LB PRINCETON
¥ UNIVERSITY

Traditional data planes
are stateless

Software Defined Networks (SDN)

Program your network from
a logically central point!

OpenFlow Rule Tables

Prio match action

1 dstip =10.0.0.1 |outport &1
2 dstip = 10.0.0.2 drop

4
='—'a

Two-Tiered Programming Model

e Stateless data-plane rules

— Process each packet independently

— State updates are limited to traffic counters
e Stateful control-plane program

— Store and update state in the controller application
— Adapt by installing new rules in the switches

Forces packets to go to the controller...
or greatly limits the set of applications

Emerging switches have
stateful data planes

Local State on Data Plane

Key Value

H2 5
H1 99

Local State on Data Plane

Key Value

H2 5

H1 [100

Local State on Data Plane

Key Value match action

H2 5 value = 100 drop

H1 100 M

Local State on Data Plane

* Programmatic control over local state
— P4, POF, OpenState, Open vSwitch

* Plus other important features

— Programmable packet parsing
— Simple arithmetic and boolean operations
— Traffic statistics (delays, queue lengths, etc.)

* Simple stateful network functions can be
offloaded to the data plane!

Hop- by Hop Utlllzatlon -aware
Load-balancing Architecture

Naga Katta, Mukesh Hira, Changhoon Kim,
Anirudh Sivaraman, and Jennifer Rexford

http://conferences.sigcomm.org/sosr/2016/papers/sosr_paper67.pdf

10

HULA Multipath Load Balancing

* Load balancing entirely in the data plane
— Collect real-time, path-level performance statistics
— Group packets into “flowlets” based on time & headers
— Direct each new flowlet over the current best path

11

Path Performance Statistics

Best-hop table

Best Next-Hop | Path Utilization

0
Dest 0 S3 50%
ToR 1 S4 10%
Probe
#

e Using the best-hop table
— Update the best next-hop upon new probes
— Assign a new flowlet to the best next-hop

12

Flowlet Routing

Flowlet table

Detron | Timestamp | Nestiop
0 ToR10 1 52
h(flowid) , 1ro 17 s4

* Using the flowlet table
— Update the next hop if enough time has elapsed
— Update the timestamp to the current time

* Forward the packet to the chosen next hop

Putting it all Together

data
packet

Best Next-Hop | Path Utilization
ToR 1 S4 10%

current best

0 ToR10 Update next-hop
(if enough time
h(flowid) 1 10RO 17 S> elapsed) and time
chosen

next-hop

14

Plenty of Other Applications

Stateful firewall

DNS tunnel detection

SYN flood detection

Elephant flow detection

DNS amplification attack detection
Sidejack detection

Heavy-hitter detection

15

But, how to best write
these stateful apps?

SNAP: Stateful Network-Wide
Abstractions for Packet Processing

Mina Tahmasbi Arashloo, Yaron Koral, Michael
Greenberg, Jennifer Rexford, and David Walker
http://www.cs.princeton.edu/~jrex/papers/snapl6.pdf

17

Writing Stateful Network Apps is Hard

* Low-level switch interface
— Multiple stages of match-action processing
— Registers/arrays for maintaining state

 Multiple switches
— Placing the state
— Routing traffic through the state

 Multiple applications

— Combining forwarding, monitoring, etc.

18

Snap Language

* Hardware
independent

* One Big Stateful
Switch (OBSS)

* Composition

19

Stateless Packet Processing

* A function that specifies
— How to process each packet on a one-big-switch
— Based on its fields

* E.g., NetKat

[input packet BD | > @@ set of]
_ packets
Function

20

Stateful Packet Processing

* A function that specifies

— How to process each packet on a one-big-switch

— Based on its fields and the program state

— Where state is an array indexed by header fields

-

input packet

current state

-

SNAP

(@ i 5

Program

)

5

N

set of
packets

updated state

21

Example Snap App: DNS Reflection

if srcip in CSNET & dstport = 53 then
seen[srcip][dns.id] < True
else if dstip in CSNET & srcport = 53 then
if ~seen[dstip][dns.id] then
unmatched[dstip]++;
if unmatched[dstip] = threshold then
suspl[dstip] <« True
else 1id
else 1id

* Seen: Keep track of DNS requests by client and DNS identifier
* Unmatched: Count DNS responses that don’t match prior requests

e Susp: Suspected victims receive many unmatched responses
22

Example Snap App: Stateless Forwarding

if dstip = CSNET then outport <« CS

else if dstip = EENET then outport <« EE
else if dstip = ISPINET then outport <« ISP1
else 1f dstip = ISP2NET then outport <« ISP2
else drop

23

......"‘--.__>

Composition

if srcip in CSNET & dstport = 53 then
seen[srcip][dns.id] <« True
else if dstip in CSNET & srcport = 53 then
if ~seen[dstip][dns.id] then
unmatched[dstip]++;
if unmatched[dstip] = threshold then
susp[dstip] <« True
else id
else id

if dstip = CSNET then outport < CS

else if dstip = EENET then outport <« EE
else if dstip = ISPINET then outport <« ISPl
else if dstip = ISP2NET then outport <« ISP2
else drop

/

O

24

Snap Applications

Source Application
Number of domains sharing the same IP address
Number of distinct IP addresses under the same domain
Chimera

(USENIX Security’12)

DNS TTL change tracking
DNS tunnel detection
Sidejack detection
Phishing/spam detection

FAST
(HotSDN’14)

Stateful firewall

FTP monitoring

Heavy-hitter detection

Super-spreader detection

Sampling based on flow size

Selective packet dropping (MPEG frames)
Connection affinity

Bohatei
(USENIX Security’15)

SYN flood detection

DNS reflection (and amplification) detection
UDP flood mitigation

Elephant flows detection

Others

Bump-on-the-wire TCP state machine
Snort flowbits

25

Snap Compiler
Composition of . ; (.)
mul’lcoipletapps () [.])

\

Snap Compiler

State placement /é é\

and routing é é

26

Snap Compiler

|ldentify State Dependencies

Translate to Intermediate
Representation (XFDD)

Identify mapping from
packets to state variables

Optimally distribute the
XFDD

Generate rules per switch

27

Intermediate Representation: xFDDs

Canonical representation of a program
Composable

Easily partitioned

Simplify program analysis

Extended Forwarding Decision
Diagrams (xFDDs)

* |Intermediate node:
test on header fields dstip = 10.0.0.1
and state

* |eaf: set of action srcip = dstip

sequences
s[srcip] =2

e Three kinds of tests

— field = value
— field1 = field> {s[dstip] — 2}
— state_var[e1] = ez

29

XFDD for DNS Reflection Detection

srcip in CSNET

dstport = 53

{seen[srcip][dns.id] < True} srcport = 53

dstip in CSNET

seen[dstip][dns.id]

{unmatched[dstip]++,

)) {unmatched[dstip]++}
susp[srcip][dstip] — True}

30

Optimally Distribute the xFDD

Dependency MILP Packet-State
Graph Mapping

Traffic Output
Matrix e State placement

31

See SIGCOMM’16 paper for
prototype, experiments, etc.

http://www.cs.princeton.edu/~jrex/p
apers/snapl6.pdf

More Fun With State

* Extending Snap
— More operations, e.g., field & state[index]
— Sharding and replication of state
— Faster compilation

* Richer computational model
— Limits on computation per packet
— Different memory (array, hash table, key-value store)
— Hash collisions, delays in adding new keys, etc.

* More stateful applications!

33

Conclusion

 Emerging switches have stateful data planes
— Can run simple network functions
— ... within and across switches!

e Standard interfaces
— E.g., P4 (p4.org)

* Raises many new algorithmic challenges
— New computational model

— Compact data structures (e.g., sketches)
— Working within hardware limitations

34

