Optimal Block-Decodable Encoders for Constrained Systems

Panu Chaichanavong

Center for Magnetic Recording Research University of California, San Diego

Brian Marcus

Department of Mathematics University of British Columbia

March 23, 2004

Outline

- Constrained systems and finite-state encoders
- Block-decodable encoder and its relatives
- Sets of principal states
- Complexity of determining the optimal rate
- Encoder construction
- Asymptotic analysis of optimal code rate and sets of principal states

Constrained Systems and Their Presentations

- G: labeled graph (with vertex set $V = V_G$)
- S = S(G): constrained system, set of all words obtained from reading labels of paths of G
- Say that ${\cal G}$ is a ${\bf presentation}$ of ${\cal S}$

deterministic graph:

at each state, all outgoing edges have distinct labels

 $A = A_G$: adjacency matrix, $|V| \times |V|$ matrix defined by $A_{u,v}$ = number of edges from u to v

S(G) = set of all words that do not contain 00

nondeterministic graph

$$A_G = \left[\begin{array}{rrr} 1 & 1 \\ 1 & 0 \end{array} \right]$$

 $\mathsf{RLL}(d,k)$ and Asymmetric- $\mathsf{RLL}(d_0,k_0,d_1,k_1)$

Runlength limited RLL(d, k)

- $d \leq \text{run of zeros} \leq k$
- employed in CDs, DVDs, and magnetic tapes

Asymmetric-RLL (d_0, k_0, d_1, k_1)

- $d_0 \leq \text{run of zeros} \leq k_0$
- $d_1 \leq \text{run of ones} \leq k_1$
- employed in optical recording systems

Finite-state encoders

An (S, n) encoder is a graph that

- has a constant out-degree n, i.e., each state has n outgoing edges
- has two types of labeling: input and output, where
 - the input alphabet size is n
 - at each state, the input labels of the outgoing edges are distinct
 - the output labeling satisfies the constraint S
- can be "decoded"

A finite-state encoder

Usually we want to construct an encoder whose edge labels are words of some length q. These words are called **codewords** and the length is called **block length**.

Let G be a graph. The q th power of G, denoted G^q , is the labeled graph with the same set of states as G, but one edge for each path of length q in G

If S = S(G), define $S^q = S(G^q)$. Then we construct an encoder for S^q . If A is the adjacency matrix of G, then the adjacency matrix of G^q is A^q An $(S^3, 2)$ encoder

An $(S^3, 2)$ encoder

The **code rate** of an (S^q, n) encoder is defined to be $\frac{\log n}{q}$

The capacity of a constraint S, denoted cap(S) is defined: $\lim_{n\to\infty}(1/q)\log_2(N(q;S)).$

Shannon: $\frac{\log n}{q} \leq \operatorname{cap}(S)$

GOAL: For a given constraint, block length q and encoder class, determine optimal rate, equivalently optimal n.

A **block-decodable encoder** is a finite-state encoder such that the input label of any edge e can be uniquely determined from the output label of e

A **deterministic encoder** is a finite-state encoder whose output labeling is deterministic, i.e., at each state, all outgoing edges have distinct output labels

A **block encoder** is a finite-state encoder such that there is a 1-1 mapping between input labels and output labels

Fact 1 Block \Rightarrow Block-decodable \Rightarrow Deterministic

Theorem 1 ([Freiman and Wyner, 1964], [Franaszek, 1968], [Marcus et al., 1998]) Let S be a constraint presented by a deterministic graph G. For each class of encoder $C \in \{blk, blkdec, det\}$, there exists an (S, n) encoder in class C if and only if there exists such an encoder which is a subgraph of G.

An example: the asymmetric RLL (2, 5, 1, 3)

The capacity is 0.7112

	optimal code rate					
block length	block	block-decodable		deterministic		
		(lower bound)	(upper bound)	uelenninslic		
6	0.4308	0.5283	0.6346	0.6346		
10	0.5585	0.6524	0.6615	0.6714		
15	0.6088	0.6774	0.6779	0.6844		
20	0.6343	0.6862	0.6862	0.6910		
30	0.6599	0.6946	0.6946	0.6978		

Construction of {blk, blkdec, det} **encoder**

(1) Start with a deterministic presentation G of the desired constraint S

(2) Compute the qth power of G, denoted G^q

(3) Choose a subgraph of G^q to be used as encoder
(4) Assign input labels

Set of principal states

Step (3) can be broken into two steps:

- (a) First choose a set of states of G, called a **set of principal states**, to be used as encoder states.
- (b) Then choose edges.

Deterministic encoders:

Franaszek [Franaszek, 1968] gave a very efficient algorithm to choose an optimal set of principal states and a corresponding subgraph for the class of deterministic encoder.

Block encoders:

Given a set of principal states, Freiman and Wyner [Freiman and Wyner, 1964] presented an algorithm, based on generating functions, to find a optimal block encoder. They also gave a way to limit the choices of set of principal states that need to be considered. Marcus, Siegel, and Wolf [Marcus et al., 1992] further improved the efficiency.

Block-decodable encoders:

No general algorithm known. Must rely on heuristic and approximation.

For some classes of constraints, this problem coincides with the case of deterministic encoders [Franaszek, 1970, Chaichanavong and Marcus, 2003].

Complexity of determining the optimal code rate

S: constrained system with deterministic presentation G .

n: integer

For each class C of encoder, consider complexity of three problems:

(1) Determining whether there exists (S, n) encoder in class C which is a subgraph of G(2) Same as (1) but require that the set of principal states $P = V_G$ (3) $|V_G|$ fixed

The following table summarizes the results in [Franaszek, 1968, Ashley et al., 1996, Chaichanavong, 2003].

encoder class	subgraph encoder problem	$P = V_G$	$ V_G $ fixed
deterministic	polynomial	polynomial	polynomial
block	NP-complete (polynomial for any fixed <i>n</i>)	polynomial	polynomial
block-decodable	NP-complete for fixed $n \ge 2$	NP-complete for fixed $n \ge 2$	polynomial

Some notations

S: a constrained system G: a deterministic presentation of S V_G : the set of states of G $C \in \{blk, blkdec, det\}$: a class of encoder

Define the following two quantities

 $M_{\mathcal{C}}(q,P)$: maximum n such that there exists an (S^q,n) encoder in class \mathcal{C} constructed from the set of principal states P

Thus the optimal code rate is

$$\max_{P \subseteq V_G} \frac{\log M_{\mathcal{C}}(q, P)}{q}$$

Note: $M_{\mathsf{blk}}(q, P) \leq M_{\mathsf{blkdec}}(q, P) \leq M_{\mathsf{det}}(q, P)$

Deterministic Encoders

Computing $M_{det}(q, P)$: Let G be a deterministic graph with $V_G = \{a, b, c, d\}$; pick $P = \{a, b, d\}$

$$A^{q} = \begin{bmatrix} 4 & 5 & 2 & 4 \\ 6 & 4 & 2 & 4 \\ 3 & 2 & 1 & 2 \\ 5 & 3 & 3 & 3 \end{bmatrix} \begin{bmatrix} a & \Rightarrow & 13 \\ b & \Rightarrow & 14 \\ c & & \\ d & \Rightarrow & 11 \end{bmatrix} M_{det}(q, P) = \min\{13, 14, 11\} = 11$$

In general,

$$M_{\mathsf{det}}(q, P) = \min_{u \in P} \sum_{v \in P} A_{u,v}^q$$

This is the same as multiplying A^q by the **characteristic vector** \mathbf{x} of P:

$$A^{q}\mathbf{x} = \begin{bmatrix} 4 & 5 & 2 & 4 \\ 6 & 4 & 2 & 4 \\ 3 & 2 & 1 & 2 \\ 5 & 3 & 3 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 13 \\ 14 \\ 7 \\ 11 \end{bmatrix} \ge \begin{bmatrix} 11 \\ 11 \\ 0 \\ 11 \end{bmatrix} = 11\mathbf{x}$$

Determining whether $M_{det}(q) \ge n$ is equivalent to determining whether there exists a 0-1 vector x, not all 0, such that $A^q x \ge nx$.

This can be solved by the Franaszek algorithm (Franaszek 1968):

$$x^{(0)} = [1, \dots, 1]^T$$
$$x^{(\ell+1)} = \min(x^{(\ell)}, \lfloor A^q x^{(\ell)} / n \rfloor)$$

By varying n, we can determine $M_{det}(q)$

Block encoders

Theorem 2

$$M_{\mathsf{blk}}(q,P) = \sum_{U \subseteq P} \bar{A}_{P,U}^q$$

G: deterministic graph

Find a block-decodable encoder that is a subgraph of G and has the same set of states as ${\cal G}$

Input label assignment algorithm:

```
\begin{array}{l} \mathsf{let}\ \Psi \leftarrow \mathsf{set}\ \mathsf{of}\ \mathsf{all}\ \mathsf{codewords}\ \mathsf{of}\ G\\ \mathsf{set}\ \tau \leftarrow 1\\ \textbf{while}\ (\mathsf{it}\ \mathsf{is}\ \mathsf{possible}\ \mathsf{to}\ \mathsf{choose}\ \mathsf{a}\ \mathsf{set}\ \mathsf{of}\ \mathsf{codewords}\ \psi = \{w_1,\ldots,w_k\} \subseteq \Psi\\ & \mathsf{such}\ \mathsf{that}\ \mathsf{each}\ \mathsf{state}\ \mathsf{of}\ G\ \mathsf{can}\ \mathsf{generate}\ \mathsf{at}\ \mathsf{least}\ \mathsf{one}\ w_i)\\ & \mathbf{do}\ \mathsf{assign}\ \mathsf{input}\ \mathsf{label}\ \tau\ \mathsf{to}\ \mathsf{each}\ \mathsf{word}\ \mathsf{in}\ \psi\\ & \tau \leftarrow \tau + 1\\ & \Psi \leftarrow \Psi \setminus \psi \end{array}
```

An example of input label assignment

Pick $P = \{I, J, K\}$; Want to compute $M_{blkdec}(1, P)$

Partition codewords into classes according to initial states

For each input, choose a combination of regions such that their union is P

There are 8 such combinations; each combination is denoted by a 0-1 vector z of size $2^{|P|} - 1 = 7$, where $z_U = 1$ if U is in the combination and 0 otherwise

Input label assignment as an integer program

 c_i : number of times that we choose combination i

 $\begin{array}{c} \text{maximize} \quad c_1 + c_2 + \dots + c_8 \\ \text{subject to} \begin{pmatrix} 1 \end{pmatrix} c_i \in \mathbb{Z}, \quad (2) \ c_i \ge 0, \\ \begin{pmatrix} 3 \end{pmatrix} \\ \end{array} \\ \left[\begin{array}{c} 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ \end{array} \right] \left[\begin{array}{c} c_1 \\ c_2 \\ c_3 \\ c_4 \\ c_5 \\ c_6 \\ c_7 \\ c_8 \end{array} \right] \le \left[\begin{array}{c} 1 \\ 1 \\ 2 \\ 3 \\ 2 \\ 2 \\ 1 \end{array} \right] \left[\begin{array}{c} \in \{I\} \\ \notin \{J\} \\ \notin \{I,J\} \\ \notin \{I,J\} \\ \notin \{I,K\} \\ \notin \{I,J,K\} \\ \notin \{I,J,K\} \end{array} \right] \right]$

Input label assignment as an integer program

Rewrite the problem:

```
maximize c_1 + c_2 + \cdots + c_t
```

subject to (1) $c_i \in \mathbb{Z}$, (2) $c_i \ge 0$, (3)

$$\sum_{i=1}^{t} c_i \mathbf{z}_i \le \mathbf{x}(q, P)$$

t: number of combinations

 $\mathbf{x}(q, P)$: sizes of regions, can be computed from \bar{A}^q

Indeed, $M_{\mathsf{blkdec}}(q, P) = \max c_1 + \cdots + c_t$

Remove condition (1) to get a linear programming problem. Solve the relaxed problem and round the solution to integers.

Irreducibility and Primitivity

Irreducible graph:

for any pair u, v of states, there is a path from u to v and v to u

Primitive graph: there exists an integer N such that

for all u and v, there are paths from u to v and v to u of length N

Fact 2 Primitive \Rightarrow Irreducible

A constraint is **irreducible** if it has an irreducible presentation A matrix is **irreducible** if it is the adjacency matrix of an irreducible graph

Primitive constraint and matrix are defined similarly

From now on, assume primitivity

The capacity of a constraint ${\cal S}$ with a deterministic presentation ${\cal G}$ is

 $\operatorname{cap}(S) = \log \lambda,$

where λ is the largest positive eigenvalue of A_G .

Theorem 3 ([Shannon, 1948]) Let S be a constrained system presented by a deterministic graph G. Let $P \subseteq V_G$. For any class \mathcal{C} of encoder,

$$\lim_{q \to \infty} \frac{\log M_{\mathcal{C}}(q, P)}{q} = \operatorname{cap}(S).$$

Expect $M_{\mathcal{C}}(q, P)$ to grow as λ^q

Define the **asymptotic rate**

$$M^{\infty}_{\mathcal{C}}(P) = \lim_{q \to \infty} \frac{M_{\mathcal{C}}(q, P)}{\lambda^q}$$

A set of principal states that maximizes the asymptotic rate is called **asymptotically optimal.**

Proposition 1 For sufficiently large block length, every optimal set of principal states is asymptotically optimal.

Perron-Frobenius Theory for primitive matrix A:

- A has a unique largest positive eigenvalue $\lambda = \lambda(A)$.
- The right (r) and left (l) eigenvectors associated with λ are positive.
- Suppose r and l are normalized so that lr = 1, define $\Lambda = rl$. Then

$$\lim_{q \to \infty} \frac{A^q}{\lambda^q} = \Lambda$$

Recall:

$$M_{\mathsf{det}}(q, P) = \min_{u \in P} \sum_{v \in P} A_{u,v}^q$$

From the Perron-Frobenius Theory, we have the following.

Theorem 4

$$M^{\infty}_{\det}(P) = \min_{u \in P} \sum_{v \in P} \Lambda_{u,v}$$

Asymptotic Results for Deterministic Encoders

For each class C, define

$$\epsilon_{\mathcal{C}} = \max_{P \subseteq V_G} M_{\mathcal{C}}^{\infty}(P) - \text{second largest } M_{\mathcal{C}}^{\infty}(P).$$

Theorem 5 If

$$\left|\frac{A^q}{\lambda^q} - \Lambda\right| \bigg|_{\infty} < \frac{\epsilon_{\mathsf{det}}}{2}$$

then any optimal set of principal states at block length q is asymptotically optimal.

Recall

$$M_{\mathsf{blk}}(q,P) = \sum_{U \subseteq P} \bar{A}_{P,U}^q$$

Property of \bar{A} : λ is an eigenvalue of \bar{A} . Suppose the right $(\bar{\mathbf{r}})$ and left $(\bar{\mathbf{l}})$ eigenvectors of \bar{A} associated with λ are normalized so that $\bar{\mathbf{lr}} = 1$, define $\bar{\Lambda} = \bar{\mathbf{rl}}$. Then

$$\lim_{q \to \infty} \frac{A^q}{\lambda^q} = \bar{\Lambda}$$

Theorem 6

$$M^{\infty}_{\mathsf{blk}}(P) = \bar{\mathbf{r}}_P \sum_{u \in P} \bar{\mathbf{l}}_{\{u\}}.$$

Theorem 7 If

$$\left\|\frac{\bar{A}^q}{\lambda^q} - \bar{\Lambda}\right\|_\infty < \frac{\epsilon_{\mathsf{blk}}}{2}$$

then any optimal set of principal states at block length q for block encoders is asymptotically optimal.

Asymptotic results for block-decodable encoders

Recall

$$M_{\mathsf{blkdec}}(q, P) = \max \ c_1 + c_2 + \dots + c_t$$

subject to (1) $c_i \in \mathbb{Z}$, (2) $c_i \ge 0$, (3) $\sum_{i=1}^t c_i \mathbf{z}_i \le \mathbf{x}(q, P),$

where \mathbf{z}_i depends only on P and $\mathbf{x}(q, P)$ can be computed from \overline{A}^q .

Remove condition (1) to get a linear programming problem.

View the maximum of the objective function of the relaxed problem as a function $\mu(\mathbf{x}(q,P)).$

Lemma 1

$$M_{\mathsf{blkdec}}(q, P) \le \mu(\mathbf{x}(q, P)) \le M_{\mathsf{blkdec}}(q, P) + t$$

Asymptotic results for block-decodable encoders

Define $\mathbf{x}^{\infty}(P) = \lim_{q \to \infty} \frac{1}{\lambda^q} \mathbf{x}(q, P)$

From the convergence of $\frac{\bar{A}^q}{\lambda^q}$ to $\bar{\Lambda}$, we can show that $\mathbf{x}^{\infty}(P)$ exists and can be computed from $\bar{\Lambda}$

Theorem 8

$$M^{\infty}_{\mathsf{blkdec}}(P) = \mu(\mathbf{x}^{\infty}(P)).$$

Let

$$\rho(G,q) = (2^{|V_G|} - 1) \sum_{U,V} \left| \left(\frac{\bar{A}^q}{\lambda^q} \right)_{U,V} - \bar{\Lambda}_{U,V} \right| + \frac{\text{explicit constant}}{\lambda^q}$$

Theorem 9 If $\rho(G,q) < \frac{\epsilon_{\text{blkdec}}}{2}$, then any optimal set of principal states at block length q for block-decodable encoders is asymptotically optimal.

An example: the asymmetric RLL (2, 5, 1, 3)

encoder class \mathcal{C}	optimal P	$\max_P M^{\infty}_{\mathcal{C}}(P)$	bound on q	known stable q
deterministic	$\{1, 2, 3, 4, \bar{1}, \bar{2}\}$	0.7563	17	1
block	$\{2,3,ar{1}\},\{2,ar{1},ar{2}\}$	0.3445	21	6
block decodable	$\{1,2,3,ar{1},ar{2}\}$	0.7076	54	12

- We have investigated three classes of encoders: block, block-decodable, and deterministic.
- Finding an optimal deterministic encoder is easiest. Finding an optimal block-decodable encoder is most complex.
- Given a set of principal states, finding an optimal block-decodable encoder can be formulated as an integer program. The integer program can be relaxed to find a good bound on the rate of an optimal block-decodable encoder.
- We have established a relationship between optimal sets of principal states at finite and asymptotically large block length. The asymptotic results hold for all $q \ge q_0$ for some *small* q_0 .
- Integer program can be relaxed to find the asymptotic rate of an optimal block-decodable encoder.
- Coming Attraction: Integer program can be adapted to bounded-delayencodable block-decodable encoders (Chaichanavong, ISIT04)

References

- [Ashley et al., 1996] Ashley, J. J., Karabed, R., and Siegel, P. H. (1996). Complexity and sliding-block decodability. *IEEE Trans. Inform. Theory*, 42(6):1925–1947.
- [Chaichanavong, 2003] Chaichanavong, P. (2003). *Block-type-decodable encoders for constrained systems*. PhD thesis, Stanford University.
- [Chaichanavong and Marcus, 2003] Chaichanavong, P. and Marcus, B. H. (2003). Optimal block-type-decodable encoders for constrained systems. *IEEE Trans. Inform. Theory*, 49(5):1231–1250.
- [Franaszek, 1968] Franaszek, P. A. (1968). Sequence-state coding for digital transmission. *Bell Sys. Tech. J.*, 47:143–155.
- [Franaszek, 1970] Franaszek, P. A. (1970). Sequence-state methods for runlength-limited coding. *IBM J. Res. Develop.*, 14(4):376–383.
- [Freiman and Wyner, 1964] Freiman, C. V. and Wyner, A. D. (1964). Optimum block codes for noiseless input restricted channels. *Inform.*

Contr., 7:398–415.

- [Marcus et al., 1998] Marcus, B. H., Roth, R. M., and Siegel, P. H. (1998). Handbook of Coding Theory, chapter 20. Elsevier, Amsterdam, The Netherlands.
- [Marcus et al., 1992] Marcus, B. H., Siegel, P. H., and Wolf, J. K. (1992). Finite-state modulation codes for data storage. *IEEE J. Select. Areas Commun.*, 10:5–37.
- [Shannon, 1948] Shannon, C. E. (1948). The mathematical theory of communication. *Bell Sys. Tech. J.*, 27:379–423.