

Forensic Investigations in Cyberspace: what about big data?

Katrin Franke
Norwegian Information Security Laboratory (NISlab),
Department of Computer Science and Media Technology,
Gjøvik University College

http://www.nislab.no

Crime in the Modern World

Massive amount of data:

- 247 billion email per day
- 234 million websites
- 5 billion mobile-phone users

ICT Infrastructures:

- Complex, rapidly growing
- Dynamically changing
- Hostile, adversary environment

Cybercrime:

- One million victims daily
- Expected losses 297 billion Euro
- Crowd sourcing -> Crime sourcing
- Flash mobs -> Flash robs

Proactive, Ultra-large scale Forensic Investigations, Computational Forensics:

- Situation-aware methods
- Quantified, measurable indicators
- Adaptive, self-organizing models
- Distributed, cooperative, autonomous

Rule-of-Law:

- Culture, social behaviours
- Legal & privacy aspects
- Cross-jurisdiction cooperation
- European / International cyberlaw
- Law as framework for ICT
- Law as contents of ICT, Automation, programming of legal rules

Computational Forensics:

Adding Efficiency and Intelligence to BIG DATA Investigation

Requirement of Adapted Computer Models & Operators

Methods of Computational / Machine Intelligence

- Signal / Image Processing : one-dimensional signals and two-dimensional images are transformed for the purpose of better human or machine processing,
- Computer Vision: images are automatically recognized to identify objects,
- Computer Graphics / Data Visualization : two-dimensional images or three-dimensional scenes are synthesized from multi-dimensional data for better human understanding,
- Statistical Pattern Recognition: abstract measurements are classified as belonging to one or more classes, e.g., whether a sample belongs to a known class and with what probability,
- Data Mining: large volumes of data are processed to discover nuggets of information, e.g., presence of associations, number of clusters, outliers in a cluster,
- Robotics: human movements are replicated by a machine, and
- Machine Learning: a mathematical model is learnt from examples.

Data-driven Approaches

Big Data Analysis

Inter-relation of feature complexity and expected recognition accuracy.
(Franke 2005)

Reverse Engineering Malware

Lars Arne Sand, Katrin Franke,
Jarle Kittilsen, Peter Ekstrand Berg, Hai Thanh Nguyen
Norwegian Information Security Laboratory (NISlab)
Gjøvik University College
www.nislab.no

Reverse Engineering Malware

- Static analysis
- System artifacts
- Dynamic analysis
- Debugging
- Analyzing malicious content
 - PDFs
 - JavaScripts
 - Office documents
 - Shellcode
 - Network traffic

Static Analysis

- Static analysis
 - Does not execute malware
 - –Analyze:
 - System artifacts
 - Debugging
 - Source code (not included)
 - Disassembled code (not included)

Dynamic Analysis

Definition

- Dynamic analysis is the process of executing malware in a monitored environment to observe its behaviors
- Deals with finding and understanding the changes made to the system

Pro:

 Provide quick information about created and changed files, registry keys, processes, handles, contacted websites, etc.

Con:

- Excessive and overwhelming results
- Need to know the normal behavior of a system

Framework concept

- User interacts via Java client
- Client is the front-end for accessing & processing information
- Information is distributed over and hosted by trusted servers
- Via their clients, users request services provided by the servers

Plug-In Concept

 a) Client plug-in organization -Master-slave point to point via Router

Reverse Engineering Malware

- Static analysis
- System artifacts

- Dynamic analysis
- Debugging
- Analyzing malicious content

- PDFs
- JavaScripts
- Office documents
- Shellcode
- Network traffic

Behavioral Malware Detection (static, dynamic, combined)

Lars Arne Sand, Katrin Franke
Norwegian Information Security Laboratory (NISlab)
Gjøvik University College
www.nislab.no

Layers of Detection

Information-based Dependency Matching

- Ordering dependency (1)
 - sequence
- Value dependency (2)
 - parameters
- Def-use dependency (3)
 - Parameter and return value
- Sample:
 - call_1(parameter1, ffff0000) = 0
 - call_2(par)=**0x4fff0418**
 - call_3(**0x4fff0418**,**0xffff0000**)=0

Example #1

- Library calls (Hello World.c)
 - Code #include <stdio.h>

```
int main() {
    printf("Hello world!!!");
    return 0;
}
```

Trace

```
11:05:11.951366 __libc_start_main(0x80483c4, 1, 0xbf96afa4, 0x8048400, 0x80483f0 <unfinished ...>
11:05:11.952077 printf("Hello world!!!") = 14
11:05:11.953227 +++ exited (status 0) +++
```

Graph

Example #2

- System calls (Hello world.c)
 - Trace
 - Much more extensive due to memory mapping
 - Example trace
 - Graph
 - Example Graph

Example #3

- Actual malware example
 - Malware system call Graph Examples
 - Virus.Linux.Snoopy.a
 - Rootkit.Linux.Matrics.a
 - Exploit.Linux.Small.k

Experimental Design & Data Set #1

- Graph-based Matching
 - http://ailab.wsu.edu/subdue/unsupervised.swf
 - Subdue finds substructures by compressing graphs
 - Supervised Learning is performed by finding substructures that occur frequently in one class but seldom in another
- Dataset
 - Malware
 - Extracted from: <u>vx.netlux.org/index.html</u> (currently down)
 - 190 samples: **7150 vertices, 7790 edges**
 - Benign Software
 - Ubuntu binaries
 - 75 samples: 9025 vertices, 9395 edges

Preliminary Results #1: Graph-based Matching

- Detection rate of 98,9%
- Confusion matrix

System calls									
	Classified as								
Correct class	Malware	Software							
Malware	190	0							
Software	3	72							
	1	0,96							

- 190/190 Malware correctly classified
- 72/75 Software correctly classified

Detecting Malicious PDF

Jarle Kittelsen, Katrin Franke, Hai Thanh Nguyen
Norwegian Information Security Laboratory (NISlab)
Gjøvik University College
www.nislab.no

Analyzing Malicious Content #1

- Frequent analysis:
 - PDF
 - JavaScript
 - Office Documents
 - Flash (not included)
 - Shellcode
 - Network Traffic

Research Questions

- Which features are significant for detecting malicious PDF documents?
- Which classifier design and configuration yields optimal performance in malicious PDF detection?
- How can a real-world IDS, capable of detecting malicious PDFs in network traffic, be implemented?

Method Overview

Data Collection

- PDFs collected within the malware research community and through webcrawling, e.g.,
 - Websense
 - Abuse.ch
 - Sourcefire
- Malicious samples have been submitted globally and detected in various ways, some of the samples are under NDA.
- Data set in total:
 - 7,454 unique benign PDF samples.
 - 16,296 unique malicious PDF samples.

Expert-Knowledge Features (KPI)

- Keys from the PDF format (ISO 32000) relevant to malicious PDFs, e.g.,
 - /JavaScript
 - /OpenAction
 - /AcroForm
- Key selection based upon the independed research by (i) Didier Stevens, (ii) Paul Baccas.
- 18 features (keys) are selected to initialize.
- Additional feature-set for Javascript.

Experiments (Exp 1...4)

- 2. Classifier Optimalization and Testing
- 3. Real-world testing
- 4. Embedded javascripts

Exp 1: Feature & Classifier Selection

Original feature vector (18):

AA, RichMedia, xref, Encrypt, JBIG2Decode, Launch, JavaScript, OpenAction, Colors, JS, obj_mis, startxref, AsciiHexDecode, ObjStm, AcroForm, stream_mis, Page, trailer

Golub-score feature selection (7):

$$F(x_i) = \left| \frac{\mu_i^+ - \mu_i^-}{\sigma_i^+ + \sigma_i^-} \right|$$

JavaScript, OpenAction, JS, obj_mis, AcroForm, Page, trailer

Generic feature selection GeFS (5):

JavaScript, JS, startxref, Page, trailer

GeFS (x) =
$$\frac{a_o + \sum_{i=1}^{n} A_i(x) x_i}{b_o + \sum_{i=1}^{n} B_i(x) x_i}$$

Exp 1: Feature & Classifier Selection

Tested perfomance using 5 different classifiers:

	BayesNet			C45/J48			RBFNet		
	18	7	5	18	7	5	18	7	5
Bal succ	0.973	0.94	0.976	0.995	0.995	0.975	0.718	0.797	0.874
Auc	0.996	0.995	0.996	0.997	0.998	0.994	0.879	0.922	0.926
	MLP			SVM					
	18	7	5	18	7	5			
Bal succ	0.96	0.966	0.920	0.995	0.995	0.977			
Auc	0.985	0.987	0.978	0.995	0.996	0.974			

Choose **7 features** from Golub-score selection, **SVM* classifier** for further experimentation.

^{*}SVM - Support Vector Machine

^{*}Bal succ - Balanced Successrate

Discussion and Summary

The dataset

- Difficulties controlling factors
- Best solution: MD5, generalization experiment, big dataset from many sources.

Changes over time

- Need for re-learning
- Online learning

Detecting malicious PDF documents is feasible

using reduced expert feature set, javascript features, SVM

Aquired knowledge & lessons learned:

- A PDF dataset (16.296 / 7,454) for future reseach.
- Knowledge on significant features for PDF classification.
- A method for automated detection of malicious PDF in network traffic.
- A starting point for future research on malicious javascript detection.

Concluding Remarks

- Computational forensics holds the potential to greatly benefit all of the forensic sciences.
- For the computer scientist it poses a new frontier where new problems and challenges are to be faced.
- The potential benefits to society, meaningful inter-disciplinary research, and challenging problems should attract high quality students and researchers to the field.

Further Reading

NAS Report: Strengthening Forensic Science in the United States: A Path Forward http://www.nap.edu/catalog/12589.html

- van der Steen, M., Blom, M.: *A roadmap for future forensic research*. Technical report, Netherlands Forensic Institute (NFI), The Hague, The Netherlands (2007)
- M. Saks and J. Koehler. *The coming paradigm shift in forensic identification science*. Science, 309:892-895, 2005.
- Starzecpyzel. United states vs. Starzecpyzel. 880 F. Supp. 1027 (S.D.N.Y), 1995.
- http://en.wikipedia.org/wiki/Daubert_Standard
- C. Aitken and F. Taroni. Statistics and the Evaluation of Evidence for Forensic Scientists. Wiley, 2nd edition, 2005.
- K. Foster and P. Huber. Judging Science. MIT Press, 1999.
- Franke, K., Srihari, S.N. (2008). *Computational Forensics: An Overview*, in Computational Forensics IWCF 2008, LNCS 5158, Srihari, S., Franke, K. (Eds.), Springer Verlag, pp. 1-10.
- Our research center: www.nislab.no
- Our research-lab pages: Testimon Forensics Lab: http://goo.gl/YHMSf
- Our latest publications: http://goo.gl/R58SL

Thank you for your consideration of comments!

Getting in touch

WWW: kyfranke.com

Email: kyfranke@ieee.org

Skype/gTalk: kyfranke

