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Challenges of real-world data!
We face an explosion in data from e.g.:!

! Internet transactions!

! Satellite measurements!

! Environmental sensors!

! …!

Real-world data can be:!

! Vast (many examples)!

! High-dimensional!

! Noisy (incorrect/missing labels/features)!

! Sparse (relevant subspace is low-dim.)!

! Streaming, time-varying !

! Sensitive/private!

Machine learning!
Given labeled data points, find a good classification rule.!
! Describes the data!
! Generalizes well! !

E.g. linear separators:!

Principled ML for real-world data!
Goal: design algorithms to detect patterns in real-world data.!

! Want efficient algorithms, with performance guarantees.!

Learning with online constraints: !

! Algorithms for streaming, or time-varying data.  !

Active learning:  !
! Algorithms for settings in which unlabeled data is abundant, and 

labels are difficult to obtain.!

Privacy-preserving machine learning: !
! Algorithms to detect cumulative patterns in real databases, while 

maintaining the privacy of individuals.!

New applications of machine learning: !
! E.g. Climate Informatics:  Algorithms to detect patterns in climate 

data, to answer pressing questions. !



Privacy-preserving machine learning!
Sensitive personal data is increasingly !

! being digitally aggregated and stored.!

Problem: How to maintain the privacy of individuals, when 
detecting patterns in cumulative, real-world data? !

! E.g.!

! ! Disease studies, insurance risk ! !

! ! Economics research, credit risk!

! ! Analysis of social networks!
! !

Anonymization: not enough!
Anonymization does not ensure privacy.!

Attacks may be possible e.g. with:!

! Auxiliary information! !

! Structural information!

Privacy attacks: !
[Narayanan & Shmatikov !08] identify Netflix users from anonymized 

records, IMDB.!

[Backstrom, Dwork & Kleinberg ‘07] identify LiveJournal social relations 
from anonymized network topology and minimal local information.!

Related work!
! ! !

Data mining:!

! Algorithms, often lacking strong privacy guarantees.  
! Subject to various attacks. !

Cryptography and information security:!

! Privacy guarantees, but machine learning less explored.!

Learning theory!
! Learning guarantees for algorithms that adhere to strong 
! privacy protocols, but are not efficient.!

Related work!
! ! ! ! ! ! ! ! ! !

Data mining:!

! k-anonymity [Sweeney ‘02], l -diversity [Machanavajjhala et al. ‘06], !

! t-closeness [Li et al. ‘07].  Each found privacy attacks on previous.  !

! All are subject to composition attacks [Ganta et al. ‘08].!

Cryptography and information security:!
! [Dwork, McSherry, Nissim & Smith, TCC 2006]:  Differential 
! privacy, and sensitivity method.  Extensions, [Nissim et al. ’07].!

Learning theory!
! [Blum et al. ‘08] method to publish data that is differentially 
! private under certain query types. (Can be computationally !

! prohibitive.)   !

! [Kasiviswanathan et al. ’08] exponential time (in dimension) 
! algorithm to find classifiers that respect differential privacy.  !



!!differential privacy!
! ![DMNS ‘06]:  Given two databases, D1, D2 that differ in one 
element:!

A random function f is !-private, if, for any t!

      Pr[ f(D1) = t ] " (1 + !) Pr[ f(D2) = t ]!

Idea: Effect of one person’s data on the output: low.!

t!

The sensitivity method!
! ![DMNS ’06]:  method to produce !!private approximation to any 

function of a database.!

Sensitivity: For function g, sensitivity S(g) is the maximum change in g with 
one input.!

[DMNS ’06]:  Add noise, proportional to sensitivity.  Output:!

 ! f(D) = g(D) + Lap(0, S(g)/!)!

g(D2)!g(D1)!

t!

Motivations and contributions!
Goal: machine algorithms that maintain privacy yet output good 

classifiers.!
–" Adapt canonical, widely-used machine learning algorithms!

–" Learning performance guarantees!

–" Efficient algorithms with good practical performance! !

[Chaudhuri & Monteleoni, NIPS 2008]:!

! A new privacy-preserving technique:  perturb the optimization 

problem, instead of perturbing the solution.  !

! Applied both techniques to logistic regression, a canonical ML algorithm.!

! Proved learning performance guarantees that are significantly tighter 
for our new algorithm. !

! Encouraging results in simulation.!

Regularized logistic regression!
We apply sensitivity method of [DMNS ‘06] to regularized logistic 

regression, a canonical, widely-used algorithm for learning a 
linear separator. !

Regularized logistic regression:!
Input: (x1,y1),...,(xn,yn).!

! xi in R
d, norm at most 1.  yi in {-1, +1}.!

 Output: !

! !

•" Derived from model:!

•" First term: regularization.!

•" w in Rd predicts SIGN(wTx) for x in Rd.!

w∗ = arg min
w

λ

2
wT w +

1
n

n∑

i=1

log(1 + exp(−yiw
T xi))

p(y|x;w) =
1

1 + exp(−ywT x)



Sensitivity method applied to LR!
Sensitivity method [DMNS ‘06] applied to logistic regression:!

Lemma: The sensitivity of regularized logistic regression is 2/n".!

Algorithm 1 [Sensitivity-based PPLR]:!

1."Solve w = regularized logistic regression with 
parameter ".!

2."Pick a vector h: !

! Pick |h| from #(d, 2/n"!),!   Where density of  !

! Pick direction of h uniformly.  #(d,t) at x ~!

3."Output w + h.!!       xd-1e-|x|/t  !

Theorem 1:  Algorithm 1 is !-private.!

New method for PPML!
A new privacy-preserving technique:  perturb the optimization 

problem, instead of perturbing the solution.!
! !

! No need to bound sensitivity (may be difficult for other ML algorithms)!

! Noise does not depend on (the sensitivity of) the function to be learned.!

! Optimization happens after perturbation.!

Application to regularized logistic regression:!

Algorithm 2 [New PPLR]  !

1."Pick a vector b: !

! Pick |b| from #(d, 2/!), !

! Pick direction of b uniformly.!

2. Output:!

w∗ = arg min
w

λ

2
wT w +

1
n

n∑

i=1

log(1 + exp(−yiw
T xi)) +

1
n

bT w

New method for PPML!
Theorem 2:  Algorithm 2 is !-private.!

Remark:  Algorithm 2 solves a convex program similar to standard, 
regularized LR, so similar running time. !

General PPML for a class of convex loss functions:!

Theorem 3:  Given database X={x1,…,xn}, to minimize functions of the 
form:!

! If G(w), l (w, xi) everywhere differentiable, have continuous derivatives 
G(w) strongly convex, l (w, xi) convex      and! !        , for any x,!! !   !

! then outputting!

! where b = B r, s.t. B is drawn from #(d, 2!/!), r is a random unit vector, !

! is !-private.  !
! !

F (w) = G(w) +
n∑

i=1

l(w, xi)

∀i

w∗ = arg min
w

G(w) +
n∑

i=1

l(w, xi) + bT w

‖∇wl(w, x)‖ ≤ κ

Privacy of Algorithm 2!
Proof outline (Theorem 2):!
  Want to show Pr[ f(D1) = w* ] " (1 + !) Pr[ f(D2) = w* ].!

We must bound the ratio:!

Where b1 is the unique value of b that yields w* on input D1. (Likewise b2)!

! - b’s are unique because both terms in objective differentiable everywhere.!

Where h(bi) is # density function at bi.!

Bound RHS, using optimality of w* for both problems, and bounded norms. !

Pr[w∗|x1, . . . , xn−1, y1, . . . , yn−1, xn = a, yn = y]
Pr[w∗|x1, . . . , xn−1, y1, . . . , yn−1, xn = a′, yn = y′]

=
h(b1)
h(b2)

= e−
ε
2 (||b1||−||b2||)

D1 = {(x1, y1), . . . , (xn−1, yn−1), (a, y)}
D2 = {(x1, y1), . . . , (xn−1, yn−1), (a′, y′)}

Pr[f(D2) = w∗] = Pr[w∗|x1, . . . , xn−1, y1, . . . , yn−1, xn = a′, yn = y′]

Pr[f(D1) = w∗] = Pr[w∗|x1, . . . , xn−1, y1, . . . , yn−1, xn = a, yn = y]

∀i, ||xi|| ≤ 1
||a||, ||a′|| ≤ 1



Learning guarantees!
Theorem 4:  For iid data, w.r.t. any classifier w0 with loss L(w0), 

Algorithm 2 outputs a classifier with loss L(w0) + $ if:!

where L(w) = E[ log (1 + exp(-y wTx)) ].!

Theorem 5:  Bound for Algorithm 1 in identical framework:!

The bound for Algorithm 2 is tighter than that of Algorithm 1, for cases in which 
(non-private) regularized logistic regression is useful, i.e. ||w0|| # 1 (otherwise 
L(w0) #  log(1 + 1/e) ). !

! !

! !

n > C · max
(

||w0||2

δ2
,

||w0||d
εδ

)

n > C · max
(

||w0||2

δ2
,

||w0||d
εδ

,
||w0||2d
εδ3/2

)

Learning guarantees$
Proof ideas for Theorems 4 and 5:!

•" Lemmas bounding the approximation to (non-private) regularized LR:!

1." Lemma (Algorithm 1):!

2." Lemma (Algorithm 2):!

where w’ optimizes regularized LR objective, f, with parameter ".!

•" Use techniques of: !

–" [Shalev-Schwartz & Srebro, ICML 2008] !

–" [Sridharan, Srebro, & Shalev-Schwartz, NIPS 2008].!

! to obtain generalization guarantees from these approximate 
optimization guarantees (vs. ERM).   !

 ! !

f(w1) ≤ f(w′) +
2d2(1 + λ) log2(d/δ)

λ2n2ε2

f(w2) ≤ f(w′) +
8d2 log2(d/δ)

λn2ε2

Experiments$

Learning curves!
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Our method

Standard LR

Sensitivity method
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Experiments$
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Dependence on !!



PP Support Vector Machine!

Support vector machine (SVM) enjoys extensive use and 
empirical success in ML and data-mining applications.!

! - Good generalization, robust to unseparable data.!

! - Classifier is the result of a convex optimization.!

[Chaudhuri, Monteleoni, & Sarwate, manuscript 2009]!
-    Addresses the following challenges:!

1.  Non-differentiability of SVM objective (hinge-loss).!

! ! Upper bound by a differentiable function with similar learning utility.!

2.  Standard SVM prediction (in RKHS) involves releasing part of database.!

! ! Create random kernel, using [Rahimi & Recht, NIPS 2008].!

-   Algorithm is differentially private.!

-" Learning performance guarantees stronger than Sensitivity method.!

-" Good empirical performance.  !

! !

Future work!
Other standard ML algorithms, e.g. !

! Boosting, clustering, approximate k-nearest neighbor, etc.!

Privacy-preserving optimization! ! !

! A general technique to turn a convex optimization problem into a 
privacy-preserving version (by extending our results to fewer assump.s)!

With increasing reliance on the internet for day-to-day tasks, !

! emerging, necessary synergy between security/privacy and 

machine learning research, e.g.! !

! ! PPML!

! ! Spam filtering!

! ! Identity theft detection ! !

! ! Fraud/anomaly/phishing detection!

Thank you!!

! ! ! !

! !

And many thanks to my collaborators: !
! !

! ! ! Kamalika Chaudhuri (UC San Diego)!

! ! ! Anand Sarwate (UC San Diego)!!


