

Universal Packet Scheduling

Radhika Mittal, Rachit Agarwal, Sylvia Ratnasamy, Scott Shenker UC Berkeley

- Many different algorithms
 - -FIFO, FQ, virtual clocks, priorities...
- Many different goals
 - –fairness, small packet delay, small FCT...
- Many different contexts
 - -WAN, datacenters, cellular...

- Implemented in router hardware.
- How do we support different scheduling algorithms for different requirements?
 - Option 1: Change router hardware for each new algorithm
 - Option 2: Implement all scheduling algorithms in hardware
 - Option 3: Programmable scheduling hardware*

*Towards Programmable Packet Scheduling, Sivaraman et. al., HotN

- Implemented in router hardware.
- How do we support different scheduling algorithms for different requirements?
 - Option 1: Change router hardware for each new algorithm
 - Option 2: Implement all scheduling algorithms in hardware
 - Option 3: Programmable scheduling hardware*

- Implemented in router hardware.
- How do we support different scheduling algorithms for different requirements?
 - Option 1: Change router hardware for each new algorithm
 - Option 2: Implement all scheduling algorithms in hardware
 - Option 3: Programmable scheduling hardware*

- Implemented in router hardware.
- How do we support different scheduling algorithms for different requirements?
 - Option 1: Change router hardware for each new algorithm
 - Option 2: Implement all scheduling algorithms in hardware
 - Option 3: Programmable scheduling hardware*

*Towards Programmable Packet Scheduling, Sivaraman et. al., HotN

We are asking a new question.....

How do we support different scheduling algorithms for different requirements?

Is there a *universal* packet scheduling algorithm?

UPS: Universal Packet Scheduling Algorithm

A single scheduling algorithm that

can imitate the network-wide output produced by *any* other algorithm.

Goal: Minimize Mean FCT

Goal: Fairness

Goal: Weighted Fairness

Output Traffic tied to Header Initialization

* Uses packet header state to make scheduling decis

Greater processing capability in the edge than in the core.

As per on prior SDN-based architecture designs.

Defining a UPS

Theoretical Viewpoint:

Can it replay a given schedule?

Practical Viewpoint:
Can it achieve a given objective?

Theoretical Viewpoint

Can it replay a given schedule?

Original Schedule

Only requirement from original schedule:

Output Times are viable

Replaying the Schedule, given o(p)

For every packet p, $o'(p) \le o(p)$

We call this Blackbox Initialization

Basic Existence and Non-existence Results

There exists a UPS under *Omniscient Initialization*

when scheduling time at every hop is known

No UPS exists under *Blackbox Initialization* when only the final output time is known

How close can we get to a UPS?

Key Result: Depends on congestion points

No. of Congestion Points per Packet	Genera I
1	✓
2	✓
3	X

Can we achieve this upper bound?

Can we achieve this upper bound?
Yes, LSTF!

Least Slack Time First

- Packet header initialized with a slack value
 - slack = maximum tolerable queuing delay

- At the routers
 - -Schedule packet with least slack time first
 - Update the slack by subtracting the wait time

Key Results

No. of Congestion Points per Packet	Genera I	LSTF
1	√	\checkmark
2	✓	√
3	X	X

Not all algorithms achieve upper bound

No. of Congestion Points per Packet	Genera I	LSTF	Priorities
1	✓	√	✓
2	√	√	X
3	X	X	X

How well does LSTF perform empirically?

Empirically, LSTF is (almost) universal

- ns-2 simulation results on realistic network settings
 - Less than 3% packets missed their output times
 - Less than 0.1% packets are late by more than one transmission time

Practical Viewpoint Can it achieve a given objective?

Achieving various network objectives

- Slack assignment based on heuristics
- Three objective functions
 - Tail packet delays
 - Mean Flow Completion Time
 - Fairness
- We also show how LSTF can facilitate AQM from the edge.
- See NSDI'16 paper for details!

Results Summary

- Theoretical results show that
 - There is no UPS under blackbox initialization
 - LSTF comes as close to a UPS as possible
 - Empirically, LSTF is very close
- LSTF can be used in practice to achieve a variety of network-wide objectives.

Implication

 Less need for many different scheduling and queue management algorithms.

 Can just use LSTF, with varying slack initializations.

Open Questions

- What is the least amount of information needed to achieve universality?
- Are there tractable bounds for the degree of lateness with LSTF?
- What is the class of objectives that can be achieved with LSTF in practice?

Conclusion

- Theoretical results show that
 - There is no UPS under blackbox initialization.
 - LSTF comes as close to a UPS as possible.
 - Empirically, LSTF is very close.
- LSTF can be used in practice to achieve a

variety of network-wide objectives

Contact: radhika@eecs.berkeley.ed

Code: http://netsys.github.io/ups/

Thank You!