
Universal Packet Scheduling

Radhika Mittal, Rachit Agarwal,

Sylvia Ratnasamy, Scott Shenker

UC Berkeley

• Many different algorithms

–FIFO, FQ, virtual clocks, priorities…

• Many different goals

–fairness, small packet delay, small

FCT…

• Many different contexts

–WAN, datacenters, cellular…

Many Scheduling Algorithms

• Implemented in router hardware.

• How do we support different scheduling

algorithms for different requirements?

– Option 1: Change router hardware for each new

algorithm

– Option 2: Implement all scheduling algorithms in

hardware

– Option 3: Programmable scheduling hardware*

Many Scheduling Algorithms

*Towards Programmable Packet Scheduling, Sivaraman et. al., HotNets

• Implemented in router hardware.

• How do we support different scheduling

algorithms for different requirements?

– Option 1: Change router hardware for each new

algorithm

– Option 2: Implement all scheduling algorithms in

hardware

– Option 3: Programmable scheduling hardware*

Many Scheduling Algorithms

*Towards Programmable Packet Scheduling, Sivaraman et. al., HotNets

• Implemented in router hardware.

• How do we support different scheduling

algorithms for different requirements?

– Option 1: Change router hardware for each new

algorithm

– Option 2: Implement all scheduling algorithms in

hardware

– Option 3: Programmable scheduling hardware*

Many Scheduling Algorithms

*Towards Programmable Packet Scheduling, Sivaraman et. al., HotNets

• Implemented in router hardware.

• How do we support different scheduling

algorithms for different requirements?

– Option 1: Change router hardware for each new

algorithm

– Option 2: Implement all scheduling algorithms in

hardware

– Option 3: Programmable scheduling hardware*

Many Scheduling Algorithms

*Towards Programmable Packet Scheduling, Sivaraman et. al., HotNets

Is there a universal

packet scheduling

algorithm?

We are asking a new question…..

How do we support different scheduling

algorithms for different requirements?

UPS: Universal Packet Scheduling

Algorithm

A single scheduling algorithm

that

can imitate the network-wide

output produced by any other

algorithm.

How can a single

algorithm imitate all

others?

Network Model

Input Traffic

INGRESS

CORE NETWORK

Schedulin

g

Algorithm

Network Model

Input Traffic

INGRESS

CORE NETWORK

Network Model

INGRESS

Input Traffic

(Optional)

Header

Initialization

Schedulin

g

Algorithm

Output Traffic

CORE NETWORK

EGRESS

Network Model

INGRESS

Input Traffic

(Optional)

Header

Initialization

Schedulin

g

Algorithm

Output Traffic

CORE NETWORK

EGRESS

Output Traffic tied to

Scheduling Algorithm

Network Model

INGRESS

Input Traffic

(Optional)

Header

Initialization

Priority

Schedulin

g

Output Traffic

CORE NETWORK

EGRESS

Goal: Minimize Mean FCT

Priority

Value

Flow Size

Network Model

INGRESS

Input Traffic

(Optional)

Header

Initialization
FQ Output Traffic

CORE NETWORK

EGRESS

Goal: Fairness

Network Model

INGRESS

Input Traffic

(Optional)

Header

Initialization
WFQ Output Traffic

CORE NETWORK

EGRESS

Goal: Weighted Fairness

Flow

Weights

Network Model

* Uses packet header state to make scheduling decisions

INGRESS

Input Traffic

Header

Initialization

Scheduling

Algorithm*
Output Traffic

CORE NETWORK

EGRESS

Output Traffic tied to Header Initialization

Header

Initialization

Network Model

INGRESS

Input Traffic

Smart

Header

Initialization
UPS? Output Traffic

CORE NETWORK

EGRESS

Header

Initialization

Greater processing capability in the edge than in

the core.

As per on prior SDN-based architecture designs.

How do we formally

define and evaluate

a UPS?

Defining a UPS

Theoretical Viewpoint:

Can it replay a given schedule?

Practical Viewpoint:

Can it achieve a given

objective?

Theoretical Viewpoint

Can it replay a given

schedule?

Original Schedule

Input Traffic

(Optional)

Header

Initialization

INGRESS CORE NETWORK

Arbitrary

Scheduling

Algorithm

Output Times

o(p) for a packet p

EGRESS

Only requirement from original schedule:

Output Times are viable

Replaying the Schedule, given o(p)

Input Traffic

Header

Initialization

(using o(p))

INGRESS CORE NETWORK

Output Times

o’(p) for a packet p

EGRESS

For every packet p, o’(p) ≤ o(p)

UPS
Header

Initialization

Pragmatic Constraints on a UPS

Input Traffic

Output Times
Header

Initialization

(using o(p)) o’(p) for a packet p

Obliviousness: For initializing

p’s header, use only o(p) and

path(p)

INGRESS CORE NETWORK EGRESS

UPS
Header

Initialization

Pragmatic Constraints on a UPS

Input Traffic

Output Times
Header

Initialization

(using o(p)) o’(p) for a packet p

Obliviousness: For initializing

p’s header, use only o(p) and

path(p)

INGRESS CORE NETWORK EGRESS

UPS
Header

Initialization

Pragmatic Constraints on a UPS

Input Traffic

Output Times

o’(p) for a packet p

Obliviousness: For initializing

p’s header, use only o(p) and

path(p)

INGRESS CORE NETWORK EGRESS

UPS
Header

Initialization

(using o(p))

Header

Initialization

Pragmatic Constraints on a UPS

Input Traffic

Output Times

o’(p) for a packet p

Obliviousness: For initializing

p’s header, use only o(p) and

path(p)

INGRESS CORE NETWORK EGRESS

UPS
Header

Initialization

(using o(p))

Header

Initialization

Pragmatic Constraints on a UPS

Input Traffic

Output Times

o’(p) for a packet p

Obliviousness: For initializing

p’s header, use only o(p) and

path(p)

Limited State: Scheduling can use

only

header state and static information

INGRESS CORE NETWORK EGRESS

UPS
Header

Initialization

(using o(p))

Header

Initialization

Pragmatic Constraints on a UPS

Input Traffic

Output Times

o’(p) for a packet p

Obliviousness: For initializing

p’s header, use only o(p) and

path(p)

Limited State: Scheduling can use

only

header state and static information

INGRESS CORE NETWORK EGRESS

UPS
Header

Initialization

(using o(p))

Header

Initialization

We call this Blackbox Initialization

Input Traffic

Output Times

o’(p) for a packet p

Limited State: Scheduling can use

only

header state and static information

INGRESS CORE NETWORK EGRESS

Obliviousness: For initializing

p’s header, use only o(p) and

path(p)

UPS
Header

Initialization

(using o(p))

Header

Initialization

Basic Existence and Non-existence

Results

There exists a UPS under Omniscient

Initialization

when scheduling time at every hop is known

No UPS exists under Blackbox Initialization

when only the final output time is known

How close can

we get to a

UPS?

Key Result: Depends on congestion

points

No. of Congestion

Points per Packet

Genera

l

1 ✓

2 ✓

3 ✗

Can we achieve

this upper

bound?

Yes, LSTF!

Can we achieve

this upper

bound?

Yes, LSTF!

Least Slack Time First

• Packet header initialized with a slack

value

– slack = maximum tolerable queuing delay

• At the routers

– Schedule packet with least slack time first

– Update the slack by subtracting the wait

time

Key Results

No. of Congestion

Points per Packet

Genera

l
LSTF

1 ✓ ✓

2 ✓ ✓

3 ✗ ✗

Not all algorithms achieve upper

bound

No. of Congestion

Points per Packet

Genera

l
LSTF Priorities

1 ✓ ✓ ✓

2 ✓ ✓ ✗

3 ✗ ✗ ✗

How well does

LSTF perform

empirically?

Empirically, LSTF is (almost)

universal

• ns-2 simulation results on realistic network

settings

- Less than 3% packets missed their output

times

- Less than 0.1% packets are late by more

than one transmission time

Practical Viewpoint

Can it achieve a given objective?

Achieving various network

objectives

• Slack assignment based on heuristics

• Three objective functions

- Tail packet delays

- Mean Flow Completion Time

- Fairness

• We also show how LSTF can facilitate

AQM from the edge.

• See NSDI’16 paper for details!

Results Summary

• Theoretical results show that

- There is no UPS under blackbox

initialization

- LSTF comes as close to a UPS as

possible

- Empirically, LSTF is very close

• LSTF can be used in practice to achieve

a variety of network-wide objectives.

Implication

• Less need for many different

scheduling and queue management

algorithms.

• Can just use LSTF, with varying slack

initializations.

There are still some

interesting open

questions!

Open Questions

• What is the least amount of information

needed to achieve universality?

• Are there tractable bounds for the degree of

lateness with LSTF?

• What is the class of objectives that can be

achieved with LSTF in practice?

Conclusion

• Theoretical results show that

- There is no UPS under blackbox

initialization.

- LSTF comes as close to a UPS as possible.

- Empirically, LSTF is very close.

• LSTF can be used in practice to achieve a

variety of network-wide objectives.
Contact: radhika@eecs.berkeley.edu

Code: http://netsys.github.io/ups/

Thank

You!

