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e Consider a tamperable communication channel.
e To protect, send ¢ = Enc(m) along the channel.
e The tampered codeword decodes to some m*.

e Hope: m* "looks like" g(m) forsome "good" ¢ thatwe can
"tolerate”.
We want

» Correctness: Ym, Dec(Enc(m)) = m.

» Simulation:Vfe F, Jge€d, where

» Fis large and realistic against attacks/channels.
» G small and "easy to handle".
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» G ={/d}is “easy to handle".
» F realistic/useful.

» Constructions: Hadamard, Reed-Solomon, Reed-Muller, etc..
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Example: Error-detecting codes

Enc f Dec

m c c* m* (Real)
—~_ o )
T m =g g (m) (Ideal)
F G
i I Id(m)=m
fB(c) =c+3d L (m)=|

AMD Codes: Application in robust fuzzy extractors and secret sharing
[CDFPW12], NM-codes [DPW10], etc.
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Error-correction/detection impossible
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Let ¢* = Enc(m’) for some fixed .

Thus, Dec(c*) =m' ¢ {m, L}.
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Non-malleable codes

f .
m Enc c o Dec m*
— o
T m - 2(m)
7 NM
Id(m)=m
- = o ) (m) =m*

Is NM "realistic/easy-to-handle"? When is it useful?
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Application of Non-malleable codes

v

Consider Sign,, (userlD, m).

v

Task: How to protect sk against tampering attack.

v

Encode sk using non-malleable code.

v

Thus, sk = Dec(f(Enc(sk))) is either equal to sk or unrelated.

v

Thus, cannot use Sign., . (userlID, -) to forge Sign,, (userlD’, -).
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Non-malleable codes: Formal Definition

Let (Enc, Dec) be a coding scheme with Enc randomized, and
Dec deterministic, s.t. Vm Dec(Enc(m)) = m,

f
m Enc c c* Dec = (Real)

The coding scheme is non-malleable w.r.t. family 7, if

vfe F, 3T which is a probabilistic combination of:

» constant functions

» identity function

s.t.
VmeM, m" = T(m).

Note: T is independent of m.
Thus, intuitively, either m* = m or they are unrelated.
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Which realistic families F can we tolerate?

Enc f Dec

m c c* m* (Real)

T m o (m) (Ideal)

(
’.7:2111 fil”

Impossible [DPW10].
Y ge Fq, let f(c) = Enc(g(Dec(c))).
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Non-malleable Codes in the t-split-state model

>

Tamper t different memory-parts independently
Application to non-malleable secret-sharing

Includes ECC, EDC, Constant functions, bitwise tampering
functions but much more

Existential result known [DPW10].

Efficient construction for family of bitwise-tampering functions
(t = k, the no. of bitsin m) [DPW10, CG14, FNVW14].

Efficient construction for t = 2, k = 1 [DKO13]
Open Question: Efficient construction for ¢t constant, k large.

YES (this talk). We show several constructions, including
t = 2 and constant rate (i.e. code length is O(k)).



NM-codes in the t-split state model
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The coding scheme is non-malleable w.r.t. family Figpit , if
Vv fi,...,f, 3T which is a probabilistic combination of:

» constant functions

» identity function

s.t.
Vme M, m" = T(m).



Common outline for our results: Non-malleable
reductions [ADKO15]
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Non-malleable Reduction: Definition [ADKO15]

Let (Enc, Dec) be a coding scheme with  Enc randomized, and
Dec deterministic, s.t. Vm Dec(Enc(m)) = m,

f
m Enc o ok Dec m* (Real)

The scheme is a non-malleable reduction from F to &,
denotedas F = ¢ if

vf e F, 3G which is a probabilistic combination of functions in G .
YmeM, m" = G(m).

An NM-code for 7 can be viewed as # = NM , where NM is the
function family comprising of

» constant functions

» identity function
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Non-malleable Reduction: Composability

Theorem
For all F, G, H, we have that

F =G, and G= 7, implies F = 7 .

G H NM
Id(m)=m

g (m)=m*
m

Make families simpler, until non-malleable.



Our results

split

aff

[ABKO14]

WAM]

[ADKO14]

Tl

[CG14, CZ14]

ADL14 gives a scheme for encoding k-bit messages to ©(k”)-bit
codewords.

ADKO15 gives a scheme for encoding k-bit messages to ©(k)-bit
codewords.
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Two simplifying assumptions for the talk

» Will only describe the decoding procedure.

» Enc(m) is a random c¢ such that Dec(c) = m.
» Subtlety: Enc might be inefficient.

» This can be a problem at times, but for our constructions,
we can get around it.

» Argue non-malleability only for a uniformly random message M.



Fsplit = Faffine

U= Ur,, p=poly(k) isaprime
Enci(U) =L, ReFy st (L,R)=U, n=poly(logk).

f
Enc | L L* DCCI
U ]— <L*, R*>
R 2 . Rx

We show:

v 1,9, ((LA), (f(L),9(R)) = (U, ArgU+ Brg) .



Proof Step 1: Partitioning Lemma

Fix f,g. Let (L, R) := (({L, R), (f(L), 9(R)))

D:={D: D isaconv. comb. of (U,aU+ b), a,b € F}

G O It is enough to partition Fg x Fp into
S "good" and "bad" rectangles such
5 that

Fp G G » If Sisagood set, then
(L, R)|(L,mes is close to some
S, distribution in D.

» The union of all bad sets has
G B size much smaller than p?".
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Our partitioning

We partition Fj x Fy into four type of rectangles.

e Typel: g(R)=a forsomeacTFg. Then ¢ = ((L,R), (f(L),9(R)))is
closeto (Ur,, (f(L),a)) which belongs to D.

e Type2: ¢ = ((L,R), (f(L),g(R))) is close to UIF%, which belongs to D.

e Type3: f(L)=AL forsome AcTFp*" ,and A"g(R)=cR+d ,for
celFp ,and deFy ,whichimplies

¢=(LAR), cL,R)+(Ld),
which is in D if the partition S is large enough.
e Type 4: Bad sets.

We show that the set Fj x Fp can be partitioned into sets of the above four
types such that the total size of "bad" sets is much smaller than p*".



Main tools used for the proof

> Linearity test [BSG94, Sam07, San12] : For f : Fp — Fp

Prf(L) — f(L')y = f(L— L)) >e = 3A Pr(f(L) = AL) > p~ (/%) |

» We need a generalized version, for which we show that
essentially the same proof works.

» Hadamard Extractor: (-, -) is a strong 2-source extractor.

» (Generalized) Vazirani’'s XOR Lemma:

(X1, X2) is close to uniformin Fp, x F, ifandonlyif aX; + bXz is
close to uniformin F, forall a,beF, , notboth zero.
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h
Enc, c AB _Ac+B Dec, m*

Define an affine-evasive setC of F, as a set s.t. for C chosen uniformly at
random from C,

Va beFy,xFp, st a#0 and (a,b)# (1,0)
Pra-C+be(C)=0,
Partition C into equal parts Cs, ..., CjA»q and define

Decs(c) =m, if ce€Cm, and L, otherwise .
Thus,
VvmeM, m" = T(m).

An affine-evasive set construction modulo p [A14]:

1 p1/4
S = {6 (mod p) | g isprime, g< T} .
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Our second result [ADKO15]

NM-reduction from 2-split to t-split for large
constant t

k-bit messages — ©(k)-bit codewords.

Dol ‘
split }—2_13 ’f—split
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Some natural tampering families

» S! denotes the tampering family in the t-split-state model with
each part having length n.

» L} " denotes the class of lookahead manipulation functions I that
can be rewritten as I = (h, ..., k), for /; : {0,1}" — {0,1}",
where

/(X) = /1(X1)||/2(X1,X2)H...||/,'(X1,...,X,')H...||/t(X1,...7Xt)
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Sgtn (:>) £ﬁt
Quentin: Q, S4 Wendy W
Si %
— " R —Ex(W:S)
S —Ext(Q:R) ——

> Dec((Q, S),W)=S5;,...,S:.

» Alternating Extraction Theorem [DP07] shows:
S,‘+1,...,St’r?5 U, given 81,...,8,',847...,8;.
» Intuitively, this implies

Vi, Sj isindependent of Sj.4,...,S;.
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Lot x Ly = S

Define the reduction by the following:
DeC(La R) = (<Lf7 R1>) <Lt,1, R2>7 ] <L1a Rt>) )
where (-, -) is the ¢-bit inner product (interpreting L;, R; as elements of

F2!.

Intuitively, the result follows from the observation (using the
Hadamard two-source extractor property) that b; = (L;_;,1, Ri) is
close to uniform given b; = (L} ; 4, Rj) for j # i.

Formal proof: More subtle due to joint distributions. See paper.
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Summarizing and Composing the two reductions
We showed:

> SZ, (=) Lyt

» Lol x Lyl = 8]
By composing, we get
Sgey (=) SI.
This, however is not efficiently invertible. We can add a fifth part
to make it efficiently invertible.

Using another more involved construction, we can modify the
first reduction to get the following efficiently invertible reduction.

> Sg(pn) = L5txcstu ... (only works for constant t) .
This implies:
Shoyye = Si-
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Concluding Non-malleability

Our work combined with an independent work [CZ14] gives
constant rate 2-split NM-Codes.

[CZ14] showed: Sé?/) = NM,.
This combined with our reduction gives:

S5 = NM.

split Frta NM

T i
= 5P 1cG14b)

[CZ14]




Future work

The following are major open questions in this area.

» Optimizing the rate of the NM-code construction in split-state
model, either by improving our proof techniques, or using some
other construction.

» Proposing other useful tampering models.

» Other applications of NM-codes. There has been some recent
work in this direction by [CMTV14] and [AGMPP14].



Thank You



