Towards Universal Weakly-Secure Codes for

Data Exchange and Storage
DIMACS workshop
Newark, NJ
April 2, 2015

Alex Sprintson

spalex@tamu.edu

Joint work with Swanand Kadhe, Muxi Yan, and Igor Zelenko



Weakly Secure Coding

Set of files to be stored: S = {Si1, S2,...,SB.}
Set of coded files observed by Eve: F

— Perfectly secure scheme: I (S; E) = 0

— Weakly secure scheme: I (S;; E) =0

— g-weakly secure scheme

I(Se;E) =0 VG :|G| < g




Weakly Secure Coding

Weakly secure against g guesses

I(Se;E) =0 VG :|G| < g

— Equivalent to maximizing the minimum Hamming weight of any
vector in the span of the codewords

— Requires that no meaningful information is exposed to Eve

— Example

S1+ S+ S35+ 5,
S1+ 555 + 1253 + 85,y



Cooperative Data Exchange Problem

Clients need to share their local packets with other clients

Clients use a lossless broadcast channel

One packet or function of packet is broadcasted at each time slot.
Related to the key distribution and omniscience problems
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Favesdropper

Wants to obtain information about packets held by the clients
Has access to any data transmitted over the broadcast channel
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g-weak Security

For each subset S of X of size g or less it holds that
I(Sg; P) =0
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Example

Eavesdropper can only get value of &1 + @9, o + x4, and x4 + x5,
— cannot get value of the original packets x1, - - - , x4
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Example (cont.)

Eavesdropper cannot obtain a combination of any two original packets
This solution is 2-weakly secure
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Constrained Matrix Completion Problem
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Matrix completion problem

When is it possible to complete the matrix so it will satisfy the MDS
condition?
— When it does not contain an all zero submatrix of size a X b, such

thata +b > OPT + 1
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Matrix completion problem

Our case: constraints on the code construction
— Due to the side information available at the clients
Random code works with high probability

— Hard to check since finding a minimum distance is an NP-hard
problem
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Theorem

Can achieve the distance

n— OPT +1

— with high probability at least 1 — (OZT)%
— requires field size (Q>n)OPT
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Deterministic algorithm

Use matrix completion

— Fill 3" entry of the matrix with a value if GF'(2') C GF (2" ")

— Determinant of any O PT" X O P'I" matrix is guaranteed to be full
rank
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Structured Codes

Can we use standard codes, e.g., Reed-Solomon
Then, perform a linear transformation to complete the matrix?
Generalized Reed-Solomon code
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Structured Codes

Can we use standard codes, e.g., Reed-Solomon
Then, perform a linear transformation to complete the matrix?

X X X 0 0 t11 ti2  ti3 1 1 1 1 1 1
X 0 0 X X = t21 t22 t23 aq (%)) a3 (e %] (075 (0775
0 X X X

Shalle

2 2 2 2 2 2
t31 t32 t33 oy a, Qg ay (&3 A

Unfortunately, the transformation matrix is not guaranteed to be full-rank
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Negative example

A negative example:

t11 ti2 ti13 1 1 1 1 1 1

X X X 0 0
X 0 0 X X| = t21 t22 t23 a1 Qg (3 04 O5 Op
0 X X X

2 2 2 2 2 2

cv: primitive element of G F'(8) with primitive polynomial > +r+1

15



Conjecture

If the configuration matrix can be completed to MDS,
— i.e., it does not contain a zero submatrix of dimension a X b such
thata +b > OPT + 1

Then the determinant of 7" is not identically equal to zero
tih tie tis] [1 1 1 1 1 1

X X X X 0 0
X X 0 0 X X| = t21 t22 t23 a1 Qg Q3 G4 Q05 Op
0 0 X X X X t31 t32 t33 Ct% a% Oé% &421 Oég oz%
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Reformulation of the problem

Let Ny, ... NN, be subsets of [n] such that |IV;| = p — 1

Define the collection of o polynomials Pi,..., P, in
Flag, . .. as][x]:

P = HjeNZ-(x - O‘j)'

Question: Under what condition on the collection of sets { N; }:"_ | the
polynomials { P; }'"_, are linearly dependent over the ring o1, . . ., a7
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Security for Storage: Motivation

There are numerous service providers
Some of these cloud networks can be
Any of the storage nodes in a compromised network can be eavesdropped
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Security for Storage: Challenges

Storage system is a dynamic system with nodes continually failing and
being replaced

At a particular node location, eavesdropper can keep on observing the
data downloaded during multiple repairs

— Random coding is not helpful
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Regenerating Codes

A special class of erasure codes that optimally trade-off storage space
for repair bandwidth

— (n, k)-MDS property: any k nodes are sufficient for data recon-
struction

— Minimize the repair bandwidth dj

(n,k,d, a, B) -Regenerating Code

(%

a g a
\x
=\

20



Product-Matrix (PM) Codes

We focus on a special class of regenerating codes,

— Product-Matrix framework based Minimum Bandwidth Regenerating
(PM-MBR) Codes

Explicit codes, unlike random coding

Designed for exact regeneration

— Repaired node is an exact replica of the failed node
Construction for all values of (n, k, d)

— Efficient in terms of field size — Very practicall
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Product-Matrix (PM) Codes

PM code is obtained by taking a product of encoding matrixW and
message matrix M
— Both W and M have have specific structures

— Choosing W as a Vandermonde or a Cauchy matrix works
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Favesdropping a PM-MBR Code
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Coset Coding Based Outer Codes

Can we utilize the elegant structure of Product Matrix codes to explicitly
design H that satisfies the condition above?
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Outer Code Design

How to design H that satisfies this condition?

Hg/

rank |:GE

] = rank(Hg) + rank(Gg),

where Hgis any (g + 1) X B sub-matrix of 7
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Outer Code Design

How to design H that satisfies this condition?

] = rank(Hg) 4+ rank(GEg),

J 2 ki

26



FExplicit Outer Code Construction

Observation: generator matrix for any node e has the same structure

U(e,1) W(e,2) Y(e,3) (e, 4) 0 0 0 0 0

a - 0 W(e, 1) 0 0 V(e,2) W(e,3) Y(e,4) 0 0
c 0 0 U(e, 1) 0 0 U(e, 2) 0 U(e,3) W(e,4)
0 0 0 (e, 1) 0 0 U(e,?2) 0 (e, 3)

Notion of type

— A length-B encoding vector h') s of type ¢ if it has form as the
i-th row of GG,

— Essentially, the type specifies the locations of the non-zero coefficients
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FExplicit Outer Code Construction

Design H such that each row belongs to one of the d types

It is sufficient to specify the number of rows of each type and the values
of the non-zero coefficients

Let O; denote the number of rows of type ¢ that are present in H

— We call 0, as the type cardinality of type @

(0 if =1,
&:<d—k+jif2§i§k—L
d—1 if =k,

1 if k4+1<i<d.
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FExplicit Outer Code Construction

Example :

(n="5,k=3,d=4)PM-MBR Code, B =9, B, = 7

U(1,1)
U(2,1)
U(3,1)

0 0

0 0

0 0
U(1,1) 0
U(2,1) 0
U(3,1) 0

0 U(1,1)

First three rows are of type 2

Next three rows are of type 3

Last row is of type 4

U(1,2)
U(2,2)
U (3,2)

U(1,3)
U(2,3)
U (3,3)
U(1,2)
U(2,2)
U (3,2)

0

W (1,4)
U(2,4)
U (3,4)

0

0

0

W (1,2)

U(1,3)
U(2,3)
U (3,3)

0
0
0
W (1,4)
U (2,4)
U (3,4)

U(1,3)]
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Theorem

Proposed outer code that results in a g-weakly secure code for
g=d+k—3
The secure storage capacity of the proposed constructionis By, = B —2
— Improvement over uncoded security level of & — 1 guesses
— Roughly twofold enhancement in the security level

« Still far from maximum possible level of security

* gmaz = B —d—1= 0 (k%)

* Does not require an increase in the field size
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Conclusions

A promising way to provide reliability and security
Light-weight alternatives to cryptographic primitives

In many cases, reliability and security can be provided at no or little
additional cost

Many exciting research problems
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