Multi-Commodity Flow with In-Network Processing

Moses Charikar Yonatan Naamad Jennifer Rexford X. Kelvin Zou

Outline

1 Routing and Steering

2 Network Design

In-Network Processing

- Computer Networks are now dual-purpose.
 - 1 Route traffic
 - 2 Perform services

In-Network Processing

- Computer Networks are now dual-purpose.
 - Route traffic
 - 2 Perform services
 - Firewalls
 - Load balancers
 - Video transcoders
 - Traffic encryption/compression
 - Etc.

In-Network Processing

- Computer Networks are now dual-purpose.
 - 1 Route traffic
 - 2 Perform services
 - Firewalls
 - Load balancers
 - Video transcoders
 - Traffic encryption/compression
 - Etc.
- Novel uses require novel algorithms.

Middlebox Processing

- Historically, middleboxes were single purpose.
- Network Function Virtualization (NFV) allows for greater flexibility.
- Question: how do we best utilize this newfound flexibility?

Our Model

Given

- 1 A graph G modeling our network.
- 2 Edge capacities B_e on links.
- 3 Processing capacities C_{ν} on vertices.
- 4 A collection of flow demand (s_i, t_i) pairs.

Find

• A way to route **and** process as much flow as possible.

Our Model

Given

- 1 A graph G modeling our network.
- 2 Edge capacities B_e on links.
- 3 Processing capacities C_{ν} on vertices.
- 4 A collection of flow demand (s_i, t_i) pairs.

Find

- A way to route and process as much flow as possible.
- Assumption: one unit of flow requires one unit of processing.

Routing vs. Steering

Our problem has two components:

- Routing routes traffic between endpoints.
 - Equivalent to Maximum Multicommodity Flow
- Steering steers traffic to processing nodes.
 - Equivalent to Multi-source/sink Maximum flow
- We attempt to solve the *joint* routing and steering problem.

An (exponential) LP

Problem admits an obvious walk-based LP

MAXIMIZE
$$\sum_{i=1}^{D} \sum_{\pi \in P} p_{i,\pi}$$
 Subject to
$$p_{i,\pi} = \sum_{v \in \pi} p_{i,\pi}^{v} \quad \forall i \in 1..D, \pi \in P$$

$$\sum_{i=1}^{D} \sum_{\pi \ni e} p_{i,\pi} \leq B_{e} \qquad \forall e \in E$$

$$\sum_{i=1}^{D} \sum_{\pi \in P} p_{i,\pi}^{v} \leq C_{v} \qquad \forall v \in V$$

$$p_{i,\pi}^{v} \geq 0 \qquad \forall p_{i,\pi}^{v}$$

Problem: program size may be exponential.

Equivalent LP

■ We can also write an edge-based LP

Routing and Steering Network Design

Equivalent LP

- We can also write an edge-based LP
 - Too big to fit on this slide.

Equivalent LP

- We can also write an edge-based LP
 - Too big to fit on this slide.
- Key ideas:
 - **1** Each flow demand gets two sets of variables: f_i and w_i .
 - $\mathbf{w}_i = \mathbf{unprocessed}$ flow being routed
 - $f_i = total flow being routed$
 - 2 w_i absorbed at middleboxes, f_i absorbed at terminals
 - 3 w_i is bounded by f_i
 - 4 Other constraints are standard extensions of the multicommodity flow LP.

Proof of Equivalence (outline)

- Equivalence of the two LPs is nontrivial
- OPT may use edges more than once. Care is required!

- Proof outline:
 - **Cancel** redundant w_i and f_i flows as much as possible.
 - Argue that cycles must have some e where $w_i(e)$ drops.
 - Peel off this edge and proceed
- Conclusion: $O(|V| \cdot |E| \cdot |D|)$ algorithm for converting between the two I Ps.

Multiplicative Weights

- Edge-based LP can get unwieldy.
- $(1-\epsilon)$ MW-based approximation in $\tilde{O}(dm^2/\epsilon^2)$ time.
- Similar to the Garg-Könemann algorithm with a more elaborate update step.

Experiments

Routing and Steering

- Ran experiments on Abilene network traces
- Baseline: route flow first, worry about processing later
- Two sets of processing power distributions:
 - All nodes get equal processing capacity
 - A random subset of n/2 nodes get processing capcity.

Routing and Steering Network Design

Experiments (absolute)

Routing and Steering Network Design

Experiments (ratio)

Outline

1 Routing and Steering

2 Network Design

Network Design

- We now know how to utilize middleboxes.
- How do we optimally place them in the first place?
- Middleboxes are indivisible → combinatorial problem.

Network Design

Given

- 1 An edge-capacitated graph G.
- 2 The set of flow demands
- 3 For each middlebox v, proposals and costs of installing various amounts of processing capacity

Find

1 The optimal purchase plan of middlebox processing power in G.

Four Key Problems

	Directed	Undirected
Budgeted Maximization		
Minimization		

Four Key Problems

	Directed	Undirected
Budgeted Maximization	NP-Hard	NP-Hard
Minimization	NP-Hard	NP-Hard

Four Key Problems

		Directed	Undirected
Maximization	Approximation	$O(\log n)$	$O(1)^{(\dagger)}$
	Hardness	O(1)	O(1)
Minimization	Approximation	$O(\log n)^{(*)}$	$O(\log n)^{(*)}$
	Hardness	$O(\log n)$	$O(\log n)$

End

Questions?