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• Many different algorithms

–FIFO, FQ, virtual clocks, priorities…

• Many different goals

–fairness, small packet delay, small 

FCT…

• Many different contexts

–WAN, datacenters, cellular…

Many Scheduling Algorithms



• Implemented in router hardware.

• How do we support different scheduling 

algorithms for different requirements?

– Option 1: Change router hardware for each new 

algorithm

– Option 2: Implement all scheduling algorithms in 

hardware

– Option 3: Programmable scheduling hardware*

Many Scheduling Algorithms

*Towards Programmable Packet Scheduling, Sivaraman et. al., HotNets
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Is there a universal

packet scheduling 

algorithm?

We are asking a new question…..

How do we support different scheduling 

algorithms for different requirements?



UPS: Universal Packet Scheduling 

Algorithm 

A single scheduling algorithm

that

can imitate the network-wide 

output produced by any other 

algorithm.



How can a single 

algorithm imitate all 

others?
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Network Model

* Uses packet header state to make scheduling decisions
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Network Model
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Smart 

Header
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Header 

Initialization

Greater processing capability in the edge than in 

the core.

As per on prior SDN-based architecture designs.



How do we formally 

define and evaluate 

a UPS?



Defining a UPS

Theoretical Viewpoint:

Can it replay a given schedule?

Practical Viewpoint:

Can it achieve a given 

objective?



Theoretical  Viewpoint

Can it replay a given 

schedule?



Original Schedule
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o(p) for a packet p
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Only requirement from original schedule:

Output Times are viable



Replaying the Schedule, given o(p)
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We call this Blackbox Initialization

Input Traffic
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Basic Existence and Non-existence 

Results

There exists a UPS under Omniscient 

Initialization

when scheduling time at every hop is known

No UPS exists under Blackbox Initialization

when only the final output time is known



How close can 

we get to a 

UPS?



Key Result: Depends on congestion 

points

No. of Congestion 

Points per Packet

Genera

l

1 ✓

2 ✓

3 ✗



Can we achieve 

this upper 

bound?

Yes, LSTF!
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Least Slack Time First

• Packet header initialized with a slack 

value

– slack = maximum tolerable queuing delay

• At the routers

– Schedule packet with least slack time first

– Update the slack by subtracting the wait 

time



Key Results

No. of Congestion 

Points per Packet

Genera

l
LSTF

1 ✓ ✓

2 ✓ ✓

3 ✗ ✗



Not all algorithms achieve upper 

bound

No. of Congestion 

Points per Packet

Genera

l
LSTF Priorities 

1 ✓ ✓ ✓

2 ✓ ✓ ✗

3 ✗ ✗ ✗



How well does 

LSTF perform 

empirically?



Empirically, LSTF is (almost) 

universal

• ns-2 simulation results on realistic network 

settings

- Less than 3% packets missed their output 

times

- Less than 0.1% packets are late by more 

than one transmission time



Practical  Viewpoint

Can it achieve a given objective?



Achieving various network 

objectives

• Slack assignment based on heuristics

• Three objective functions

- Tail packet delays

- Mean Flow Completion Time

- Fairness

• We also show how LSTF can facilitate 

AQM from the edge.

• See NSDI’16 paper for details!



Results Summary

• Theoretical results show that

- There is no UPS under blackbox

initialization

- LSTF comes as close to a UPS as 

possible 

- Empirically, LSTF is very close

• LSTF can be used in practice to achieve 

a variety of network-wide objectives.



Implication

• Less need for many different 

scheduling and queue management 

algorithms.

• Can just use LSTF, with varying slack 

initializations.



There are still some 

interesting  open 

questions!



Open Questions

• What is the least amount of information 

needed to achieve universality?

• Are there tractable bounds for the degree of 

lateness with LSTF?

• What is the class of objectives that can be 

achieved with LSTF in practice?



Conclusion

• Theoretical results show that

- There is no UPS under blackbox

initialization.

- LSTF comes as close to a UPS as possible. 

- Empirically, LSTF is very close.

• LSTF can be used in practice to achieve a 

variety of network-wide objectives.
Contact: radhika@eecs.berkeley.edu

Code: http://netsys.github.io/ups/

Thank

You!


