Approximation Algorithms for
Coflow Scheduling

Erez Kantor Hamid Jahanjou

Rajmohan Rajaraman

Northeastern University, Boston

Coflows

e Large-scale data processing computations (e.g.
MapReduce, Spark, Dryad)
— Composed of multiple data flows
— Flows over a shared set of distributed resources

— Computation completes when all of its flows
complete

e Coflow:
— Collection of flows sharing same performance goal

Coflows: An Example

e Blue coflow has two

flows

* Red and green d(C)=2

coflows have one
flow each

* All edge capacities
d(B)=1

are unit —>
d(D)=1

d(A)=2

Bandwidth

Coflows: Schedules

e Schedule 1
— Constant bandwidth
of % for all flows d(C)=2
—4+4+2=10 A2
ﬁ
f— 4(B}=1
%

d(D)=1

Coflows: Schedules

e Schedule 2

— Blue > Red > Green

—2+4+2=8 d(C)=2
d(A)=2

Bandwidth

d(B)=1

d(D)=1

Bandwidth

Coflows: Schedules

e Schedule 3

— Red > Green > Blue

—1+2+4=7 d(C)=2

d(A)= 2
D
d(B)=1

C —>
: I

0 1 2 3 4 Time

Flow Models

Assign paths and bandwidth to source-

Bandwidth D .
destination connection requests

Route and schedule packets between

Latenc c L
Y specified sources and destinations

Computation | Schedule tasks on unrelated machines

* In each model, the individual flows share a
common objective

— Completion time: time at which last flow completes

Previous Work

[Chowdhury-Stoica 2012] introduce coflows as an
abstraction for cluster applications

[Zhao et al 2015] present RAPIER

— Heuristics for joint scheduling and routing

— Explicit routing using SDN and bandwidth
enforcement using Linux Traffic Control

[Qui-Stein-Zhong 2015] present constant-factor

approximations for coflow scheduling on a non-

blocking switch

More work on scheduling/routing in datacenter
networks

New Approximation Algorithms

Circuit-based coflows

— 4d-approximation when paths are given

— O(log(n)/loglog(n)) approx. when paths not given
Packet-based coflows

— Constant-approximation in both cases

Task-based coflows
— Constant-approximation

Asymptotically optimal modulo standard
complexity assumptions [Garg-Kumar-Pandit
2007,Chuzhoy-Guruswami-Khanna-Talwar 20]

Circuit-Based Coflow Scheduling

Network with edge capacities

Connection requests with individual demand,
source-destination pair, and release time

Requests are grouped into coflows; each
coflow has a weight

Determine paths and bandwidth assighment
over time for each request to minimize
weighted average completion time

Circuit-Based Coflows

Flow ;: * Constraints:
— Source s(i), destination ¢(i) — b() forms a flow for each ¢
— Demandd(i) release r(i) J‘(S bie, t)dt]>d(i)
Coflow j: Set of flows : \e outof (1)
Network ¢ = (V. E) — For each t,
Capacity c(e) for edge ¢ é b(i,e t) £ c(e)
Output: Skl
— For each flow j and time Objective:

t b(iet) C(i) = completion time of i

C(j)=max (i) over flow i in;

min éw(j)C(j)

Piecewise Constant Bandwidth

Lemma: There exists an optimal solution in which between
any two events, the bandwidth for any given flow is

constant across time.

A
\/\/ .

/ N

Bandwidth

>
Time

Assign average bandwidth over the interval

Bandwidth

N

>
Time

Since capacity constraint satisfied at every instant, the new

assignment also satisfied

Is There an Optimum Priority Order?

* Optimal schedule:

— Assign % to blue, red, and
green for 2 units

— Assign 1 to black at time 3
—2+2+2+3=9

 No two flows can be fully
scheduled in parallel

— Every priority order yields
1+2+3+4=10

Interval-indexed Linear Program

Piecewise constant bandwidth allows us to develop a linear
program relaxation that achieves a 2-approximation

Divide time into [0,1), [1,2), ..., [2¥1,2%), ...
L] | | N

LP(k) for interval k:
— Constant bandwidth bk(i) for flow i
— Edge capacity constraints

 Ak-1 : .
Cross-interval constraint: a2 bk(l)sd(l)

Objective: | min a(w(]) max (22k tb ()))

flow i inj

J

Interval-Indexed Linear Program

Minimize ZZwU y subject to
Zx;’.g =i Vi, j (31)
D mexie <5 <) TesaTye Vi, j (32)
£<L £<L
¢; < ¢ Vi, j (33)
bie = ;x50 /Te Vi, j, £ (34)
Z b;e < c(e) Ve, e (35)
f}€P(e)
r; > Te1 = 25 =0 Vi, £ (36)

xj‘l‘ Z 0 Vi,j,f,e (37)

Constant-Factor Approximation

Solve the interval-indexed LP

Assign each flow to the interval following the first one by
which % of flow completes
In each interval:

— Allocate constant bandwidth to each flow assigned so that its
demand completes

— LP constraints and the interval structure guarantee capacity
constraints

High-level takeaway:
— Can group coflows into priority groups (intervals)
— Within each group, coflows bandwidth shares are well-specified

When Paths are not Given

* Solve the interval-indexed linear program
* Assign flows to intervals as before

 For each flow:

— Use the LP bandwidth assignment to decompose into
path bandwidth assignments

— Apply randomized rounding [Raghavan-Thompson
1987] to select a single path for each flow

— Stretch time by O(log(n)/loglog(n))-factor to achieve
desired approximation while satisfying constraints

Packet-Based Coflows

Network with edge capacities

Packet requests with individual demand, source-
destination pair, and release time

Requests grouped into coflows with weights

Determine routing schedule for each packet so as
to minimize weighted average completion time
Key differences from circuit-based model:

— Models latency and store-and-forward routing
— Notion of packets as indivisible entities

Packet-Based Coflows

oGl \\‘*Q(s;‘.,z)

Figure 1: An example graph G (above) and its time-
expanded version G” for T = 2 (below). Packet f;

needs to be routed from node s} to node d; in G.
Corresponding to f,', flows of combined size 1 are
sent from (s},0) to (dj,k) for k = 1,2. Dashed lines
correspond to queue edges.

Algorithm for Packet-Based Coflows

* Ingredients:
— Interval-index linear program
— [Leighton-Maggs-Rao 1994] existence of schedule

— [Leighton-Maggs-Richa-Rao] and more recent
work on Lovasz Local Lemma for constructing
schedules

— [Srinivasan-Teo 2001] for finding paths
* Constant-factor approximation

Future Directions

* Evaluation of algorithms in practice
— Can we avoid solving the interval-indexed LPs?

— In certain cases involving special topologies like
paths and trees:

e Can get simpler and better algorithms using total
unimodularity

— Improve the hidden constants in approx ratio
— Improve bounds for restricted classes of coflows

e E.g., flows in a coflow share a common source

Future Directions

e Other objective functions
— Minimize average weighted response time
— Cost-based objectives

e Other models

— Wavelength allocation in optical networks
* Strong hardness of approximation

* For paths, interesting connections to the well-studied
Unsplittable Flow Problem

* Online scheduling of coflows

