Traffic Engineering with Forward Fault Correction

Harry Liu Microsoft Research 06/02/2016

Joint work with Ratul Mahajan, Srikanth Kandula, Ming Zhang and David Gelernter

Cloud services require large network capacity

TE is critical to effectively utilizing networks

Traffic Engineering (centralized & SDN-Based)

WAN Network

Datacenter Network

- Microsoft SWAN (SIGCOMM'13)
- Google B4 (SIGCOMM'13)

.

• Devoflow (SIGCOMM'11)

3

• MicroTE (CoNEXT'11)

Centralized TE is the key to network efficiency

But, centralized TE is also vulnerable to faults

Data plane faults

Link and switch failures

Control plane faults

Failures or long delays to configure a network device

Control plane faults can also result in congestion.

The TE controllability is undermined by faults

Control and data plane faults in practice

In a production WAN network (200+ routers, 6000+ links):

- Faults are common.
- Faults cause severe congestion.

Overloading by a Single Link Failure

State of the art for handling faults

• Heavy over-provisioning:

Big loss in throughput

- Reactive handling of faults:
 - Control plane faults: retry
 - Data plane faults: re-compute TE and update networks

How about handling faults proactively?

TE Algorithm

Network

not robust enough

Forward fault correction (FFC) in TE

- [Bad News] Individual faults are unpredictable.
- [Good News] Simultaneous #faults is small.

FEC guarantees no information loss under up to k arbitrary packet drops.

with careful **data encoding**

FFC guarantees no congestion under up to *k* arbitrary faults.

with careful **traffic distribution**

Example: FFC for link failures

Trade-off: network efficiency v.s. robustness

Systematically realizing FFC in TE

Formulation: How to merge FFC into existing TE framework?

> **Computation:** *How to find FFC-TE efficiently?*

Basic TE linear programming formulations

Formulating data-plane FFC

An efficient and precise solution to FFC

k-sum linear constraint group (k-sum group):

Given *n* paths and $A = \{a_1, a_2, ..., a_n\}$, FFC requires that **the sum** of **arbitrary n-k** elements in A is \geq flow size

FFC-TE LP-formulation:

TE Objective

Basic TE Constraints

Lossless compression of a k-sum group:

 $O(\binom{n}{k})$ (O(kn) bubble sorting network (SIGCOMM 2014) O(n) strong duality (MSR TR 2016)

http://www.hongqiangliu.com/publications.html

 $O(\binom{n}{k})$

FFC extensions

- Differential protection for different traffic priorities
- Minimizing congestion risks without rate limiters
- Control plane faults on rate limiters
- Uncertainty in current TE

...

• Different TE objectives (e.g. max-min fairness)

Implementation & evaluation highlights

- Testbed experiment (8 switches & 30 servers)
 - FFC can be implemented in commodity switches
 - FFC has no data loss due to congestion under faults
- Large-scale simulation
 - A WAN network with O(100) switches and O(1000) links
 - One-week traffic trace
 - Fault injection according to real failure trace
 - Results: with negligible throughput loss, FFC can reduce
 - data loss by a factor of 7-130 in well-provisioned networks
 - data loss of high priority traffic to almost zero in well-utilized networks

Conclusion and future work

Q&A