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The coastal impacts, vulnerability and
adaptation knowledge chain
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Meters above MHHW

Storm surges take place in a context of
sea-level change

The Battery Sandy 13.9 ft
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Kemp & Horton (2013) estimates of the contribution
of historical sea-level rise to flooding at the Battery
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Dominant factors in global sea level rise:
|. Thermal Expansion
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Dominant factors in global sea level rise:
ll. Glacier and ice sheet melt

Total Hazard

Non-polar glaciers and ice caps 026 £ 0.1 m
Greenland & Antarctic glaciers and ice caps 046 £ 0.17 m
Greenland Ice Sheet /7 m
West Antarctic Ice Sheet 5m

52 m

Maps by P. Fretwell (British Antarctic Survey) %0 om0 o -1om 290 00 ¢

St g Lemke et al. (2007); Bamber et al. (2001); Lythe et al. (2001)



Road map

Why does regional sea level differ from global sea level?
What sort of regional sea level variations do we see!
How can we incorporate these into projections?

[How can understanding past sea level help us move beyond
informed expert judgment for projecting ice sheet behavior!]



Why does regional sea level differ
from global mean sea level?



Global Sea Level change
is not the same as local sea level change

* Ocean dynamic effects

* Mass redistribution effects: Gravitational, elastic and rotational

* Natural and groundwater withdrawal-related sediment compaction
* Long term: Isostasy and tectonics



Global Sea Level change

is not the same as local sea level change

Ocean dynamic effects

Mass redistribution effects: Gravitational, elastic and rotational
Natural and groundwater withdrawal-related sediment compaction
Long term: Isostasy and tectonics
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Global Sea Level change
is not the same as local sea level change

* Ocean dynamic effects

* Mass redistribution effects: Gravitational, elastic and rotational

* Natural and groundwater withdrawal-related sediment compaction
* Long term: Isostasy and tectonics
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Global Sea Level change
is not the same as local sea level change

* Ocean dynamic effects

* Mass redistribution effects: Gravitational, elastic and rotational
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Global Sea Level change
is not the same as local sea level change

* Ocean dynamic effects

* Mass redistribution effects: Gravitational, elastic and rotational

* Natural and groundwater withdrawal-related sediment compaction
* Long term: Isostasy and tectonics

Not t le! Farrell & Clark (1976), after Woodward (1888)
Ot TO scaie:



Global Sea Level change
is not the same as local sea level change

* Ocean dynamic effects

* Mass redistribution effects: Gravitational, elastic and rotational

* Natural and groundwater withdrawal-related sediment compaction
* Long term: Isostasy and tectonics

Gravitational-Elastic-Rotational Fingerprints of
Greenland and WAIS melting, per meter GSL rise

West Antarctica Greenland

Mitrovica et al. (201 1) ' 17



Global Sea Level change
is not the same as local sea level change

* Ocean dynamic effects

* Mass redistribution effects: Gravitational, elastic and rotational

* Natural and groundwater withdrawal-related sediment compaction
* Long term: Isostasy and tectonics
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Sea-level rise due to GIA (mm/y)

Mitrovica et al., 2001



Geoid trends inferred from GRACE, 2002-2009
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What sort of regional variations do
we see!
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What do we actually see?

NEW YORK
I

ATLANTIC CITY
I

mm

1900 1950

Purple: Church & White (2011) GSL
Blue: Tide gauge data
Green: Long-term sea-level signal

2000 1900 1950 2000

~1.3 mm/y GIA
An additional ~I mm/y on the shore

Interannual variability of ~10 cm
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Local long-term ~linear sea-level anomaly rate (mm/y)

Long-term linear sea level anomaly rate (mm/y) Long—term linear sea level anomaly rate (mm/y)
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nature
climate change

LETTERS

PUBLISHED ONLINE: 24 JUNE 2012 | DOI: 10.1038/NCLIMATE1597

Hotspot of accelerated sea-level rise on the
Atlantic coast of North America

Asbury H. Sallenger Jr*, Kara S. Doran and Peter A. Howd

Really? Yes, but it’s too early to tell if it goes beyond
natural variability (but it will likely, eventually)...

smooth non-linear regional sea level anomaly rate (mm/y)
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How can we incorporate these into
projections?
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Scenario-based localization example:
SLR scenarios for NYC and New Jersey

Global effects Regional effects Local eff. Totals
Ocean Mass Coastal

Thermal Glaciers GIS AIS |dynamics redist. GIA [subsidence |Global NYC Shore

cm cm cm cm cm cm cm cm cm cm cm
2030 best 5 3 3 2 6 -1 4 3 13 22 25
2030 low 2 3 1 1 2 -1 3 2 8 15 18
2030 high 11 4 4 6 8 -1 5 4 21 30 33
2030 higher 11 4 4 6 8 -1 5 4 24 36 40
2050 best 10 6 8 2 10 -4 7 5 25 38 43
2050 low 4 5 2 1 3 -1 5 4 16 27 32
2050 high 19 7 10 9 13 -3 9 6 39 52 57
2050 higher 19 7 10 9 13 -3 9 6 45 62 68
2100 best 24 14 27 8 20 -13 13 10 73 93| 103
2100 low 10 13 4 2 5 -3 9 8 40 64 74
2100 high 46 19 35 33 25 -11 17 12 117 139 149
2100 higher 46 19 35 33 25 -11 17 12 133 164 176

after Miller et al. (in rev.)

25




Exceedance probability
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Probabilistic localization example

m— G SL
Honolulu
s N G
Atlantic City

0

0.5 1
Sea-level rise, 2000-2100 (m)

1.5 2 2.

5

cm |95%|50%|33%| 5% | 1%
GSL | 47 | 77 | 89 | 151 | 233

Honolulu| 50 | 87 | 102 | 181 | 288
NYC | 67 | 101 | 115] 186 | 286
Atlantic | 25 1 12| 125 | 196 | 298
City

using Bamber & Aspinall (2013) for ice sheets: 30 cm (10-103 cm, 90% range)
Glaciers from Radic et al. (2013):20 cm (10-30 cm)

Thermal expansion from NRC (2012): 24 cm (10-46 cm)

Dynamic sea level fromYin et al. (2009)
GIA and subsidence from Kopp (2013)
Fingerprints from Mitrovica
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Seaside Heights, N)

| foot 3 feet 6 feet
(likely by ~2040)  (likely by 2090s) (~5% chance by
2100)

Maps available from http://slrviewer.rutgers.edu/ and http://sealevel.climatecentral.org/
27
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Meters (above MLLW)
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Influence of moderate SLR on historical flood levels

Superstorm Sandy

Hurricane Donna

Hurmicane Irene

Great Appalachian
Ash Wednesday
“Perfect Storm”
Northeaster
Hurricane Gloria
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Water level
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Water level
reached
in 2100
12M1N9892
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Water level
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100 year
10/251980
11/08/2012 10 year

Atlantic City, New Jersey

Miller et al. (in rev.)



Take-aways

® Regional sea-level rise differs from global mean sea-level rise
due to a variety processes; we must understand these
processes in order to generate sea-level rise projections that
are maximally useful for local decisionmakers.

® Our current best estimates project >| foot more sea-level rise
on the Jersey shore than the global average by 2100, leading to
a most-likely projection of ~3.5’ on the Shore by 2100, and
about a 5% probability of sea-level rise in excess of 6’ by 2100.

® These estimates are ultimately informed expert judgment,
though informed by modeling output and the historical record.
Better pre-historical records, combined with better physical
and statistical models, can allow us to advance further.
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