2k + 1)2 + (12k + 9)(� + 2k)

≤ 18k(� + 2k + 1)2 + 15k(� + 2k)

≤ 33k(� + 2k + 1)2

vertices, assuming that k ≥ 3 and � ≥ 2. To form G6 we add 2k vertices, and so

|V (G6)| ≤ 33k(� + 2k + 1)2 + 2k

≤ 34k(� + 2k + 1)2.

67

Bal1

Bal2

Bal1

Sync x2

Sy
nc

x
3

Sy
nc

x̄
3

Sync x̄1

Bal2

Bal1
Sync x1

Bal1

Bal2

Bal1

Bal2

Bal2

Bal2

Bal1

Bal2

Bal1

Bal1

Bal2

Sync x̄2

x
3

x̄
3

x1 ∨ x2

root

x1

x̄1

x
1
∨

x
2

x2

x̄2

x
2

x̄
1

x
1

x̄
1
∨

x
2
∨

x
3

x̄
2

x̄
2
∨

x̄
3

x1 ∨ x̄2 x̄1 ∨ x̄2

x̄1 ∨ x2

Figure 3.9: Construction of the graph G6 for ϕ = (x1 ∨ x2) ∧ (x̄1 ∨ x2 ∨ x3) ∧ (x̄2 ∨ x̄3).

Vertices added when forming T3 are marked by gray dots, and those added

when forming T4 are marked by gray squares. Super-spreader vertices are

marked with a hollow diamond.

68

The number s of super-spreader vertices in G6 is bounded by

s ≤ 4 |V (T1)| + (number of Sync vertices) + (number of clause vertices)

≤ 12(k + 1)(� + 2k) + 2k + �

≤ 17k(� + 2k).

By choosing h = 3 |V (G6)|, the number of vertices in G7 is

|V (G7)| = sh + |V (G6)|

= |V (G6)| (3s + 1)

≤ 34k(� + 2k + 1)2 [51k(� + 2k) + 1]

≤ 34k(� + 2k + 1)2 [51k(� + 2k + 1)]

= 1734k2(� + 2k + 1)3,

which is clearly polynomial in k and �.

Our instance of FIREFIGHTER is G7, the root from T1, and p = |V (G7)| − h/2.

Observe that a sequence a1, a2, . . . , at of firefighter placements saves |V (G7)|−h/2 vertices

if and only if no super-spreader vertex becomes burned, since then h − 1 of the pendant

children will also be burned.

We now wish to show that our construction is a reduction from SAT to FIREFIGHTER.

Suppose that a1, a2, . . . , at is a sequence of firefighter placements that saves at least n−h/2

vertices. We show that this sequence gives rise to a truth assignment τ that satisfies ϕ

by proving the following four claims.

Claim 3.16. Vertex aj is on level j.

Claim 3.17. The decision widgets that encode the truth value for xi are synchronized in

the sense that either the xi vertex is defended by a firefighter in all of the decision widgets

that encode the truth value for xi in which firefighters are placed, or x̄i is defended in all

of these widgets. This choice defines the truth value for xi in the truth assignment τ by

taking xi to be true if it is defended and by taking xi to be false if x̄i is defended.

Claim 3.18. Every vertex v below the level of Sync xi is saved if the clause encoded by

v is satisfied by the truth assignment τ restricted to the first i variables. If a vertex v is

69

below the level of Sync xi and no xi+1 or x̄i+1 from a decision widget for xi+1 appears

on a shortest path between v and the root, then v is burned if the clause encoded by v is

not satisfied by τ restricted to the first i variables.

Claim 3.19. The synchronization vertex Sync xi is defended if xi is false in τ and Sync x̄i

is defended if xi is true in τ .

Proof of claims. Let ji be the index of the level on which Sync xi appears, and define j0 to

be 0. Note that all decision widgets for xi appear on levels between levels ji−1 and ji. We

now proceed to prove the claims by induction on i. Suppose that i = 1. Then between

levels j0 + 1 and j1 inclusive, there are four super-spreader vertices: S1 and S2 in the

decision widget that encodes the truth value for x1 and the two synchronization vertices

Sync x1 and Sync x̄1. Since no super-spreader vertex may be burnt, a1 must be either

the vertex labeled x1 or x̄1, a2 the opposite super-spreader vertex in the decision widget

for x1, and a3 the opposite synchronization vertex. Thus, all four claims are satisfied for

i = 1 and levels j ≤ j1.

Now suppose that i > 1 and the claims hold for levels less than or equal to ji−1 and

decision widgets that encode the truth value for variables with index less than i. By

Claim 3.17, the firefighter sequence a1, a2, . . . , aji−1 defines a truth assignment τi−1 for

x1, x2, . . . , xi−1. If there is a decision widget that encodes the truth value for xi whose

vertices have not already been saved, we call the widget “under active consideration.”

Note that on each level j where ji−1 < j < ji, there are exactly two vertices from the

lower two levels of a decision widget that encodes the truth value for xi. Suppose that v is

the vertex at the top of the decision widget on level j− 1. If v does not encode the empty

clause, then there exist two balance vertices, Bal1 v on level j and Bal2 v on level j + 1.

This follows immediately from the construction. If v is not burned at the end of j − 1

time steps, then at least one of the vertices to which Bal1 v are connected is not satisfied

by the truth assignment τi−1 and hence by Claim 3.18 is burned at time j − 1. Thus, the

one firefighter available at time j must be used to defend Bal1 v on level j, and the one

firefighter available at time j + 1 must be used to defend Bal2 v on level j + 1. Suppose

that v is burned at the end of j − 1 time steps. Note that if v encodes the empty clause,

70

then the truth assignment τi−1 never satisfies the empty clause, and hence by Claim 3.18

is burned. Since v is burned, then, by construction, all of the vertices to which Bal1 v are

connected are satisfied by the truth assignment τi−1 and hence by Claim 3.18 are saved.

In order for S1 and S2 to be saved on level j + 1, there are only four possibilities for aj

and aj+1:

aj = xi, aj+1 = S2, or

aj = x̄i, aj+1 = S1, or

aj = S1, aj+1 = S2, or

aj = S2, aj+1 = S1.

Note that two firefighters are used for levels j and j + 1, and so there are no extra

firefighters. If either of the last two options is chosen, then fire will spread to vertices that

have xi in their encodings and to vertices that have x̄i in their encodings. Thus, both

Sync xi and Sync x̄i will be threatened with fire at the end of ji − 1 time steps, and only

one of the synchronization vertices can be saved by the one firefighter available at time

ji − 1. Thus, the last two options for aj and aj+1 are not possible.

Now suppose that two different choices of xi and x̄i are made in two decision widgets

that encode the truth value for xi. Then both Sync xi and Sync x̄i will be threatened

with fire at the end of ji − 1 time steps, and only one of the synchronization vertices can

be saved by the one firefighter available at time ji − 1. Thus all of the decision widgets

that encode the truth value for xi are synchronized, and by the construction, every vertex

below the level of Sync xi is saved if satisfied by τi. Thus all of the claims are established

for levels j where j ≤ ji and decision widgets that encode the truth value for variables

with index less than or equal to i.

By Claim 3.17 the sequence a1, a2, . . . , at of firefighter placements defines a truth

assignment τ for the variables x1, . . . , xk, and since the fire reaches no clause vertex,

every clause vertex is satisfied by τ . Hence, τ satisfies ϕ.

For the converse, we construct a sequence a1, a2, . . . , at of firefighter placements given

a truth assignment τ . As before, let ji be the index of the level on which Sync xi appears,

and define j0 to be 0. We construct the sequence iteratively. If x1 is true in τ, then set

71

a1 = x1, a2 = S2, and a3 = Sync xi. If x1 is false in τ , then set a1 = x̄1, a2 = S1, and

a3 = Sync x̄i. Recall that on each level j where ji−1 < j < ji, there are exactly two

vertices from the lower two levels of a decision widget that encodes the truth value for

xi. Suppose that v is the vertex at the top of the decision widget on level j − 1. By

Claim 3.18, either the vertices xi and x̄i on level j are saved or Bal1 v on level j is saved.

Similarly, either the vertices S1 and S2 on level j + 1 are saved or Bal2 v on level j + 1

is saved. If xi and x̄i on level j are not saved, then choose aj to be xi if xi is true in

τ or choose aj to be x̄i if xi is false in τ . If Bal1 v is not saved, then choose aj to be

Bal1 v. If S1 and S2 on level j + 1 are not saved, then choose aj+1 to be S2 if xi is true

in τ or choose aj+1 to be S1 if xi is false in τ . If Bal2 v is not saved, then choose aj+1

to be Bal2 v. For level ji, choose aji to be Sync x̄i if xi is true in τ or choose aji to be

Sync xi if xi is false in τ . By Claim 3.18, the fire reaches a clause vertex v only if no

vertex in a decision widget is defended on the shortest path from v to the root. However,

if τ satisfies ϕ, then for each clause vertex v, there is some xi or x̄i vertex on the shortest

path from v to the root that is defended. Here, xi or x̄i is some variable appearing in the

clause Dv encoded by v that is set to true by τ . Hence, if τ satisfies ϕ, then the sequence

a1, a2, . . . , at saves all of the super-spreader vertices, including the clause vertices, and so

saves |V (G7)| − h/2 vertices. �, Theorem 3.15.

3.3.1 Number of Vertices and Average Degree Comparison

In MacGillivray and Wang’s proof of the NP-completeness of FIREFIGHTER, their con-

struction has a large number of vertices and an average degree that asymptotically is four.

The construction used in our proof has fewer vertices and the average degree asymptot-

ically is two, which for some models is more realistic. We show here the calculations of

these parameters.

MacGillivray and Wang proved that FIREFIGHTER is NP-complete by reducing from

the problem Exact Cover with 3-sets. In this problem, a set X and a collection C of 3-

subsets of X are given, where |X| = 3q and |C| = c, and the question is whether a

subcollection of C of size q exists that exactly covers X. Let d be the number of disjoint

72

pairs in C. Then MacGillivray and Wang’s construction of a graph from an instance of

this problem has n1 vertices and e1 edges, where

n1 = 1 + cq + 10q5d

e1 = cq + 2 · 10q5d

average degree =
2e1

n1
→ 4 as q → ∞.

In our proof, we reduce SAT to FIREFIGHTER. If ϕ is a boolean formula in conjunc-

tive normal form with k variables and � clauses, then our construction has n2 vertices,

where

n2 ≤ 1734k2(� + 2k + 1)3.

To calculate the average degree, we divide the vertices of the graph into super-spreader

vertices, pendants of super-spreader vertices, and other vertices. Note that all vertices

except super-spreader vertices have degree at most four, and super-spreader vertices are

connected to h pendant vertices and at most 2k other vertices. There are s super-spreader

vertices, h pendant vertices attached to each super-spreader vertex, and |V (G6)|−s other

vertices, so

average degree ≤ (h + 2k)
s

n2
+ 1

sh

n2
+ 4

|V (G6)| − s

n2

=
2sh + 2ks + 4 (|V (G6)| − s)

n2

= 2
sh + |V (G6)|

n2
+

2ks − 4s + 2 |V (G6)|
n2

= 2 +
2ks − 4s + 2 |V (G6)|

(3s + 1) |V (G6)| , since h = 3 |V (G6)|.

Note that s > k and s > �. Observe that |V (G6)| ≥ ck2 for some constant c > 0 by

considering the singleton literals added to ϕ̃. Thus,

2ks − 4s + 2 |V (G6)|
(3s + 1) |V (G6)| → 0

as k → ∞ and � → ∞, and so the the average degree of our construction tends to 2 as

k → ∞ and � → ∞.

73

3.4 Miscellaneous Results and Future Work

In this chapter we present some miscellaneous results about trees and some directions for

future research.

3.4.1 Trees

Trees form a natural class of graphs on which to consider the vaccination and firefighter

problems because each defended vertex immediately saves its descendants. The low con-

nectivity of trees means they are not as relevant in modeling the interaction of individuals.

However, if each vertex represents a larger group that is internally well-connected and has

few connections to other groups, then a tree structure is more reasonable. Such examples

arise in disease models when considering a household as one vertex. If one individual

contracts the disease, then all of the other members of his or her household are very likely

to also contract the disease and become infectious. Thus it is reasonable to treat the

household as a single unit.

We consider the firefighter problem on trees when the initial outbreak of fire begins

at a single root vertex r and when only one vertex can be defended by a firefighter per

time step. Note, however, that all of the results extend in a natural way to defending f

vertices per time step.

Recall that the vertices in a tree at distance i from the root r are said to be on level i.

Lemma 3.20 (MacGillivray and Wang, Hartnell and Li). If a1, a2, . . . is an optimal

firefighter sequence, then ai is on level i.

Proof. Since at time i all vertices higher than level i have either been burned or saved, ai

is on level i or lower. Suppose that i is the least index where ai is not on level i. Then

no vertices are defended on level i, and defending ai’s parent instead of ai results in a

firefighter sequence that saves at least one more vertex than sequence a1, a2, This

contradicts the optimality of a1, a2, . . ., and so ai is on level i.

When a vertex v is defended, all of its descendants are immediately saved. Let wt(v)

denote the number of vertices that are saved (including v) when v is defended. We shall

74

present two different methods for approximating the maximum number of vertices that

can be saved in a given tree.

3.4.1.1 Greedy Algorithm

A natural method for generating a firefighter sequence is the greedy algorithm: ai is

chosen to be a vertex on level i that has not been saved and that has maximum weight.

As shown in Theorem 3.22, the greedy algorithm does not always produce an optimal

firefighter sequence. However, we are able to provide some guarantee on the greedy

algorithm’s performance. The proof given here is essentially the same as that of Hartnell

and Li in [10] but with different presentation.

Theorem 3.21 (Hartnell and Li). On trees, the greedy algorithm generates a firefighter

sequence that saves at least half as many vertices as an optimal firefighter sequence.

Proof. 2 Fix an optimal firefighter sequence b1, b2, . . . , bk that saves the largest number

of vertices, and let g1, g2, . . . , g� be the vertices selected by the greedy algorithm, where

bi and gi are the vertices defended on level i in the respective sequences. Our approach

will be to “charge” each vertex bi defended in the optimal sequence to a vertex defended

by the greedy algorithm. To visualize the concept, we construct a bipartite graph as in

Figure 3.10 with the vertices b1, b2, . . . , bk on the right side and the vertices g1, g2, . . . , g�

on the left side. An outgoing arc from bi to gj indicates that bi is being charged to gj ,

which we denote by bi → gj . To determine the chargings, compare wt(bi) to wt(gi). If

wt(bi) ≤ wt(gi), then the greedy algorithm is doing well compared to the optimal, and

we charge bi to gi. If wt(bi) > wt(gi), then bi must already be saved, or else the greedy

algorithm would pick bi since it has higher weight. Let gj be the ancestor of bi defended

by the greedy algorithm, and charge bi to gj .

Now we relate the total weight of vertices saved by this optimal sequence to that of

the greedy algorithm by using the standard combinatorial technique of counting in two

2This version of the proof is based on an idea of Mike Saks.

75

Greedy Optimal

g4

g3

g1

g2

b1

b2

b4

b3

wt(gi) < wt(bi)

wt(gi) ≥ wt(bi)

Figure 3.10: Pictorially “charging” bi to gj .

different ways:

of vertices saved by optimal sequence =
k∑

i=1

wt(bi)

=
�∑

j=1

⎛⎝ ∑
i:bi→gj

wt(bi)

⎞⎠ .

To bound
∑

i:bi→gj
wt(bi), note that for i = j, bi is a descendant of gj , and the total

weight of all vertices defended under gj is at most the weight of gj (the most number of

vertices who can be saved below gj is the number of vertices saved by defended gj). Thus,∑
i:bi→gj

wt(bi) ≤ wt(bj) +
∑

i�=j:bi→gj

wt(bi)

≤ wt(gj) + wt(gj)

= 2wt(gj),

where we use the observation that in an optimal firefighter sequence, no bi is a descendant

of any other bm. Thus,

of vertices saved by optimal sequence =
�∑

j=1

⎛⎝ ∑
i:bi→gj

wt(bi)

⎞⎠
≤

�∑
j=1

2wt(gj)

= 2(# of vertices saved by the greedy algorithm).

76

p pendant vertices

path of length k

k children

Figure 3.11: Construction showing that asymptotically the greedy algorithm saves 1/2 of

the number of vertices saved by an optimal firefighter sequence.

Hence, the greedy algorithm saves at least half as many vertices as an optimal firefighter

sequence.

Our proof of the following theorem is different than Hartnell and Li’s, and provides

some extra insight into the difficulties of strengthening the greedy algorithm.

Theorem 3.22 (Hartnell and Li). Theorem 3.21 is tight, i.e., there are graphs such

that the proportion of vertices the greedy algorithm saves compared to an optimal firefighter

sequence is arbitrarily close to 1/2.

Proof. The graph shown in Figure 3.11 has n = 1 + 1
2k(k + 1) + kp vertices. The greedy

77

algorithm (which always defends the rightmost vertex) saves⎧⎪⎪⎨⎪⎪⎩
k
2

(
k
2 + 1

)
+ k

2p + 1, if k is even,⌊
k
2

⌋ (⌊
k
2

⌋
+ 1
)

+
⌈

k
2

⌉
+
⌈

k
2

⌉
p, if k is odd,

vertices, whereas in the optimal firefighter sequence (which always defends the leftmost

vertex), kp+k vertices are saved. Thus, assuming p � k and taking p large, the proportion

of vertices the greedy algorithm saves is arbitrarily close to 1/2 of the vertices that an

optimal firefighter sequence saves.

It is tempting to try to improve the greedy algorithm by increasing its power while

retaining polynomial time. For instance, we could choose a1 by finding the sequence

a1, a2, . . . , ak that maximizes the weight of the first k vertices in the sequence. Or we

could use the greedy algorithm as an approximation for trees of small height in a re-

cursive algorithm: if the height of T is within k of the height of the original tree, then

recursively calculate a vaccination sequence; otherwise, use the greedy algorithm as an

approximation. Unfortunately, the same set of examples described in Theorem 3.21 show

that asymptotically none of these methods save more than 1/2 of the vertices saved by

an optimal firefighter sequence. An open question is to find an approximation algorithm

which guarantees saving a greater fraction of the optimal number of vertices than 1/2.

3.4.1.2 Linear Programming Approximations for the Firefighter Problem on

Trees

MacGillivray and Wang [11] presented an integer program for finding an optimal firefighter

sequence a1, a2, . . . for a tree. To each vertex v we associate a boolean variable x(v) that

indicates whether v is defended by a firefighter, and we wish to maximize the total number

of vertices saved. Let the weight wt(v) of v denote the number of vertices saved by a

firefighter defending v. Thus, wt(v) is equal to the number of descendants of v plus 1. To

ensure that no double-counting occurs in the objective function, we require that no vertex

be defended that is already saved. We enforce this requirement by adding the constraint

that the sum of x(v) for all ancestors v of a given vertex u and including u is at most

78

1. It is sufficient to add this constraint only for leaf vertices, since if u is a leaf, then the

constraint for all ancestors of u is implied by the constraint for u. Lemma 3.20 gives the

constraint that the sum of x(v) for all of the v on a given level is at most 1. We thus have

the following integer program of MacGillivray and Wang. Here, we write v � u or u ≺ v

if v is an ancestor of u, and we write v � u or u � v if v is an ancestor of u or if v = u.

maximize
∑

v∈V (G)

wt(v)x(v)

subject to:
∑

v on level �

x(v) ≤ 1, for each level �, (3.22)

∑
v
u

x(v) ≤ 1, for each leaf u, (3.23)

x(v) ∈ {0, 1}, for each vertex v. (3.24)

By relaxing condition (3.24) that x(v) is boolean we obtain a linear program. The

linear programming (LP) optimal m∗ provides an upper bound to the integer programming

(IP) optimal m. In general, the linear program does not have an integral optimal, and

so the LP optimal is strictly greater than the IP optimal. Figure 3.12 shows an example

where this occurs. It is an open question to bound the size of the “integrality gap,” the

difference between the linear programming and integer programming optimals.

MacGillivray and Wang showed that by adding the non-linear constraints x(v)x(u) = 0

for every non-root vertex v and every descendant u of v, then the optimal solution is

integral. In general, solving such a non-linear optimization problem is hard. We take

a different approach: by adding additional constraints, we will attempt to narrow the

integrality gap.

The effect of the leaf constraint (3.23) is that if a vertex v is defended, then none of

v’s descendants can also be defended. It is tempting to instead use the constraint

x(u) +
∑
v≺u

x(v) ≤ 1, for each vertex u. (3.25)

However, constraint (3.25) is too restrictive, since it also forbids two descendants on

different levels being defended when v is not defended. A weaker approach is to only

include in the constraint descendants that are themselves mutually exclusive. All of v’s

79

1/2

root

1/2

1/2

1/2

1/2

1/2

Figure 3.12: In this example on 13 vertices, the LP optimal is 8.5, whereas the IP optimal

is 8. The nonzero values of x(v) for the LP optimal solution appear next

to the vertices, and the optimal firefighter sequence is indicated with black

vertices.

descendants on a given level is one such set. Thus, we add the constraint

x(u) +
∑
v�u

v on level i

x(v) ≤ 1, for each vertex u and each level i greater than the level of u.

(3.26)

Note that with this constraint, we still need the leaf constraint. When using con-

straint (3.26) on the tree shown in Figure 3.12, the LP optimal is the same as the IP

optimal. However, Figure 3.13 shows an example where there is still an integrality gap

using constraint (3.26). The tree shown in Figure 3.13 does suggest adding u’s ancestors

into the summation as well. Thus, we have the constraint

∑
v
u

x(v) +
∑
v�u

v on level i

x(v) ≤ 1, for each vertex u and each level i below u. (3.27)

When using constraint (3.27) on the tree in Figure 3.13, the LP optimal is the same as

the IP optimal. However, Figure 3.14 shows an example where there is still an integrality

gap using constraint (3.27).

For small trees, the LP optimal when using constraint (3.27) is the IP optimal. In

80

root

1/2

1/2

1/4

1/2

1/4

1/41/4 1/4 1/4

Figure 3.13: In this example on 12 vertices, the LP optimal when using constraint (3.26)

is 7.5, whereas the IP optimal is 7. The nonzero values of x(v) for the LP

optimal solution appear next to the vertices, and the optimal vaccination

sequence is indicated with black vertices.

1/2

1/2 1/2

1/2

1/2

root

1/2

Figure 3.14: In this example on 13 vertices, the LP optimal when using constraint (3.27)

is 7.5, whereas the IP optimal is 7. The nonzero values of x(v) for the LP

optimal solution appear next to the vertices, and the optimal vaccination

sequence is indicated with black vertices.

81

fact, we have verified this by computer for trees with up to 11 vertices. We are thus led

to

Conjecture 3.23. The tree in Figure 3.14 is the smallest tree such that the LP optimal

when using constraint (3.27) is not the IP optimal.

For large trees, the LP optimal is very often the IP optimal, and when different

is very close. This observation is based on computer experimentation. Approximately

1.68 million trees with 100 vertices were randomly generated, and the LP optimal of

MacGillivray and Wang’s program, the LP optimal with constraint (3.27), and the IP

optimal were calculated. A random tree is generated by starting with the root vertex and

adding vertices one at a time, where a vertex is connected to a vertex in the existing tree

chosen uniformly at random. Of these trees, 5.22% had the LP optimal of MacGillivray

and Wang’s program greater than the IP optimal, and the difference was at most 6.34%

of the IP optimal. When using constraint (3.27), 0.70% had the LP optimal greater than

the IP optimal, and the difference was at most 3.73% of the IP optimal. This data leads

us to

Conjecture 3.24. The ratio of the LP optimal to the IP optimal, with or without con-

straint (3.27), is bounded for all trees.

3.4.1.3 Defending One Child Per Burnt Vertex in Trees

One reason that FIREFIGHTER for trees is a difficult problem is because the firefighter

response requires a global decision. If we replace the global decision with a local decision,

then the problem becomes much easier. In this subsection only, we consider a firefighter

response where at each time step we can defend one non-infected, non-defended neighbor

of each infected vertex. Formally, at time 0, the root r of the tree initially catches fire.

Then we may defend one child a1 of r. The fire then spreads to the non-defended children

of the root. We may then defend one child of each of those burnt vertices. Let Ai

denote the set of vertices initially defended at time i. We thus have a firefighter sequence

A1, A2, . . . , Ah of sets of vertices. The sequence contains a set for every level i from 1 to

82

the height h of the tree, but some sets may be empty. Since vertices that are defended

must be adjacent to infected vertices, we immediately have the following lemma.

Lemma 3.25. If a firefighter sequence A1, A2, . . . , Ah is optimal, then the vertices in Ai

are on level i.

As in the global firefighter response, a natural method of generating a firefighter se-

quence is the greedy algorithm: if u is a burnt vertex on level i− 1, then we include into

Ai a child v of u that has maximum weight.

Theorem 3.26. On trees, the greedy algorithm generates a firefighter sequence that saves

at least half as many vertices as saved by an optimal firefighter sequence.

Proof. We use the same charging technique used in the proof of Theorem 3.21. Fix an

optimal firefighter sequence B1, B2, . . . , Bk that saves the largest number of vertices, and

let G1, G2, . . . , G� be the vertices selected by the greedy algorithm, where Bi and Gi are

the sets of vertices defended on level i in the respective sequences. Let b be a vertex in Bi.

If there is an ancestor g of b that is defended by the greedy algorithm, then we charge b to

g. If not, then the greedy algorithm defends a child g′ of b’s parent p that has maximum

weight among the children of p. Specifically, wt(b) ≤ wt(g′). In this case, we charge b to

g′. The rest of the proof is the same as the proof of Theorem 3.21.

It is unknown whether Theorem 3.26 is tight; most likely it is not. Figure 3.15 shows an

example where the greedy algorithm is not optimal. It is an open problem to determine a

constant ρ where the greedy algorithm saves at least a fraction ρ of the number of vertices

saved by an optimal firefighter sequence and where this bound ρ is tight.

We can also formulate the problem of finding an optimal firefighter sequence when

defending one child per burnt vertex as an integer program. The integer program is very

similar to the program for the global firefighter response: to each vertex v we associate a

boolean variable x(v) that indicates whether v is in the firefighter sequence, and we wish

to maximize the total number of vertices saved. We also need the leaf constraint (3.23)

to ensure that no double-counting occurs in the objective function. We also have the

83

root

G2

G1

Figure 3.15: When defending one child per burnt vertex in this tree, the greedy algorithm

is not optimal. The greedy algorithm defends the square vertices G1 and G2,

saving 5 vertices, while the optimal firefighter sequence marked with black

dots saves 6 vertices.

constraint that at most one child per parent may be defended. We thus have the following

integer program:

maximize
∑

v∈V (G)

wt(v)x(v)

subject to:
∑

v a child of u

x(v) ≤ 1, for each vertex u, (3.28)

∑
v
u

x(v) ≤ 1, for each leaf u, (3.29)

x(v) ∈ {0, 1}, for each vertex v. (3.30)

In general, the LP relaxation is not the IP optimal. Figure 3.16 shows an example where

this is the case.

We can also use dynamic programming to find an optimal firefighter sequence in the

case of trees when defending one child per burnt vertex.

84

1/2 1/2

root

1/2

1/2

1/2

1/2

Figure 3.16: This example demonstrates the model of one defended child per burnt vertex.

In this example on 7 vertices, the LP optimal is 5, whereas the IP optimal

is 4. The nonzero values of x(v) for the LP optimal solution appear next

to the vertices, and the optimal firefighter sequence is indicated with black

vertices.

Dynamic Programming Algorithm When Defending One Child Per Burnt

Vertex in Trees

Input: A rooted tree T of height h with root r.

Output: A firefighter sequence A1, A2, . . . , Ah.

Recursion Step: If T is of height 1, then set A1 := {v}, for an arbitrarily chosen child

v of the root.

If h > 1, then for each child u of the root, let Tu be the subtree rooted at u. For

each subtree, recursively calculate a firefighter strategy Au
2 , Au

3 , . . . , Au
h. Choose the

child v of the root such that the number of vertices saved by the firefighter sequence

A1 = {v}, A2 =
⋃

u a child of the root
u �=v

Au
2 , . . . , Ah =

⋃
u a child of the root

u �=v

Au
h

is maximum.

This dynamic programming algorithm can be implemented in polynomial time by saving

and reusing the optimal firefighter sequence for the subtree rooted at each vertex x. In

fact, the algorithm can be run as a one-pass “bottom-up” algorithm, where Ai is calculated

85

beginning at i = h and decrementing i. The same firefighter sequence is optimal for Tx

independent of the firefighter placements made higher in the tree, assuming that x is

not saved. This property is not true for the global firefighter response, which is why the

dynamic programming algorithm in that case requires exponential time.

Theorem 3.27. The firefighter sequence produced by the dynamic programming algorithm

is optimal.

Proof. We proceed by induction on the height h of the tree T . For h = 1, the result

is straightforward. So suppose that h > 1. Let B1 = {w}, B2, . . . , Bh be an optimal

firefighter sequence, and let A1 = {v}, A2, . . . , Ah be the firefighter sequence produced by

the dynamic programming algorithm. Consider each subtree Tu rooted at a child u of the

root. Define Bu
i = Bi ∩ V (Tu) for u = w and 2 ≤ i ≤ h, and let Av

i (2 ≤ i ≤ h) be the

firefighter sequence recursively calculated by the dynamic programming algorithm for the

subtree Tu. Notice that Au
i = Ai ∩ V (Tu) for u = v. The height of Tu is at most h − 1,

and by induction the firefighter sequence Au
2 , Au

3 , . . . , Au
h is optimal. Thus, for any u = w,

the sequence Au
2 , Au

3 , . . . , Au
h saves as many vertices in Tu as Bu

2 , Bu
3 , . . . , Bu

h .

Form the firefighter sequence A′
1, A

′
2, . . . , A

′
h by choosing w for A1 instead of v. Thus,

A′
1 = {w}, A′

2 =
⋃

u a child of the root
u �=w

Au
2 , . . . , A′

h =
⋃

u a child of the root
u �=w

Au
h.

By the way v was chosen, the sequence A1, A2, . . . , Ah saves at least as many vertices as

A′
1, A

′
2, . . . , A

′
h. But the number of vertices saved by A′

1, A
′
2, . . . , A

′
h is

wt(w) +
∑

u a child of the root
u �=w

(# of vertices saved in Tu by Au
2 , Au

3 , . . . , Au
h),

which is at least as many vertices as B1, B2, . . . , Bh saves. Thus, the sequence A1, A2, . . . , Ah

saves at least as many vertices as B1, B2, . . . , Bh, and so A1, A2, . . . , Ah is an optimal fire-

fighter sequence for T .

3.4.2 Other Questions

There are many avenues for future work in models of responses to disease and fire spread.

For infinite graphs, we can ask the same question as for the infinite square grids: What is

86

the minimum number of firefighters needed per time step so that only a finite number of

vertices are burned? Percolation is a related topic whose methods may also apply here.

For trees, it would be interesting to have an exact characterization of when the greedy

algorithm is optimal and when it is not. Of course, bounding the size of the integrality

gap as stated in Conjecture 3.24 is an open question. Finding more restrictive constraints

that additionally reduce the integrality gap would also be interesting.

From the viewpoint of a bioterrorist or arsonist, one would like to find the most

vulnerable vertices in a graph G. A vertex v is most vulnerable if a disease outbreak

starting at v infects the most vertices G given an optimal vaccination response. Can

the most vulnerable vertices in a graph be determined without knowing the optimal

vaccination response? Perhaps they could then be preemptively vaccinated. From the

viewpoint of a network architect, we would like to design graphs that are resistant to such

attacks. Similar questions can also be asked if there are k initial outbreaks of disease.

The inclusion of weights on vertices is a natural generalization. For instance, some

people such as health care workers might be more important to protect since they are

necessary to implement the vaccination strategy. In the firefighter model, areas with

homes might be more important than unpopulated areas. The inclusion of speeds on

edges is another natural generalization, since the rate of transmission of a disease might

differ between pairs of individuals or since the rate of fire spread might vary between

two regions, for instance, because of density of underbrush. The question with these

extensions is still to determine a vaccination or firefighter response that saves the most

vertices, but here “most” means according to the weights on vertices.

Finally, MacGillivray and Wang [11] observed that the firefighter problem can be

viewed as a one-player game. Suppose that the fire has a choice, too: the fire can only

spread to d neighbors each time step. This forms a two-player game. What strategy

should the firefighters use to minimize the number of burned vertices?

87

References

[1] R. Durrett and S. A. Levin, Can Stable Social Groups Be Maintained By Preferential
Imitation Alone?, Journal of Economic Behavior and Organization, to appear.

[2] J. M. Epstein, D. A. T. Cummings, S. Chakravarty, R. M. Singa, and D. S. Burke,
Toward a Containment Strategy for Smallpox Bioterror: An Individual-Based Com-
putational Approach, The Brookings Institute Center on Social and Economic Dy-
namics Working Paper No. 31, December 2002.

[3] S. Eubank, H. Guclu, V. S. A. Kumar, M. V. Marathe, A. Srinivasan, Z. Toroczkai,
N. Wang, and the EpiSims Team, http://episims.lanl.gov, April 22, 2004.

[4] S. Finbow, B. Hartnell, Q. Li, and K. Schmeisser, On Minimizing the Effects of Fire
or a Virus on a Network, J. Combin. Math. Combin. Comput., 33 (2000), 311-322.

[5] S. Finbow, A. King, G. MacGillivray, and R. Rizzi, The Firefighter Problem for
Graphs of Maximum Degree Three, manuscript, 2004.

[6] P. Fogarty, Catching the Fire on Grids, M.Sc. Thesis, Department of Mathematics,
University of Vermont, 2003.

[7] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, W. H. Freeman and Company, New York, 1979.

[8] GNU Linear Programming Kit, http://www.gnu.org/software/glpk/glpk.html.

[9] B. Hartnell, Firefighter! An Application of Domination, presentation, Twentieth
Conference on Numerical Mathematics and Computing, University of Manitoba in
Winnipeg, Canada, Sept. 1995.

[10] B. Hartnell and Q. Li, Firefighting on Trees: How Bad is the Greedy Algorithm?,
Congressus Numerantium, 145 (2000), 187-192.

[11] G. MacGillivray and P. Wang, On the Firefighter Problem, J. Combin. Math. Com-
bin. Comput., 47 (2003), 83-96.

[12] J. M. Read and M. J. Keeling, Disease Evolution on Networks: The Role of Contact
Structure, Proc. Roy. Soc. Lond. B, 270 (2003), 699-708.

[13] P. Wang and S. A. Moeller, Fire Control on Graphs, J. Combin. Math. Combin.
Comput., 41 (2002), 19-34.

88

Chapter 4

The Elimination Procedures for the Competition Number

and the Phylogeny Number

4.1 Introduction

Given an acyclic digraph D, the competition graph C(D) is defined to be the undirected

graph with V (D) as its vertex set and where vertices x and y are adjacent if there exists

another vertex z such that the arcs (x, z) and (y, z) are both present in D. Competition

graphs were introduced by Cohen [1] to study ecosystems. The vertices of an acyclic

digraph D, known as a food web, represent species, and the arc (x, z) indicates that z is a

prey of x. An edge exists between two vertices x and y in C(D) if and only if x and y have

a common prey. In addition to ecology, competition graphs have also found application in

studying communication over noisy channels, interfering radio transmissions, and models

of complex economic and energy problems – see the discussions in Raychaudhuri and

Roberts [9] and Roberts [12]. Lundgren [6], Roberts [10], and Kim [3] survey the extensive

literature of competition graphs.

In [11] Roberts noted that for any graph G, G along with r isolated vertices is the

competition graph of some acyclic digraph if r is sufficiently large. The competition

number k(G) is defined to be the least such r. In general, determining the competition

number of a graph is difficult: Opsut [7] showed that this problem is NP-complete. Kim

and Roberts in [11] and [4] have determined the competition number of graphs with 0,

1, and 2 triangles, but for few other graph classes is the competition number known. As

another approach, Roberts considered using an elimination procedure to calculate k(G).

An elimination procedure takes as input G and an ordering O = v1, . . . , vn of the vertices

of G and produces an acyclic digraph D such that C(D) = G∪Ir; that is, the competition

89

graph of D is G along with r isolated vertices. The procedure “eliminates” each vertex in

order by ensuring that all of the edges incident on the vertex will appear in C(D). The

goal is to create an elimination procedure that for some ordering O outputs an acyclic

digraph D where |V (D) \ V (G)| = k(G).

Elimination procedures which seek to determine a graph-theoretical parameter through

step-wise elimination of vertices have various applications in graph theory. A common

example are algorithms for determining if a graph is chordal by finding perfect elimination

orders such that each vertex is “simplicial” in the graph of remaining vertices. Roberts

[11] was led to consider an elimination procedure for the competition number through

variants of perfect elimination used by Parter [8], Rose [15], and Golumbic [2] in connection

with numerical analysis. Here elimination procedures are used to find a good order for

eliminating variables during Gaussian elimination of a matrix.

Opsut [7] found an example of a graph G where Roberts’ original elimination proce-

dure does not calculate the competition number k(G), thus giving a counterexample to

Roberts’ conjecture that the procedure always calculates k(G). Kim and Roberts [5] then

modified the elimination procedure and asked whether their modified procedure works for

all graphs. They were able to show that the modified version calculates the competition

number for a large class of graphs, the so-called “kite-free” graphs.

In this chapter, we present a new, simpler proof of Kim and Roberts’ theorem that

their elimination procedure calculates the competition number for kite-free graphs. We

also present a graph L where Kim and Roberts’ elimination procedure does not always

calculate the competition number, in the following sense: for each order O of vertices of L,

the elimination procedure can produce an acyclic digraph with more than k(L) additional

vertices.

Phylogeny graphs are related to competition graphs, and were introduced by Roberts

and Sheng [13] from an idealized model for reconstructing phylogenetic trees. Given an

acyclic digraph D, the phylogeny graph P (D) is defined to be the undirected graph with

V (D) as its vertex set and with adjacencies as follows: two vertices x and y are adjacent

if one of the arcs (x, y) or (y, x) is present in D, or if there exists another vertex z such

90

that the arcs (x, z) and (y, z) are both present in D. Roberts and Sheng noted that

for any simple graph G, G is an induced subgraph of P (D) for some acyclic digraph D.

The phylogeny number p(G) is the least number r such that D has |V (G)| + r vertices.

Determining the phylogeny number of a graph was shown by Roberts and Sheng [13] to

be NP-complete, and they also determined the phylogeny number for connected graphs

with 0, 1, and 2 triangles [14].

Phylogenetic tree reconstruction deals with establishing evolutionary relationships be-

tween different species. A phylogenetic tree is a rooted directed tree, where the species are

vertices and an arc (x, z) indicates that z is a direct ancestor of x. Given a set of species

and a measure of similarity between each pair of species, we wish to create a phylogenetic

tree where similar species are closely related. The concept of “closely related” can be

defined in many ways, and Roberts and Sheng choose the tree metric where the distance

between x and y is the shortest distance to a common ancestor. If the similarity measure

is purely “similar” or “not similar,” then we can encode the similarity relationship in a

graph G, where two vertices are adjacent if and only if the corresponding species are simi-

lar. If we relax the condition of finding a tree, then finding a phylogenetic acyclic digraph

D for the set of species turns out to be the same as finding an acyclic digraph D such that

P (D) = G. The number of assumptions made in defining phylogeny graphs considerably

removes the concept from the original biological motivation. However, phylogeny graphs

give a starting point for studying phylogenetic tree reconstruction, and the related com-

petition graphs give rise to many interesting mathematical techniques and questions for

phylogeny graphs. One question that we address in section 4.5 is the construction and

analysis of an elimination procedure. For a survey on competition graphs and phylogeny

graphs and their relation, see Roberts [10].

Both of the results mentioned above for competition numbers carry over to phylogeny

numbers: we present an analogous elimination procedure for the phylogeny number, show

that it calculates the phylogeny number for kite-free graphs, and show that the procedure

does not calculate the phylogeny number for the graph L. The phylogeny case is simpler

than the competition case because of how vertices are “handled” when eliminated, and

91

allows greater insight into the concepts underlying these results.

We mention here that there are many other variants of the competition number besides

the phylogeny number. The common enemy graph of a digraph D = (V,A) is the graph

with vertex set V and where vertices x and y are adjacent if and only if there is a vertex

a in D such that (a, x) and (a, y) are arcs of D (a is a common enemy or predator of x

and y). In the niche graph of D, x and y are adjacent if and only if there is a vertex a

such that (a, x) and (a, y) are arcs of D or there is a vertex b such that (x, b) and (y, b)

are arcs of D (x and y either have a common predator a or a common prey b). In the

competition-common enemy graph of D, x and y are adjacent if and only if there is a

vertex a such that (a, x) and (a, y) are arcs of D and there is a vertex b such that (x, b)

and (y, b) are arcs of D (x and y have both a common prey and a common predator).

The common enemy number, niche number, and competition-common enemy number of a

graph G can be defined analogously to competition number, and we refer the reader to [10]

for a survey of results about these graph parameters. No one has considered elimination

procedures for these parameters yet, and it would be interesting to see what results about

the elimination procedures for the competition number and the phylogeny number carry

over.

Note that the focus of creating elimination procedures is not on efficiency, since cal-

culating the competition number or the phylogeny number with an elimination procedure

requires n! runs (one for each ordering of the vertices). As mentioned above, calculating

both the competition number and the phylogeny number have been shown to be NP-

complete. Instead, the focus is on whether an elimination procedure could be created

that exactly calculates the relevant number. This is interesting both for historical reasons

and because many of the practical examples are relatively small, exactness is sometimes

more important than efficiency. Our results provide a better understanding of why Kim

and Roberts’ procedure is exact for kite-free graphs, and the counterexample suggests

that creating an elimination procedure that is exact for all graphs might be much more

difficult than originally thought.

In this chapter, the graph G that we wish to calculate the competition or phylogeny

92

number of need not be connected. For convenience, we will sometimes also describe a

subgraph H of a graph G only as “consisting of” certain edges of G. It is understood that

H has no isolated vertices: the vertices of H are only the endpoints of edges in H.

4.2 The Elimination Procedure for the Competition Number

We will first formalize our definitions and describe Kim and Roberts’ elimination pro-

cedure using our terminology; however, its workings are the same as the elimination

procedure described in [5].

Definition 4.1. Let D = (V,A) be an acyclic digraph. The competition graph C(D) is a

simple graph with vertex set V where two vertices x and y are adjacent in C(D) if there

exists a vertex z such that both (x, z) and (y, z) are arcs in D. From the ecological origins

of competition graphs, z is known as a prey of x if (x, z) is an arc of D.

Definition 4.2. For a simple graph G, the competition number k(G) is the least number

r such that there exists an acyclic digraph D on |V (G)| + r vertices where C(D) is G

along with r isolated vertices.

Before presenting the formal description of the elimination procedure for the compe-

tition number, we first give an informal description. Given a graph G and an ordering

O = v1, . . . , vn of the vertices of G, we eliminate each vertex iteratively, in the process

building up an acyclic digraph D with the desired properties. When eliminating vertex

vi, we “cover” every edge incident to vi that has not been covered in a previous iteration.

By “covering” an edge e, we mean that the appropriate arcs and possibly vertices have

been added to D so that e is an edge in C(D). The subgraph Gi is a spanning subgraph

of G that contains the edges of G that have not been covered in an iteration prior to the

ith iteration. The subgraph G′
i consists of the edges of Gi that are incident on vi, and so

the edges of G′
i must be covered in the ith iteration. Cliques are used to maximize the

coverage of G′
i using the least number of added vertices. If C is a clique, then by adding

arcs in Di from the vertices of C to a common vertex x, all of the edges in C appear in

C(Di). Thus, all of the vertices in C are “preying” on the same “species” x, and hence

93

competing with each other.

The improvement of Kim and Roberts’ modified elimination procedure over Roberts’

original procedure was in recognizing that the edges in G′
i are the only edges that must

be covered in the ith iteration. For choosing the cliques they utilize the subgraph Hi

consisting of the edges from vi to vertices of higher index. The cliques covering G′
i are

chosen from Hi, even though some of the edges in Hi might already be covered. By using

maximal cliques of Hi, possibly more uncovered edges that are not in G′
i will be covered.

Definition 4.3. Let EG(v) denote the subgraph of G with vertex set NG[v] and containing

only those edges of G incident to the vertex v.

The Kim-Roberts Elimination Procedure for the Competition Number1

Input: A graph G and an ordering O = v1, v2, . . . , vn of the vertices of G.

Output: An acyclic digraph D := Dn such that C(D) is G with some additional isolated

vertices.

Initialization: Set D0 to the digraph with vertex set V (G) and no arcs. Di is an acyclic

digraph constructed at the ith iteration.

Set G1 := G. Gi is a spanning subgraph of G that contains the edges of G that do

not appear in C(Di−1).

Set S1 := ∅. Si is a set of vertices available as prey.

ith Iteration, i = 1, . . . , n: Set G′
i to EGi(vi), and set Hi to the subgraph of G induced

by {vi} ∪ {vj : j > i and vj ∈ NG(vi)}. Let Ei = {C1, . . . , Ck} be a minimum size

edge covering of G′
i by maximal cliques of Hi, ordered arbitrarily. Form Gi+1 from

Gi by removing the edges of Cj from Gi for all j.

Form the digraph Di by adding vertices and arcs to Di−1 as follows: Pick k dis-

tinct vertices u1, . . . , uk from Si. If |Si| < k, then add k − |Si| additional vertices

1If we refer simply to “the elimination procedure for the competition number,” then we mean the
Kim-Roberts elimination procedure.

94

uk−|Si|, . . . , uk to Di.For each clique Cj ∈ Ei, add the arcs (w, uj) to Di for each

w ∈ Cj . Form Si+1 by Si+1 := (Si \ {u1, . . . , uk}) ∪ {vi}.

Remark 4.4. Note that finding a minimum size edge covering of G′
i by maximal cliques of

Hi is equivalent to finding a minimum size vertex covering by maximal cliques of Hi \{vi}
of the subgraph induced by NGi(vi). The transformation between these procedures is

as follows: For each clique Cj in Ei = {C1, . . . , Ck}, set Ĉj = Cj \ {vi}. Then Êi =

{Ĉ1, . . . , Ĉk} is a minimum size vertex cover of NGi(vi) by maximal cliques of Hi \ {vi} if

and only if Ei is a minimum size edge cover of G′
i by maximal cliques of Hi.

To help analyze the workings of the elimination procedure, we now introduce a more

generalized elimination procedure. In the generalized elimination procedure, a clique cover

of the entire graph G is given, and from this covering and the order of the vertices we

construct D.

The Generalized Elimination Procedure for the Competition Number

Input: A graph G, an ordering O = v1, v2, . . . , vn of the vertices of G, and an edge clique

covering G of G.

Output: An acyclic digraph D := Dn such that C(D) is G with some additional isolated

vertices.

Initialization: Set D0 to the digraph with vertices V (G) and no arcs. Di is an acyclic

digraph constructed at the ith iteration.

Set S1 := ∅. Si is a set of vertices available as prey.

ith Iteration, i = 1, . . . , n: Let Gi = {C1, . . . , Ck} be the subset of G where for each

Cj ∈ Gi, vi is the vertex in Cj of least index. Order Gi arbitrarily.

Form the digraph Di by adding vertices and arcs to Di−1 as follows: Pick k dis-

tinct vertices u1, . . . , uk from Si. If |Si| < k, then add k − |Si| additional vertices

uk−|Si|, . . . , uk to Di.For each clique Cj ∈ Gi, add the arcs (w, uj) to Di for each

w ∈ Cj . Form Si+1 by Si+1 := (Si \ {u1, . . . , uk}) ∪ {vi}.

95

The following proposition is Proposition 1 from [5], if we note that though the proof is

worded only for the elimination procedure, it also applies to the generalized elimination

procedure.

Proposition 4.5. The generalized elimination procedure for the competition number pro-

duces an acyclic digraph D where C(D) is G along with some additional isolated vertices.

We now show that the Kim-Roberts elimination procedure is a special case of the

generalized elimination procedure.

Lemma 4.6. Let Ei be the edge coverings generated by the Kim-Roberts elimination pro-

cedure for a graph G and a vertex ordering O = v1, . . . , vn. Then the set E =
⋃n

i=1 Ei is

an edge clique covering of G.

Proof. Since each Ei is chosen to be a set of cliques of Hi and Hi is a subgraph of G, E
is a set of cliques of G. We now show that E covers all the edges of G. Let {vk, v�} be

an edge in G, where k < �. Suppose that {vk, v�} is not an edge in any clique of
⋃k−1

i=1 Ei.

Then Gk contains the edge {vk, v�}, as does G′
k. Since Ek is an edge clique covering of

G′
k, there will exist a clique Cj ∈ Ek that contains {vk, v�}. Therefore, E =

⋃n
i=1 Ei is an

edge clique covering of G.

Proposition 4.7. Let G be a graph and O = v1, . . . , vn be an ordering of the vertices

of G. Then the number of vertices added to the digraph produced by the Kim-Roberts

elimination procedure is the number of vertices added to the digraph produced by the gen-

eralized elimination procedure if the edge clique covering G is chosen to be E as defined in

Lemma 4.6.

Proof. The proposition follows from Lemma 4.6 and the observation that the subsets

Gi used in the generalized elimination procedure are exactly the subsets Ei used in the

elimination procedure.

Furthermore, if in each ith iteration the same clique C1 is chosen from Gi = Ei, then

the two digraphs are isomorphic.

96

In order to analyze the number of additional vertices needed by the elimination pro-

cedure to construct D, we would like a formula expressing this number in terms of the

cliques chosen. We will give such a formula and show its correctness via the generalized

elimination procedure.

Definition 4.8. The elimination number M(G,O,G) of a graph G, an ordering O of

the vertices, and an edge clique covering G is the number of vertices added to G so that

C(D) is G ∪ IM(G,O,G), where D is the digraph produced by the generalized elimination

procedure for the competition number with G, O, and G as inputs.

Definition 4.9. Let G be a graph, O = v1, v2, . . . , vn be an ordering of the vertices of G,

and G = {C1, C2, . . . , Ck} be an edge clique covering of G. For each vertex vi, let Gi be

the subset of G where for each Cj ∈ Gi, vi is the vertex in Cj of least index. Recursively

define the integer sequences {aGi }n
i=0 and {bGi }n

i=1 by

aG0 = 0,

bGi = max{|Gi| − aGi−1, 0},

aGi = aGi−1 − (|Gi| − bGi) + 1.

Define

hG(G,O) =
n∑

i=1

bGi .

Note that aGi is the number |Si| of available prey at the end of the ith iteration, and

bGi is the number of new vertices added to Di in the ith iteration.

Lemma 4.10. Let G be a graph, O = v1, v2, . . . , vn be an ordering of the vertices of G,

and G = {C1, C2, . . . , Ck} be an edge clique covering of G. Then M(G,O,G) = hG(G,O).

Proof. Note that Gi is defined in exactly the same way in both the generalized elimination

procedure and in Definition 4.9. Summing bGi over all iterations, we get

M(G,O,G) = |V (D) \ V (G)| =
n∑

i=1

bGi = hG(G,O).

By taking a minimum over all edge clique covers and vertex orders of G, we can use

hG(G,O) to calculate the competition number of G.

97

Lemma 4.11. For a graph G, the competition number k(G) equals minG minO hG(G,O),

where G ranges over all edge clique coverings of G and O ranges over all orderings of the

vertices of G.

Proof. Let G = {C1, C2, . . . , Ck} be an edge clique covering of G and O = v1, v2, . . . , vn be

an ordering of the vertices of G. By Proposition 4.5, the generalized elimination procedure

produces an acyclic digraph D such that C(D) is G with some additional isolated vertices.

By Lemma 4.10, M(G,O,G) = hG(G,O), and so k(G) ≤ minG minO hG(G,O).

Now let F be an acyclic digraph that attains the competition number for G; that is,

C(F) is G along with isolated vertices and |V (F) \ V (G)| = k(G). Let O = v1, v2, . . . , vn

be an ordering of the vertices of G such that if (v�, vk) is an arc in F , then k < �. Such

an ordering exists because F is acyclic. We construct an edge clique covering G of G from

F as follows: For a vertex vi ∈ V (G), N in
F (vi) induces a clique in G, and for a vertex

b ∈ V (F) \ V (G), N in
F (b) induces a clique in G. Since having arcs into a common prey is

the only way edges can be present in G, G is an edge clique cover of G. Now observe that

the digraph D produced by the generalized elimination procedure with G and O has the

same number of vertices as F . In fact, if the appropriate u1, . . . , uk are chosen from Si,

then D is isomorphic to F .

Therefore, k(G) = |V (F) \ V (G)| = |V (D) \ V (G)| = M(G,O,G) ≥ minG minO

hG(G,O), and so k(G) = minG minO hG(G,O).

We now specialize the definition of the elimination number.

Definition 4.12. Given a graph G and an ordering O, let E = E(G,O) = {E1, E2, . . . , En}
be edge clique coverings obtained during the Kim-Roberts elimination procedure. Of

course, the notation is ambiguous since the way to choose the Ei is not completely specified

in the procedure. The elimination number M(G) is the minimum of M(G,O, E) over all

orders O and some E obtained when using O. Kim and Roberts show that for certain

classes of graphs, if M(G) is this minimum and is attained for O and some E , then it

is attained for the same O and any E corresponding to O. If this is the case, M(G) is

unambiguously defined.

98

yx x y

Figure 4.1: A kite and a kite-body.

The determination of necessary and sufficient conditions for M(G) to be unambigu-

ously defined is an interesting open problem. Lemma 4.11 shows that there is always a

“right” clique cover for each order such that the minimum over orders attains the compe-

tition number k(G). Kim and Roberts show that there is a class of graphs, known as the

kite-free graphs, for which M(G) is unambiguously defined and equals k(G). In the next

section, we present a new and simpler proof of this result. Kim and Roberts also asked if

M(G) is unambiguously defined and equals k(G) for all graphs. However, in section 4.4

we exhibit a graph L such that for each order O there is a choice of clique cover Ei in

the Kim-Roberts elimination procedure such that M(G,O, E) > k(G). This answers the

Kim-Roberts question negatively.

4.3 Kite-free Graphs

In this section, we present a new and simpler proof of Kim and Roberts’ theorem in [5]

that their elimination procedure for competition numbers is exact for kite-free graphs.

Definition 4.13. A kite is the left configuration shown in Figure 4.1. In a kite, the

solid edges must be present, and the dotted edges cannot be present. The edge between

vertices x and y may or may not be present. A kite-free graph does not have a kite as a

configuration, meaning that neither of the two graphs on five vertices that are kites are

present as induced subgraphs. A kite-body is the right configuration shown in Figure 4.1.

Again, the solid edges must be present, the dotted edges cannot be present, and the edge

between x and y may or may not be present. Similarly, a kite-body-free graph does not

have a kite-body as a configuration.

99

The following lemma is Lemma 3 from [5].

Lemma 4.14. Let G be a kite-body-free graph, S a subset of V (G), H an induced subgraph

of G, and C1, C2, . . .,Ck a vertex cover of S using maximal cliques of H. If a subset T of

S forms a clique in H, then T is contained in some C�.

Lemma 4.15. Let G be a kite-free graph and O = v1, . . . , vn be an ordering of the vertices

of G. In the Kim-Roberts elimination procedure, an edge {vj , vk} with vj , vk ∈ NG(vi)

appears in some clique of E�, where � ≤ i.

Proof. Suppose that {vj , vk} with vj, vk ∈ NG(vi) does not appear in any clique of E�,

where � < i. Observe that in the elimination procedure all edges incident on a vertex v�

are covered by
⋃�

r=1 Er. Thus, k > i and j > i, and so {vj , vk} is an edge in Hi \ {vi}.
We now consider three different cases. Suppose that both vj and vk are in NGi(vi). Let

Ei = {C1, . . . , Cs}, and set Ĉt = Ct \ {vi}. As stated in Remark 4.4, Êi = {Ĉ1, . . . , Ĉs} is

a vertex cover of NGi(vi) by maximal cliques of Hi \ {vi}. Since vj and vk are in NGi(vi),

the edge {vj , vk} forms a clique in NGi(vi). Since G is kite-free, Hi\{vi} is kite-body-free.

By Lemma 4.14, {vj , vk} is a clique contained in some Ĉ�, and so appears in clique C� of

Ei.

For the second case, suppose that neither vj nor vk is in NGi(vi). Since vj is not in

NGi(vi), the edge {vj , vi} appears in some clique of E�, where � < i. Since vk is also not

in NGi(vi), then {vk, vi} appears in some clique of Em, where m < i. If � = m, then by

the first case applied to v�, {vj , vk} appears in a clique of E� = Em. Thus, � = m. Since

{vj , vk} is not in any clique of E� or Em, the edges {vj , vm} and {vk, v�} do not appear in

G. But then the vertices vi, vj , vk, v�, vm form a kite in G, contradicting the kite-free-ness

of G.

We now consider the third case, where, without loss of generality, vj /∈ NGi(vi) and

vk ∈ NGi(vi). As in the second case, the edge {vj , vi} appears in some clique of E� where

� < i. Since vk ∈ NGi(vi), there exists a clique C of Ei that contains the edge {vk, vi}. If

C does not contain {vj , vk}, there must exist a vertex vp in C such that vp is not adjacent

to vj. Otherwise, C could be expanded to include vj , contradicting the fact that C is

100

a maximal clique of Hi.Thus, the edges {vj , vp} and {vk, v�} do not appear in G. But

then the vertices vi, vj , vk, v�, vp form a kite in G, again contradicting the kite-free-ness of

G.

Definition 4.16. Let G be a graph, and O = v1, . . . , vn be an ordering of the vertices of

G. For each i = 1, . . . , n, define

Ti = {vj : j > i, vj is adjacent to vi, and

� k < i where vk is adjacent to both vi and vj}.

Define Ĝi to be the subgraph of G with vertices Ti ∪ {vi} and edges {{x, vi} : x ∈ Ti}.

Lemma 4.17. Let G be a graph, O = v1, . . . , vn be an ordering of the vertices of G, and

G be an edge clique covering of G. Then the cliques of Gi must cover Ĝi.

Proof. Let e = {vi, vj} be an edge of Ĝi and C a clique of G that covers e. Note that

i < j. Since vi is an endpoint of e, the least index of a vertex in C is at most i. Suppose

the vertex of least index in C is vk, where k < i. But then vk is adjacent to both vi and

vj , contradicting the construction of Ĝi. Thus, vi is the vertex of least index in C, and

hence C is in Gi. Therefore, Ĝi is covered by cliques of Gi.

Lemma 4.18. Let G be a kite-free graph and O = v1, . . . , vn be an ordering of the vertices

of G. Then the subgraphs G′
i of G generated by theKim-Roberts elimination procedure are

exactly Ĝi.

Proof. Observe that only edges whose endvertices are adjacent to vi can appear in cliques

of Ei. Let {vj , vi} be an edge where j > i and where there exists a k < i such that vk is

adjacent to both vi and vj . By Lemma 4.15, {vj , vi} appears in some clique of E�, � ≤ k,

and so {vj , vi} is not in G′
i. If there is no such k < i, then no E� can cover the edge {vj , vi}

where � < i, and by Lemma 4.15, {vj , vi} is then covered by a clique of Ei. Thus, the

definition of Ĝi precisely describes G′
i.

Lemma 4.19. Let G be a kite-free graph, O = v1, . . . , vn be an ordering of the vertices

of G. Then hG(E ,O) = minG hG(G,O), where E is any edge clique cover produced by the

101

Kim-Roberts elimination procedure for the competition number on G and O, and where

the right-hand side minimum is taken over all edge clique covers G of G.

Proof. Let G be an edge clique cover of G such that hG(G,O) is minimized. By Lemma 4.17,

Gi must cover Ĝi for all i. But by Lemma 4.18, G′
i = Ĝi. Since Ei is chosen to be a mini-

mum size cover of G′
i, |Ei| ≤ |Gi|.

We now show that aEi ≥ aGi and bEi ≤ bGi for all i. Suppose, for contradiction, that

there exists an i such that our desired conditions fail. Let i be the least such index. Now,

bEi = max{|Ei| − aEi−1, 0}

≤ max{|Gi| − aEi−1, 0} since |Ei| ≤ |Gi|

≤ max{|Gi| − aGi−1, 0} since aEi−1 ≥ aGi−1 by assumption

= bGi .

But

aEi = aEi−1 − (|Ei| − bEi) + 1

≥ aEi−1 − (|Gi| − bEi) + 1 since |Ei| ≤ |Gi|

≥ aGi−1 − (|Gi| − bEi) + 1 since aEi−1 ≥ aGi−1 by assumption

≥ aGi−1 − (|Gi| − bGi) + 1 from above

= aGi .

Thus aEi ≥ aGi and bEi ≤ bGi for all i. Summing over i gives hG(E ,O) ≤ hG(G,O).

Theorem 4.20. [Kim and Roberts] For a kite-free graph G, the elimination number M(G)

is unambiguously defined and equals the competition number k(G).

Proof. By Lemma 4.11, k(G) = minG minO hG(G,O), where G ranges over all edge clique

coverings of G and O ranges over all orderings of the vertices of G. By Lemma 4.10,

M(G,O, E) = hG(E ,O) for any E corresponding to O. By Lemma 4.19, hG(E ,O) =

hG(E ′,O) for any E and E ′ produced by the Kim-Roberts elimination procedure and

corresponding to O. It follows that M(G,O, E) and therefore the elimination number

M(G) is unambiguously defined. Moreover, by Lemma 4.19, M(G) = minO M(G,O, E) =

minO minG hG(G,O), and therefore, M(G) = k(G).

102

1

79

8

1213 5

210

4

3

6

11

14

Figure 4.2: The graph L.

4.4 Counterexample Showing the Kim-Roberts Elimination Procedure

Does Not Always Obtain k(G)

Theorem 4.20 states that if G is kite-free then M(G) is unambiguously defined and equals

k(G). Kim and Roberts asked if this is true for all graphs. To answer this question

negatively, we need to demonstrate a graph G such that for each order O there is a choice

E of clique covers so that M(G,O, E) > k(G). The graph L in Figure 4.2 is such a graph

G.

From Theorem 4.20, any graph with the desired property must contain a kite. The

graph L in Figure 4.2 contains two kites on the vertices {1, 2, 3, 10, 11} and {1, 2, 3, 6, 10}.
When eliminating vertices 1 or 2 first, two different clique covers of two triangles each

can be used to eliminate the incident edges. One of these choices is a good choice for the

edge clique cover, but one is a bad choice. Our effort in constructing the counterexample

is to force 1 or 2 to be eliminated first, so that a bad choice can be made. When 1 or 2

is not eliminated first, then we will show that no choices allow the elimination procedure

to attain the competition number.

Proposition 4.21. For each ordering O of the vertices of the graph L in Figure 4.2,

there is a choice of edge clique coverings E such that M(L,O, E) > 2.

Proof. Let O = v1, v2, . . . , v14 be an ordering of the vertices of L. We consider several

cases:

103

Case 1. v1 = 1.

We make the bad choice of the cliques {1, 2, 3} and {1, 10, 11}. Any choice for v2

other than vertex 2 can not be eliminated without increasing the number of extra

vertices added to D since its remaining incident edge cannot be covered by a single

clique. Thus, v2 must be vertex 2. But after vertex 2 is eliminated, no vertex has

its remaining incident edges coverable by a single clique. Thus, M(L,O, E) > 2 if

v1 = 1.

Case 2. v1 = 2.

We make the bad choice of the cliques {2, 1, 3} and {2, 6, 10}. Analogously to Case

1, vertex 1 is the only vertex that can then be eliminated as v2 without increasing

the number of added vertices, but after that no vertex has its remaining incident

edges coverable by a single clique.

Case 3. v1 = 3, 6, 10, 11, or 14.

Each of these vertices requires at least three cliques to cover its incident edges.

Case 4. v1 = 4 or 5.

One of these vertices can be eliminated using two cliques, and the other is then the

only vertex that can be eliminated without increasing the number of added vertices.

But then no vertex has its remaining incident edges coverable by a single clique.

Case 5. v1 = 7.

Vertex 7 can be eliminated with two cliques. Then vertices 8 and 9 in that order

are the only vertices that can then be eliminated without increasing the number of

added vertices. But after that no vertex has its remaining incident edges coverable

by a single clique.

Case 6. v1 = 8 or 9.

One of these vertices can be eliminated using two cliques, and then the other vertex

and vertex 7 are the only vertices that can then be eliminated without increasing

the number of added vertices. Vertex 7 must be eliminated after vertex 8 for this

104

to be the case. But after that no vertex has its remaining incident edges coverable

by a single clique.

Case 7. v1 = 12 or 13.

One of these vertices can be eliminated using two cliques, and the other is the only

vertex that can then be eliminated without increasing the number of added vertices.

But after that no vertex has its remaining incident edges coverable by a single clique.

Thus, there exists a choice E of clique cover such that M(L,O, E) > 2 for any order

O.

Proposition 4.22. The competition number of the graph L in Figure 4.2 is 2.

Proof. First note that there is no vertex in L whose incident edges can be covered with

one clique. Thus, k(L) ≥ 2. But the elimination procedure using the order 1, 2, . . . , 14

and the good choice of cliques {1, 2, 10} and {1, 3, 11} for vertex 1 produces an elimination

number M(L,O, E) of 2. Thus, k(L) = 2.

4.5 The Elimination Procedure for the Phylogeny Number

The competition number problem is essentially a problem about minimum edge clique

covers, where the “value” of a cover is computed in a weighted manner. The phylogeny

number problem is similar in this regard. Thus, we can formulate an elimination procedure

for the phylogeny number similar to that of the competition number and obtain analogous

results.

Definition 4.23. Let D = (V,A) be an acyclic digraph. The phylogeny graph P (D) is a

simple undirected graph with vertex set V and with adjacencies as follows: two vertices

x and y are adjacent if one of the arcs (x, y) or (y, x) is present in D, or if there exists

another vertex z such that the arcs (x, z) and (y, z) are both present in D.

Definition 4.24. For a simple graph G, the phylogeny number p(G) is the least number

r such that there exists an acyclic digraph D on |V (G)|+r vertices where G is an induced

subgraph of P (D).

105

We now give the elimination procedure for the phylogeny number. Note that the only

difference from the elimination procedure for the competition number is how edges of G

are “accounted for” in D.

The Elimination Procedure for the Phylogeny Number

Input: A graph G and an ordering O = v1, v2, . . . , vn of the vertices of G.

Output: An acyclic digraph D := Dn such that G is an induced subgraph of P (D).

Initialization: Set D0 to the digraph with vertex set V (G) and no arcs. Di is an acyclic

digraph constructed at the ith iteration.

Set G1 := G. Gi is a spanning subgraph of G that contains the edges of G that do

not appear in P (Di−1).

ith Iteration, i = 1, . . . , n: Set G′
i to EGi(vi), and set Hi to the subgraph of G induced

by {vi} ∪ {vj : j > i and vj ∈ NG(vi)}. Let Ei = {C1, . . . , Ck} be a minimum size

edge covering of G′
i by maximal cliques of Hi, ordered arbitrarily. Form Gi+1 from

Gi by removing the edges of Cj from Gi for all j.

Form the digraph Di by adding vertices and arcs to Di−1 as follows: Add the arcs

(w, vi) to Di for all vertices w ∈ C1 \ {vi}. For each clique Cj ∈ Ei \ {C1}, add a

vertex bj to V (Di) and add the arcs (w, bj) to Di for each w ∈ Cj .

We also give a generalized elimination procedure for the phylogeny number.

The Generalized Elimination Procedure for the Phylogeny Number

Input: A graph G, an ordering O = v1, v2, . . . , vn of the vertices of G, and an edge clique

covering G of G.

Output: An acyclic digraph D := Dn such that G is an induced subgraph of P (D).

Initialization: Set D0 to the digraph with vertices V (G) and no arcs. Di is an acyclic

digraph constructed at the ith iteration.

106

ith Iteration, i = 1, . . . , n: Let Gi = {C1, . . . , Ck} be the subset of G where for each

Cj ∈ Gi, vi is the vertex in Cj of least index. Order Gi arbitrarily.

Form the digraph Di by adding vertices and arcs to Di−1 as follows: Add the arcs

(w, vi) to Di for all vertices w ∈ C1 \ {vi}. For each clique Cj ∈ Gi \ {C1}, add a

vertex bj to V (Di) and add the arcs (w, bj) to Di for each w ∈ Cj .

We will first show that the generalized elimination procedure produces an acyclic

digraph, and then show that for the digraph D produced by the generalized elimination

procedure, P (D) has G as an induced subgraph.

Lemma 4.25. Let D be the digraph produced by the generalized elimination procedure for

the phylogeny number for a graph G, a vertex ordering O = v1, . . . , vn, and an edge clique

covering G. Then all vertices in V (D) \ V (G) are sinks, and if (v�, vk) is an arc, then

k < �. Thus, D is acyclic.

Proof. If b ∈ V (D)\V (G), then b is a sink by construction. Now, if (v�, vk) is an arc, then

it is added to Dk in the kth iteration, where v� is a vertex in C1, a clique in Gk. Since vk

is the vertex of least index in C1, k < �.

Proposition 4.26. The generalized elimination procedure for the phylogeny number pro-

duces an acyclic digraph D such that the phylogeny graph P (D) has an induced subgraph

isomorphic to G.

Proof. Let G be a graph, O = v1, v2, . . . , vn an ordering of the vertices of G, and G an

edge clique covering of G. From the initialization, the vertices of G are a subset of the

vertices of D. Let vk and v�, k < �, be vertices of D that are also vertices of G. Suppose

that vk and v� are adjacent in G. Let i be the least index such that Gi contains a clique

C that contains the edge {vk, v�}. Since G is an edge clique cover of G, i is well-defined.

Now if C = C1 ∈ Gi, then both the arcs (vk, vi) and (v�, vi) are added to Di in the ith

iteration, or if i = k, only the arc (v�, vk) is added. Thus, vk and v� are adjacent in P (D).

Otherwise, the arcs (vk, bj) and (v�, bj) are added to Di for some bj, and again vk and v�

are adjacent in P (D).

107

Suppose that vk and v� are adjacent in P (D). If vk and v� have an arc connecting

them in D, then by Lemma 4.25, the arc is oriented towards vk. Thus, in the kth iteration,

v� ∈ C1 for a clique C1 ∈ Gk. Since both vk and v� are in C1, vk and v� must be adjacent

in G. Now, if vk and v� have incident arcs oriented towards a common vertex x, where

x = vk, v�, then these arcs are added in some ith iteration of the procedure. Then both

vk and v� are in the same clique Cj ∈ Gi, and so must be adjacent in G.

Note that Remark 4.4 still holds in the phylogeny number case. We also have the

following lemma and proposition, whose proofs are similar to the proofs of Lemma 4.6

and Proposition 4.7.

Lemma 4.27. Let Ei be the edge coverings generated by the elimination procedure for

the phylogeny number for a graph G and a vertex ordering O = v1, . . . , vn. Then the set

E =
⋃n

i=1 Ei is an edge clique covering of G.

Proposition 4.28. Let G be a graph and O = v1, . . . , vn be an ordering of the vertices of

G. Then the number of vertices added to the digraph produced by the elimination procedure

for the phylogeny number is the number of vertices added to the digraph produced by the

generalized elimination procedure for the phylogeny number if the edge clique covering G
is chosen to be E as defined in Lemma 4.27.

Definition 4.29. The phylogeny elimination number ep(G,O,G) of a graph G, an order-

ing O of the vertices, and an edge clique covering G is the number of vertices added to

D so that P (D) has G as an induced subgraph. Here D is the digraph produced by the

generalized elimination procedure for the phylogeny number with G, O, and G as inputs.

Definition 4.30. Let G be a graph, O = v1, v2, . . . , vn be an ordering of the vertices of

G, and G = {C1, C2, . . . , Ck} be an edge clique covering of G. For each vertex vi, let Gi

be the subset of G where for each Cj ∈ Gi, vi is the vertex in Cj of least index. Define

fG(G,O) =
n∑

i=1

max{|Gi| − 1, 0}.

Lemma 4.31. Let G be a graph, O = v1, v2, . . . , vn be an ordering of the vertices of G,

and G = {C1, C2, . . . , Ck} be an edge clique covering of G. Then ep(G,O,G) = fG(G,O).

108

Proof. Note that Gi is defined exactly the same in both the generalized elimination pro-

cedure and in Definition 4.30. Note that in the ith iteration, if Gi is empty, no arcs or

vertices are added to Di. If Gi is not empty, then |Gi| − 1 new vertices are added as sinks

to Di. Thus, in the ith iteration, max{|Gi| − 1, 0} vertices are added to Di, and, summing

over all iterations,

ep(G,O,G) = |V (D) \ V (G)| =
n∑

i=1

max{|Gi| − 1, 0} = fG(G,O).

Lemma 4.32. For a graph G, the phylogeny number p(G) equals minG minO fG(G,O),

where G ranges over all edge clique coverings of G, and O ranges over all orderings of the

vertices of G.

Proof. Let G = {C1, C2, . . . , Ck} be an edge clique covering of G, and O = v1, v2, . . . , vn

be an ordering of the vertices of G. By Lemmas 4.25 and 4.26, the generalized elimination

procedure produces an acyclic digraph D such that P (D) has an induced subgraph isomor-

phic to G. By Lemma 4.31, ep(G,O,G) = fG(G,O), and so p(G) ≤ minG minO fG(G,O).

Now let F be an acyclic digraph that attains the phylogeny number for G; that is,

P (F) has an induced copy of G and |V (F) \ V (G)| = p(G). Let O = v1, v2, . . . , vn be an

ordering of the vertices of G such that if (v�, vk) is an arc in F , then k < �. We construct

an edge clique covering G of G from F as follows: For a vertex vi ∈ V (G), N in
F [vi] induces

a clique in G, and for a vertex b ∈ V (F) \ V (G), N in
F (b) induces a clique in G. Since

these are the only two ways edges can be present in G, G is an edge clique cover of G.

Now observe that the digraph D produced by the generalized elimination procedure with

G and O has the same number of vertices as F . In fact, if C1 ∈ Gi is chosen to be the

clique induced by N in
F [vi], then D is isomorphic to F .

Therefore, p(G) = |V (F) \ V (G)| = |V (D) \ V (G)| = ep(G,O,G) ≥ minG minO

fG(G,O), and so p(G) = minG minO fG(G,O).

With our formula for evaluating different edge clique covers in hand, we can again

turn our attention to kite-free graphs. The following lemmas are analogous to Lemmas

4.15, 4.17, and 4.18, and their proofs are the same.

109

Lemma 4.33. Let G be a kite-free graph and O = v1, . . . , vn be an ordering of the

vertices of G. In the elimination procedure for the phylogeny number, an edge {vj , vk}
with vj, vk ∈ NG(vi) appears in some clique of E�, where � ≤ i.

Lemma 4.34. Let G be a graph, O = v1, . . . , vn be an ordering of the vertices of G, and

G be an edge clique covering of G. Then the cliques of Gi must cover Ĝi.

Lemma 4.35. Let G be a kite-free graph and O = v1, . . . , vn be an ordering of the vertices

of G. Then the subgraphs G′
i of G generated by the elimination procedure for the phylogeny

number are exactly Ĝi.

Thus we have

Lemma 4.36. Let G be a kite-free graph and O = v1, . . . , vn be an ordering of the vertices

of G. Then fG(E ,O) = minG fG(G,O), where E is any edge clique cover produced by the

elimination procedure for the phylogeny number on G and O, and where the right-hand

side minimum is taken over all edge clique covers G of G.

Proof. Let G be an edge clique cover of G such that fG(G,O) is minimized. By Lemma 4.34,

Gi must cover Ĝi for all i. But by Lemma 4.35, G′
i = Ĝi. Since Ei is chosen to be a mini-

mum size cover of G′
i, |Ei| ≤ |Gi|. Thus, max{|Ei|− 1, 0} ≤ max{|Gi|− 1, 0}, and summing

over i gives fG(E ,O) ≤ fG(G,O).

We now specialize the definition of the elimination number.

Definition 4.37. Given a graph G and an ordering O, let E = E(G,O) = {E1, E2, . . . , En}
be edge clique coverings obtained during the elimination procedure for the phylogeny

number. Again, the notation is ambiguous since the way to choose the Ei is not completely

specified in the procedure. The phylogeny elimination number ep(G) is the minimum of

ep(G,O, E) over all orders O and some E obtained when using O. We will show that for

certain classes of graphs, if ep(G) is this minimum and is attained for O and some E , then

it is attained for the same O and any E corresponding to O. If this is the case, ep(G) is

unambiguously defined.

110

As with M(G), the determination of necessary and sufficient conditions for ep(G)

to be unambiguously defined is an interesting open problem. Lemma 4.32 shows that

there is always a “right” clique cover for each order such that the minimum over orders

attains the phylogeny number p(G). Analogous to Kim and Roberts’ result, we show that

for the kite-free graphs ep(G) is unambiguously defined and equals p(G). We also show

that the same graph L in Figure 4.2 has the property that for each order O there is a

choice of clique cover Ei in the elimination procedure for the phylogeny number such that

M(G,O, E) > k(G). This demonstrates that ep(G) is not unambiguously defined and is

not equal to p(G) for all graphs.

Theorem 4.38. For a kite-free graph G, the phylogeny elimination number ep(G) is

unambiguously defined and equals the phylogeny number p(G).

Proof. By Lemma 4.32, p(G) = minG minO fG(G,O), where G ranges over all edge clique

coverings of G and O ranges over all orderings of the vertices of G. By Lemma 4.31,

ep(G,O, E) = fG(E ,O) for any E corresponding to O. By Lemma 4.36, fG(E ,O) =

fG(E ′,O) for any E and E ′ produced by the elimination procedure for the phylogeny

number and corresponding to O. It follows that ep(G,O, E) and therefore the phylogeny

elimination number ep(G) is unambiguously defined. Moreover, by Lemma 4.36, ep(G) =

minO ep(G,O, E) = minO minG fG(G,O), and therefore, ep(G) = p(G).

Because of the similarities in the elimination procedures for the competition and phy-

logeny numbers, the same graph L in Figure 4.2 is also shows that the elimination pro-

cedure for the phylogeny number does not always attain p(G). Both of the following

propositions are proved in a fashion similar to Propositions 4.21 and 4.22 above.

Proposition 4.39. For each ordering O of the vertices of the graph L in Figure 4.2,

there is a choice of edge clique coverings Ei such that the number of added vertices by the

elimination procedure for the phylogeny number is greater than 1.

Proposition 4.40. The phylogeny number of the graph L in Figure 4.2 is 1.

111

4.6 Open Problems

Many questions still exist about the existence and efficacy of elimination procedures that

calculate the competition number or the phylogeny number of a graph. Despite the

existence of the graph L in Figure 4.2, the Kim-Roberts elimination procedure is still

of interest, particularly in determining for which graphs the procedure calculates k(G).

For instance, is L the smallest graph where the elimination procedure fails, or is there a

smaller example? Is there an example with only one kite? Kites without the xy edge do

not always admit a choice in clique covers. Is the elimination procedure exact when there

is no choice? A complete characterization of when the procedure is optimal and when it

is not is still open.

Of course, all of the above questions also apply to the elimination procedure for the

phylogeny number. The calculation of the competition number and the phylogeny number

both are essentially problems about finding a minimum-size edge clique cover, where

the “size” of the cover is computed in different ways. Because of the similarities in

the problems, as well as the success of applying techniques to both problems, it seems

that a reduction from one problem to another should be possible. This would eliminate

the necessity of checking techniques on both problems. In fact, the phylogeny graph

of an acyclic digraph D is just the competition graph of D with loops added to each

vertex. However, loops are normally excluded from digraphs when considering competition

graphs, and so this reduction is not very useful. No reduction is known using only acyclic

digraphs. One complicating factor is that available prey are a global property in the

competition number case, whereas in the phylogeny number case, the number of vertices

needed to be added is strictly a local property.

The existence of the graph L where both the Kim-Roberts elimination procedure and

the elimination procedure for the phylogeny number fail suggests a natural question: Can

a different elimination procedure be created that succeeds for all graphs? To answer this

question, a more strict definition of what constitutes an elimination procedure is needed.

One reasonable condition might be to restrict what portion of the graph the procedure may

consider when eliminating a vertex v. For instance, the procedure might only be able to

112

consider vertices that are a fixed distance from v. In such instances where an elimination

procedure can only consider local information, it seems unlikely that the procedure will

calculate k(G) or p(G) for all graphs, even with the power of taking a minimum over

all vertex orders. One indication supporting this view would be if it can be shown that

the Kim-Roberts elimination procedure needs to solve an NP-complete problem about

cliques to guarantee producing the competition number, despite the extra power of the

minimum over orders. It might be possible to prove the NP-completeness using the

“widgetlike” construction of the graph L. Another reasonable condition is requiring that

all computation for eliminating a vertex is done in polynomial time. It seems in this case

that examining factorial number of different vertex orders should give sufficient power to

exactly solve either problem. However, an explicit procedure that accomplishes this is

still needed.

A more general study of elimination procedures might also give insight into what graph

parameters could be effectively calculated using elimination properties. Other parameters

related to clique coverings are natural candidates, but perhaps other parameters such as

chromatic number could also be considered.

There are many important open questions in the theory of competition graphs that

this chapter has not touched on. We mention two long-standing problems here. An

interval graph is a graph whose vertices can be associated with intervals in the real line

such that two vertices are adjacent if and only if the associated intervals intersect. While

investigating food webs that occur in nature, Cohen [1] empirically observed that a large

number of food webs are interval graphs. If this observation is true for all food webs, the

ecological implication is that there is one linear parameter (such as pH or temperature)

for each ecosystem that determines the competitive relationships between species. It is

not true that all competition graphs are interval graphs. However, a large literature

has developed attempting to explain why competition graphs of food webs that occur in

nature are often interval graphs. Of particular interest is determining which structural

properties of an acyclic digraph guarantee that its competition graph is an interval graph.

See [10] for a survey of these results.

113

A second major open problem involves a conjecture of Opsut. Opsut showed in [7]

that the competition number of all line graphs is at most 2. Based on this result, Opsut

conjectured that if the closed neighborhood of every vertex in a graph G can be edge-

covered by at most two cliques of G, then the competition number of G is at most 2. Note

that line graphs satisfy this hypothesis. Substantial progress has been made by Wang in

[16], [17], and [18] towards this conjecture, but it still remains unresolved.

114

References

[1] J. E. Cohen, Interval Graphs and Food Webs: A Finding and a Problem, RAND
Corporation Document 17696-PR, Santa Monica, CA, 1968.

[2] M. C. Golumbic, A Note on Perfect Gaussian Elimination, J. Math. Anal. Appl., 64
(1978), 455-457.

[3] S.-R. Kim, The Competition Number and its Variants, in: Quo Vadis Graph Theory?,
J. Gimbel, J. W. Kennedy, and L. V. Quintas, eds., Annals of Discrete Mathematics,
55 (1993), 313-325.

[4] S.-R. Kim and F. S. Roberts, Competition Numbers of Graphs with a Small Number
of Triangles, Discrete Applied Math., 78 (1997), 153-162.

[5] S.-R. Kim and F. S. Roberts, The Elimination Procedure for the Competition Num-
ber, Ars Combinatoria, 50 (1998), 97-113.

[6] J. R. Lundgren, Food Webs, Competition Graphs, Competition-Common Enemy
Graphs, and Niche Graphs, in F. S. Roberts (ed.), Applications of Combinatorics
and Graph Theory in the Biological and Social Sciences, vol 17 of IMA Volumes in
Mathematics and its Applications, Springer-Verlag, New York, 1989, 221-243.

[7] R. J. Opsut, On the Computation of the Competition Number of a Graph, SIAM J.
Alg. & Discr. Meth., 3 (1982), 420-428.

[8] S. Parter, The Use of Linear Graphs in Gauss Elimination, SIAM Review, 3 (1961),
119-130.

[9] A. Raychaudhuri and F. S. Roberts, Generalized Competition Graphs and their Ap-
plications, in P. Brucker and R. Pauly (eds.), Methods of Operations Research, Aca-
demic Press, New York and London, 1969, 295-311.

[10] F. S. Roberts, Competition Graphs and Phylogeny Graphs, in L. Lovasz (ed.), Graph
Theory and Combinatorial Biology, Bolyai Society Mathematical Studies, 7 (1999),
J. Bolyai Mathematical Society, Budapest, Hungary, 333-362.

[11] F. S. Roberts, Food Webs, Competition Graphs, and the Boxicity of Ecological Phase
Space, in Y. Alavi and D. Lick (eds.), Theory and Applications of Graphs, Springer,
New York, 1978, 477-490.

[12] F. S. Roberts, Graph Theory and its Applications to Problems of Society, CBMS-
NSF Monograph No. 29, Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, 1978.

115

[13] F. S. Roberts and L. Sheng, Phylogeny Numbers, Discrete Applied Mathematics, 87
(1998), 213-228.

[14] F. S. Roberts and L. Sheng, Phylogeny Numbers of Graphs with Two Triangles,
Discrete Applied Math., 103 (2000), 191-207.

[15] D. J. Rose, Triangulated Graphs and the Elimination Process, J. Math. Anal. Appl.,
32 (1970), 597-607.

[16] C. Wang, Competition Graphs, Threshold Graphs and Threshold Boolean Functions,
Ph.D. thesis, RUTCOR-Rutgers Center for Operations Research, Rutgers University,
New Brunswick, NJ, 1991.

[17] C. Wang, On Critical Graphs for Opsut’s Conjecture, Ars Combinatoria, 34 (1992),
183-203.

[18] C. Wang, Competitive Inheritance and Limitedness of Graphs, J. Graph Theory, 19
(1995), 353-366.

116

Vita

Stephen G. Hartke

1991-95 Attended St. Xavier High School, Cincinnati, Ohio. Graduated as valedicto-
rian.

1995-99 Attended the University of Dayton, Dayton, Ohio. Graduated summa cum
laude with a B.S. in Mathematics and Computer Science and minors in
Physics and English.

1999-2004 Attended Rutgers University, Piscataway, New Jersey, for graduate work in
Mathematics.

1999 (with A. W. Higgins) Maximum Degree Growth of the Iterated Line Graph,
The Electronic Journal of Combinatorics, 6 (1999), #R28.

2000 Binary De Bruijn Cycles under Different Equivalence Relations, Discrete
Mathematics, 215 (2000), 93-102.

2000 Summer Mathematics Research Experiences, Proceedings of the Conference
on Summer Undergraduate Mathematics Research Programs, J. A. Gallian,
ed., American Mathematical Society (2000), 267-271.

2002 (with D. Bianco, O. M. Carducci, and A. Larimer) Stable Matchings in the
Couples Problem, Morehead Electronic Journal of Applicable Mathematics,
Issue 2, MATH-2001-06, January 16, 2002.

2003 (with A. W. Higgins) Minimum Degree Growth of the Iterated Line Graph,
Ars Combinatoria, 69 (2003), 275-283.

2003 (with M. Develin and D. P. Moulton) A General Notion of Visibility Graphs,
Discrete and Computational Geometry, 29 (2003), no. 4, 511-524.

2003 The Elimination Procedure for the Phylogeny Number, Ars Combinatoria,
accepted for publication.

2003 (with W. S. Diestelkamp and R. H. Kenney) On the Degree of Local Permuta-
tion Polynomials, Journal of Combinatorial Mathematics and Combinatorial
Computation, accepted for publication.

2003 The Elimination Procedure for the Competition Number is Not Optimal,
DIMACS Technical Report 2003-42.

