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A Master Metaphor: Sifter
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An Open Source Kernel
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Three Primary Tasks in CAT
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Classification of Text

A 2500 year-old problem 

Plato argued it would be frustrating 

It still is…
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Grimmer & Stewart “Text as Data” 
Political Analysis (2013)
Volume is a problem for scholars 

Coders are expensive 
Groups struggle to accurately label text at scale 

Validation of both humans and machines is “essential” 
Some models are easier to validate than others 

All models are wrong 
Automated models enhance/amplify, but don’t replace humans 

There is no one right way to do this 
“Validate, validate, validate” 

“What should be avoided then, is the blind use  
of any method without a validation step.” 
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Three Important Books
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One Particularly Important Idea
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Five Pillars of Text Analytics

Search 
Filter 
Code 

Cluster 
Classify 

You can execute all five using DT
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Pillar #1: Search
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Search for Negative Cases
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Defined Search (Multi-term)
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Pillar #2: Filters
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Another Common Filter
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Pillar#3: Human Coding
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Keystroke Coding is Fast
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Coding Off a List is Faster
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Data Cleaning is Fundamental
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Pillar #4: Clustering
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Latent Dirichlet Allocation  
(LDA) Topic Models
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LDA on the Christie Data
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Topic 1 : christie, sandy, christies, funds, relief, feds, investigating, daily, gov, feminized 
Topic 2 : with, daniel, didnt, after, murder, time, agatha, death, former, mayor 

Topic 3 : bridge, about, traffic, more, scandal, chris, nj, some, just, says 
Topic 4 : like, gop, bridgegate, what, 2016, know, now, will, bully, dont 

Topic 5 : obama, benghazi, impeachment, dem, have, probe, lawmaker, floats, possibility, gwb 
Topic 6 : jersey, over, stages, still, aides, grief, bogus, hes, news, subpoenas 

Topic 7 : rove, closures, karl, york, while, federal, party, tea, governor, president 
Topic 8 : irs, political, been, show, republicans, media, get, laws, word, scandals



Pillar#5: Machine-Learning
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Create a Dataset to Code

Any archive or bucket 

Use the random sampling tool 

Standard: All coders get all items 

Triage: Coders get next uncoded item
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Select from Three Coding Styles

Default: Mutually Exclusive Codes 

Option 1: Non-Mutually Exclusive Codes 

Option 2: User-Defined Codes 
(Grounded Theory)
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Assign Peers to Code a Dataset

How many coders? 

How many items need to be coded? 

How many test or training sets? 

There are no cookbook answers
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Look at Inter-Rater Reliability

Highly reliable coding (easy tasks) 

Unreliable coding (interesting tasks) 

If humans can’t, neither can machines 

Some tasks better suited for machines
31



Adjudication: The Secret Sauce

Expert review or consensus process 

Invalidate false positives 

Identify strong and weak coders 

Exclude false positives from training sets
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Use Classification Scores as Filters

Iteration plays a critical role 

Train, classify, filter 

Repeat until the model is trusted 

Each round weeds out false positives
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Classifier Histograms: More Filtering
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