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» Overarching goal:

» Create and build distributed systems and network proocols
that achieve security, availability, and performance in spite of

misconfigurations, failures, and attacks

» Approach:

» Combine theoretical principles and experimental
methodologies from distributed systems, cryptography,
networking, information theory, and machine learning
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The Internet of everything is here ...

» Computing services
» Everything is connected
» Many types of devices
» Tremendous amount of data

» Available via cloud computing,
accessed via personal devices

» Higher expectations

» Services must be available 24h,
working correctly 100% of the
time

» Data-centric business, policy
decisions

Cristina Nita-Rotaru

THE INTERNET OF EVERYTHING |S HERE.

As the Internet evolves, so will we.
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What does it mean for security

» Large number of devices with different capabilities
and vulnerabilities managed by different entities
» Higher chances that some system components are going
to be compromised
» The next attack is going to come from your kitchen

» Subset of computing systems or protocol participants
controlled by an adversary can influence

» Communication and availability

» D .. - )
Designing systems resilient to only

outsider attackers no longer sufficient,

kneed for insider-resilient systems

Cristina Nita-Rotaru
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Seeing the world through a Byzantine len

» An insider can not be trusted to
correctly generate or process
data (i.e. lie):

» Trusting info limitations

> Many insider nodes collude
> Not enough history is available
» Single source of information

» An insider can not be trusted to
correctly deliver data:
» Disseminating info limitations

» Lack of non-adversarial paths
> Not enough redundancy

» Correlated failures
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Network coding: A New paradigm

» Key principle: packet mixing at intermediate nodes
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Traditional routing Network coding /
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» Benefits: Higher throughput, reliability, robustness, energy
efficiency
» Applications: wireless unicast and multicast, p2p storage and
content distribution, delay-tolerant networks, vehicular networks
> 7
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Network coding in wireless networks

» Opportunities
» Broadcast advantage
» Opportunistic listening

» Benefits
» Improved throughput
» Reduced delay

» Improved reliability
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This talk

» Network coding under
attack:

» Pollution attacks in
intra-flow network
coding

» Network coding to the
rescue:

» All pairwise and
connected graph key
management resilient
to node capture
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Wireless network coding systems

» Intra-Flow Network Coding

» Mix packets within individual flows

» Examples: [Park; 2006], MORE [Chachulski; 2007], [Zhang;
2008a], [Zhang; 2008b], MIXIT [Katti; 2008], [Lin; 2008]

» Inter-Flow Network Coding
» Mix packets across multiple flows

» Examples: COPE [Katti; 2006], DCAR [Le; 08], [Das; 2008],
[Omiwade; 2008a], [Omiwade; 2008b]
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Intra-flow network coding

1. Buffer overheard coded packets
2. Brodacdet nedesoded packets

r |
° Q |]|]|

Source node [I [I I e ;
Plain packets e G = I I
[I[I[I[I[l [I[I[I e e G Receiver node

1. Buffer coded packets

Generation 2. Decode packets
Py Py -+ P 3. Send ACK to source

1. Divide plain packets into generations{
2. Broadcast coded packets [I [I
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Packet coding and decoding

» Pi = Dirs Pis -+ o> Dim) > pErl, { :

» G=[Py; Py-- -5 Pal Pi
» Coding with random linear combination

pij—>
c=(c, ¢y -y €y, ¢ EF, j L

e =cpytepyt...Fc,p,= Ge
» Decoding

» Given n linearly independent coded packets (c,, €,) ... (¢, e,)
solve a system of linear equations

» Attacks
» Packet Pollution: injecting incorrect packets
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Pollution attacks

» Pollution attacks are attacks where attackers inject
polluted coded packets into the network.
» A coded packet (c, e) is a polluted coded packet if
c=(cp, ¢y -, C), G EF,
but
e # C/PytePyt... e, Py

» Generic attack to any network coding system
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Impact of pollution attacks

Forwarder nodes

Source node [I eI II I

[I[IIII III Receiver node
GI

Generation
Py Py -« Py

[ Epidemic attack propagation }
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Prior work

» Cryptographic approaches [Krohn; 2004], [Li; 2006], [Charles;
2006], [Zhao; 2007], [Yu; 2008], [Boneh; 2009]

» Homomorphic digital signatures or hash functions
» Too expensive computationally

» Information theoretic approaches [Ho; 2004], [Jaggi; 2007],
[Wang; 2007]
» Coding redundant information
» Low achievable throughput

» Network error correction coding [Yeung; 2006], [Cai; 2006],
[Silva; 2007], [Koetter; 2008]

» Using error correction coding techniques

» Limited error correction capability, unsuitable for adversarial
environment
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Throughput CDF when no attack happens
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The high overhead of crypto-based schemes
render them impractical for wireless networks
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Our approach

Non-cryptographic checksum created by the source

Based on lightweight random linear transformations
Carries the timestamp of when it was created
Disseminated by the source in an authenticated manner
Not pre-image or collision resistant!

Security relies on time asymmetry
checksum verification

A node verifies a packet against a
checksum that is created after the
packet is received

Cristina Nita-Rotaru



Our approach: Example

Attacker can not inject a checksum or modify
timestamp because checksum is sighed by source

received
P CS, created P by B

time
© ol N
< | (o | >
O ’ 2
CS, received CS, created
by A

Packet p will be verified against CS, and not CS;. The
attacker does not gain anything by observing CS;.
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DART and EDART

» DART

» Forwarder nodes buffer packets
checksum verification

» Only verified packets are combined to
form new packets for forwarding

» Polluted packets are dropped at first hop,
eliminating epidemic propagation
» EDART
» Improves performance with optimistic forwarding
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Checksum computation and verification

» A generation of packets G = [Py, Pys---> Pyl

Checksum computation

» Compute H_ arandom bxm matrix from a seed s
» Compute the checksum
CHK/(G)=H,G
» b is asystem parameter that trades off security and overhead

Checksum verification

Given CHK (G), s and ¢, check if a coded packet (¢, e) is valid
» Check

CHK(G)c=He
» Why?
CHK (G)e= (H,G)c = H(Gc) = He
» No false positive, may have false negative
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Batch Checksum Verification

» Verify a set of coded packets {(c,, ¢,),

(1, e;) (€3, €5) (¢, €) (c, e)

&>
Random linear 0°
comblnatlon Verlfy
I I I U .
Divide and verify

, (¢, €,)} at once

Declare all k packets
are valid

At least one input
packet is invalid

Invalid packets

» For higher accuracy, we can repeat the procedure

Cristina Nita-Rotaru
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DART Algorithm

Source node

» Disseminate coded packets as usual
» Periodically disseminate a signed random
checksum (CHK, s, ©)

4 N\ [
Unverified Verified

NI 4

Source node

Forwarder node

» On sending a packet
Code packets in verified set
» On receiving coded packet p
Add p to unverified set, record receive time
» On receiving checksum (CHK, s, ?)
Verify packets in unverified set with receive
time before ¢

([ —lfl]
checksum ﬁ/ *}

Receiver node

Cristina Nita-Rotaru
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DART Overhead Analysis

» Computation overhead
» Checksum computation
CHK (G)=H,G
» Checksum verification
CHK(G)e=He
» Communication overhead
» Dissemination of checksum packet (CHK (G), s, ?)
s: random seed, e.g. 4 bytes

t: timestamp, e.g. 4 bytes

CHK,(G): b x n matrix over F,
0 Example: b=2, n=32, =28, CHK(G) is 64 bytes

Cristina Nita-Rotaru } 23



DART security analysis

» The probability that a polluted packet can pass the
checksum verification is 1/qP

» In batch verification, the probability that a polluted packet
passes w independent batch verification is 1/q° + 1/q%

» Example: q=28,b=2
» 1in 65536 polluted packets can pass first hop neighbor

» 1in over 4 billion polluted packets can pass second hop
neighbor

Cristina Nita-Rotaru
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EDART

» DART delays packets for verification,
increasing latency

Ideally,
» Delay polluted packets for verifying
» Forward correct packets without delay

But,

» We do not know which packets are
correct and which are polluted

Cristina Nita-Rotaru



EDART overview

» Packets are always verified BUT
» Nodes “closer”to the attacker delay packets for verification

» Nodes “farther” away from the attacker forward packets
without delay and will verify them when possible

~

/

» Polluted packets are restricted to a region around the

attacker
» Correct packets are forwarded without delay

» In case of no attack, all packets are forwarded without

delay — almost no impact on performance

Cristina Nita-Rotaru
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How to decide when to delay?

» h,, : Add a hop count that captures the number of hops a
packet has traveled since the last verification

» All verified packets will have h ,setto O

» Packets that traveled less than 6 hops will be forwarded
without delay, otherwise a node delays them

» When coding a new packet, seth,=h__ +1to be the
maximum h , in the packets used to create the new packet

» If pollution was detected, the node will switch for a time
proportional with how big h is to delaying all packets

p 27



Forwarder Node Algorithm

EDART Algorlthm » On sending a packet

Code packets in forward set
» On receiving coded packet p
ifC,>00rh, 20
Add p to delay set
else
Add to forward set
Delay forward timer » On receiving checksum (CHK, s, ?)
» C, =0-> in forward mode Verify unverified packets (delayed or not)

! - N ~N if detecting a polluted packet
FACKECHIEID Delay Forward Increase C,, by a (1 —4,,/3)
h,, the number of hops a else if C,> 0

[I [I [I [I I Decrease C, by 1

packet had traveled

since its last verification

checksum I \—I/Q*)
1] vl ©
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Forwarder Node State

Node mode
» Delay mode
» Forward mode

G Receiver node

Source node




EDART security analysis

» Maximum pollution scope —_—
» Bounded by 0+1

» Average pollution scope
» Bounded by 6/a

» Maximum pollution success frequency
» Bounded by 6/a

— » Unnecessary delay

» Nodes at i hops away from the attacker
berformance (2 <i<6-h-1): a(1 - (h+i)/6)
» Nodes more than 6-h-1 hops away: 0

——
Security

—/

S —

[ The selection of 6 and a trades off security and performance }
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Experimental evaluations

» Network coding system: MORE

Broadcast packet
delivery probability

» Simulator: Glomosim

» Trace driven physical layer
» MIT Roofnet trace

» MORE setup
» GF(28), generation size 32, packet size 1500 bytes

» Defense setup
» RSA-1024 digital signature
» Checksum size parameter b =2
» EDART setup 0 =8, a =20
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Impact of pollution attacks

Throughput CDF under a single pollution attacker

with various pollution intensity
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Even a single pollution attacker can be

Cristina Nita-Rotaru extremely detrimental!
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Cumulative fraction of flows

Effectiveness of DART and EDART

Ideal Defense: defense scheme that drops polluted packets with zero overhead

Defense under 5 attackers
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Both DART and EDART are very effective
against pollution attacks
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Cumulative fraction of flows

Performance in benign networks
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Bandwidth (kbps)
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Number of attackers
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Overhead of DART and EDART

Computation overhead

Number of attackers

Both DART and EDART incurs small bandwidth
and computation overhead
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Null Keys

» Valid coded packets belong to a subspace A

« A null key K is a subspace of N(A), N(A) is the null space
of A

o IfcinAthenc*K=0
o IfcnotinAthenc* K #0 with high probability

« Low computational overhead for verification compared
to digital signature/hash schemes

Cristina Nita-Rotaru } 35



A basic approach

« Source distributes null keys to some forwarders

« Forwarders exploit subspace property of null keys to
combine their null keys for other forwarders

« Path diversity ensures a forwarder's null keys do not
span the space of a downstream node's null keys

» However
o No path diversity in wireless
o Null keys are very large

Cristina Nita-Rotaru } 36



Our Approach

Splitting the null keys

o Generation independent part
. Large (7340 bytes in our typical scenario)
o Constant for multiple generations

o Generation dependent part
« Small (160 bytes in our typical scenario|
o Updated each generation

o Source distributes large independent parts once
o Source periodically updates smaller dependent parts

Low communication overhead
No need for forwarders, source can
send the key updates
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Splitting Null Keys

o N —number symbols in coding header

« M —number symbols of coded data

o W —Size of null key

« K—=null key ((n+m) x w matrix)

. K, —generation dependent null key (n x w matrix)

. K —generation independent null key (m x w matrix
. X—data for generation (n x m matrix)|

Key Splitting Packet Verification

1) Initialize K. randomly ¢ * K =0if c from X
2) Kd3=X*Ki n<<msoK, <<K
3) K= [K|T|K.T]T

Cristina Nita-Rotaru } 38



Comparison with pollution defenses
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SNK — Split Null Keys

DART — Wireless defense based on time-
sensitive checksums

KFM — Representative crypto-based
scheme

MORE — Network coding without defense
overhead

HOMOMAC-x — MAC-based scheme
resilient to x attackers

SNK outperforms other defenses
o Low computational overhead
« No delaying of packets
« Not sensitive to multiple attackers
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Retains coding gains

[
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SNK — Split Null Keys

MORE — Network coding
without defense overhead

ARAN - Secure best-path-
routing protocol

SNK retains coding gains
of MORE while providing
defense against attackers



This talk

» Network coding under
attack:

» Pollution attacks in
intra-flow network
coding

» Network coding to the
rescue:

» All pairwise and
connected graph key
management resilient
to node capture

Cristina Nita-Rotaru
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Key distribution in wireless network

[How to bootstrap trust in a wireless (sensor) network? }

» Establish secret keys

» All pairwise keys: Symmetric keys are established between
every pair of nodes in the network

» Connected graph: Enough keys are established to ensure that
the network graph is connected
» By using different types of communication
» Direct: nodes communicate directly
» Multi-hop: nodes communicate through intermediate nodes
Single path
Multi-path

» 42
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Resilience to node capture

[How many keys get compromised when a node is captured? }

» All nodes share the same key

» Compromise of a node means compromise of the entire
network

» Pairwise keys

» Only the keys shared by the compromised node with other
nodes in the network get compromised

» Connected graph

» Each node requires fewer keys, but can result in high
communication overhead as the shortest path over secure
links may be larger than the shortest path over all possible
links.
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Typical key establishment steps

» Network operator first initializes each sensor with a set of
secret keys chosen from a large pool

» Sensor nodes are dispersed randomly and uniformly in an
environment

» Sensor nodes discover their physical neighbors
determined by a fixed transmission range

» Pairs of physical neighbors aim to establish a secret key
by using their pre-shared keys
» communicating directly

» communicating with other nodes over multi-hop paths

» 44



Factors in the design space

» Secrecy and correctness (i.e. integrity, i.e. resilience) of
the keys — depending on adversarial model during the key
establishment

» Memory constraints
» How many keys does a node store?

» Network resilience to attacks

» How many secure links (secret keys) are compromised when a
node is compromised: security constraints

» Communication overhead

» Communication overhead needed to establish keys and
communicate securely
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Our approach

» New coding technique
» Single-path scheme
» Multi-path scheme for both connected component and all
pairwise keys
» Provides both secrecy and correctness
» Maximal rate

Based on H. Yao, D. Silva, S. Jaggi, and M. Langberg. 2010.
Network codes resilient to jamming and eavesdropping. In
NetCod 2010

» Assume attackers are present during key establishment
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Coding technique

» Secrecy and correctness under bounded number of
adversaries

Cristina Nita-Rotaru
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Evaluation goals

» How do changes in the proportion of compromised
nodes, available memory and network size affect the
resilience to node compromises for each scheme

» How do changes in the network size and density affect
the communication overhead for each scheme

» How do all pairwise keys schemes compare with
connected graph schemes

» How do changes in the number of disjoint paths for the
multi-path schemes affect overhead and security
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All pairwise: Proportion of insecure links

Proportion insecure links
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All pairwise: Communication overhead
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Connected graph: Proportion insecure links
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Connected graph: Communication overhead
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Multi-path
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Summary

» Network coding brings new
challenges and opportunities

» Challenge

» Defenses against particular
types of attacks against
network coding: pollution

» Opportunity

» Design of key management for
sensor networks that leverage
network coding and multi-path
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