Practical, Real-time Centralized Control for CDN-based Live Video Delivery

Matt Mukerjee, David Naylor, Junchen Jiang, Dongsu Han, Srini Seshan, Hui Zhang

Combating Latency in Wide Area Control Planes

- Centralization can provide major benefits
 - e.g., better performance, reliability, policy management, ...
- Scalability is hard on WAN due to latency

Control Planes in the 4D* Model

^{*}Yan, Hong, et al. "Tesseract: A 4D Network Control Plane." NSDI. Vol. 7. 2007.

WAN Problems and Decision Planes

Low Latency Decision Plane

with I D

Traffic Engineering ——— Solve with LP

High Latency Decision Plane!

Attacking Decision Plane Latency

Outline

CDN Live Video Delivery Background

Legend

Requests:

Video 1
Video 2

Responses:

Video 1
Video 2

CDN Live Video Delivery Background

Link Cost

CDN Live Video Delivery Background

Outline

Needs global view to coordinate videos and network resources

Solving Centralized Optimization

MAXIMIZE

SERVICE QUALITY

MINIMIZE

DELIVERY COST

SUBJECT TO

DON'T EXCEED LINK CAPACITY
SENDER MUST HAVE RECEIVED VIDEO

Solving Centralized Optimization

SERVICE QUALITY

```
\max_{w_{s}} w_{s} \cdot \sum_{l \in L_{AS}, o \in O} \text{Priority}_{o} \cdot \text{Request}_{l,o} \cdot \text{Serves}_{l,o} \\ - w_{c} \cdot \sum_{l \in L, o \in O} \text{Cost}(l) \cdot \text{Bitrate}(o) \cdot \text{Serves}_{l,o}
```

DELIVERY COST

subject to:

 $\forall l \in L, o \in O : Serves_{l,o} \in \{0,1\}$

DON'T EXCEED LINK CAPACITY

 $\forall l \in L$: $\sum_{o} \text{Bitrate}(o) \cdot \text{Serves}_{l,o} \leq \text{Capacity}(l)$

 $\forall l \in L, o \in O : \sum_{l' \in \text{InLinks}(l)} \text{Serves}_{l',o} \ge \text{Serves}_{l,o}$

SENDER MUST HAVE RECEIVED VIDEO

Centralized Optimization

Service Quality

Simulation using Conviva traces, modeling user-generated content

Delivery Cost

(per request)

cdn 2.0x

OPTIMAL 1.0x

Simulation using Conviva traces, modeling large sports events

Effects of Latency in Decision Plane

Experiments on EC2 nodes with a centralized controller at CMU across the Internet

Problems with Centralization

Outline

Legend

Data Requests:

Wideo 1 Responses:

→ Video 1

Outline

Combining Approaches: Hybrid

Combining Approaches: Hybrid

Combining Approaches: Hybrid

Challenges of Hybrid Control

Forwarding loops

TRIVIAL

Always forward requests upwards

State transitions

PRIOR WORK

Versioning and "shadow FIBS"

Avoid bad control loop interactions

CHALLENGING

Challenges of Hybrid Control

Avoid bad control loop interactions

CHALLENGING

- 1. Centralized decision has priority
- 2. Distributed uses residual after centralized
- 3. Distributed has no impact on current/future centralized decisions
- 4. Distributed's changes don't propagate

Hybrid Control and Responsiveness

Experiments on EC2 nodes with a centralized controller at CMU across the Internet

Hybrid Control and Responsiveness

Experiments on EC2 nodes with a centralized controller at CMU across the Internet

Hybrid Control and Responsiveness

Experiments on EC2 nodes with a centralized controller at CMU across the Internet

Conclusion

 We present a possible solution for combating decision plane latency

Conclusion

Practical, Real-time Centralized Control for CDN-based Live Video Delivery

Matt Mukerjee, David Naylor, Junchen Jiang, Dongsu Han, Srini Seshan, Hui Zhang

Backup slides...

Problems with Traffic Engineering

Problems with Traffic Engineering

Link Capacity

Distributed: Example of Sub-optimal

Legend

Data Requests:

Video 1

Responses:
Video 1

Link Capacity

Distributed: Example of Sub-optimal

Trace-Driven Eval

- 3 Traces
 - Avg Day: raw trace of music video provider
 - Large Event: synthesized basketball game
 - Heavy Tail: synthesized twitch/ustream like workload
- 4 Systems
 - Everything Everywhere: all vids to all servers
 - Overlay Multicast: globally optimal; no coordination
 - CDN: greedy distribution scheme w/ DNS
 - VDN: our system

Trace-Driven Eval

	EE	CDN	VDN
Avg. Bitrate (kbps)	588	2,725	2,716
Cost / Sat. Req. (norm.)	103	1.5	1
Clients at Reqs. BR (%)	18.73%	100%	99.83%

	EE	CDN	VDN
Avg. Bitrate (kbps)	685	1748	3366
Cost / Sat. Req. (norm.)	8.9	1.21	1
Clients at Reqs. BR (%)	22%	49%	77%

Table 1: Results for Average Day trace.

	EE	CDN	VDN
Avg. Bitrate (kbps) Cost / Sat. Req. (norm.) Clients at Reqs. BR (%)	0.08	2,725	2,725
	178K	2.2	1
	0%	100%	100%

Table 2: Results for Large Event trace.

Table 3: Results for Heavy-Tail trace.

Existing Solutions

- Traffic Engineering (SWAN, B4, ...)
 - Works on aggregates at coarse timescales
- Overlay Multicast (Overcast, Bullet, ...)
 - Not designed for coordinating across streams
- Modern CDNs
 - Previous work shows a centralized system could greatly improve user experience but would be difficult to design over Internet